Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-derived exosomes in tumor-induced immune suppression. Int J Mol Sci. 2022;23(3):1461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, et al. Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 2020;26(10):1583–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin CS, Cabrera FJ, Lee R, Kim J, Ammassam Veettil R, Zaheer M, et al. 3D-bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Adv Mater. 2021;33(4):e2003778.
Article
PubMed
Google Scholar
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, et al. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications. Adv Sci (Weinh). 2022;9(11):e2103820.
Article
Google Scholar
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem Rev. 2022;122(6):5604–40.
Article
CAS
PubMed
Google Scholar
Zhao T, Sun F, Liu J, Ding T, She J, Mao F, et al. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther. 2019;14(6):482–94.
Article
CAS
PubMed
Google Scholar
Ye J, Xie C, Wang C, Huang J, Yin Z, Heng BC, et al. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact Mater. 2021;6(11):4096–109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bucher CH, Schlundt C, Wulsten D, Sass FA, Wendler S, Ellinghaus A, et al. Experience in the adaptive immunity impacts bone homeostasis, remodeling, and healing. Front Immunol. 2019;10:797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev. 2022;184:114233.
Article
CAS
PubMed
Google Scholar
Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, et al. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles. 2022;11(5):e12218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun fiber-based strategies for controlling early innate immune cell responses: towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomater. 2022;S1742-7061(22):00341–5.
Google Scholar
Shaw GS, Samavedi S. Potent particle-based vehicles for growth factor delivery from electrospun meshes: fabrication and functionalization strategies for effective tissue regeneration. ACS Biomater Sci Eng. 2022;8(1):1–15.
Article
CAS
PubMed
Google Scholar
Ullah M, Qiao Y, Concepcion W, Thakor AS. Stem cell-derived extracellular vesicles: role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res Ther. 2019;10(1):347.
Article
PubMed
PubMed Central
Google Scholar
Juban G. Transcriptional control of macrophage inflammatory shift during skeletal muscle regeneration. Semin Cell Dev Biol. 2021;119:82–8.
Article
CAS
PubMed
Google Scholar
Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther. 2015;23(7):1189–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi K, Li N, Zhang Z, Melino G. Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol. 2018;326:86–93.
Article
CAS
PubMed
Google Scholar
Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer. 2018;18(3):187–201.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.
Article
CAS
PubMed
Google Scholar
Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 2016;85:51–60.
Article
CAS
PubMed
Google Scholar
Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020;11:1912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Yang R, Zhang J, Wang P, Wang Z, Gao J, et al. Role of extracellular vesicles in placental inflammation and local immune balance. Mediat Inflamm. 2021;2021:5558048.
Article
Google Scholar
Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 2019;13(6):6670–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnol. 2021;19(1):150.
Article
CAS
Google Scholar
Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, et al. Circulating exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing. Small. 2020;16(3):e1904044.
Article
PubMed
Google Scholar
Abdulghani S, Mitchell GR. Biomaterials for in situ tissue regeneration: a review. Biomolecules. 2019;9(11):750.
Article
CAS
PubMed Central
Google Scholar
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, et al. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater. 2021;126:31–44.
Article
CAS
PubMed
Google Scholar
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4):e1801106.
PubMed
Google Scholar
Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021;18(16):3697–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko GR, Lee JS. Engineering of immune microenvironment for enhanced tissue remodeling. Tissue Eng Regen Med. 2022;19(2):221–36.
Article
CAS
PubMed
Google Scholar
Fang J, Feng C, Chen W, Hou P, Liu Z, Zuo M, et al. Redressing the interactions between stem cells and immune system in tissue regeneration. Biol Direct. 2021;16(1):18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, et al. The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research (Wash D C). 2021;2021:4189516.
CAS
Google Scholar
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.
Article
PubMed
PubMed Central
Google Scholar
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Eng Part B Rev. 2015;21(1):75–87.
Article
PubMed
Google Scholar
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol. 2019;7:268.
Article
PubMed
PubMed Central
Google Scholar
Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos IK, Kharode YP, et al. Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem. 2002;86(3):461–74.
Article
CAS
PubMed
Google Scholar
Turgeman G, Pittman DD, Müller R, Kurkalli BG, Zhou S, Pelled G, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med. 2001;3(3):240–51.
Article
CAS
PubMed
Google Scholar
Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther. 2001;3(4):449–61.
Article
CAS
PubMed
Google Scholar
Freeman FE, Pitacco P, van Dommelen LHA, Nulty J, Browe DC, Shin JY, et al. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv. 2020;6(33):eabb5093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466.
Article
CAS
PubMed
PubMed Central
Google Scholar
De La Vega RE, van Griensven M, Zhang W, Coenen MJ, Nagelli CV, Panos JA, et al. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Sci Adv. 2022;8(7):eabl6242.
Article
Google Scholar
De Simone A, Evanitsky MN, Hayden L, Cox BD, Wang J, Tornini VA, et al. Control of osteoblast regeneration by a train of Erk activity waves. Nature. 2021;590(7844):129–33.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8(11):eabl5716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597(7875):256–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ransom RC, Carter AC, Salhotra A, Leavitt T, Marecic O, Murphy MP, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature. 2018;563(7732):514–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra R, Sehring I, Cederlund M, Mulaw M, Weidinger G. NF-κB signaling negatively regulates osteoblast dedifferentiation during zebrafish bone regeneration. Dev Cell. 2020;52(2):167-82.e7.
Article
CAS
PubMed
Google Scholar
Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018;561(7724):455–7.
Article
CAS
PubMed
Google Scholar
Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012;10(3):259–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, et al. NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv Protein Chem Struct Biol. 2017;107:117–54.
Article
CAS
PubMed
Google Scholar
Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci USA. 2013;110(23):9469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater. 2021;6(12):4830–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen. 2018;38:2.
Article
PubMed
PubMed Central
Google Scholar
Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration. J Orthop Translat. 2019;17:15–25.
Article
PubMed
Google Scholar
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing chimeras–the elusive stable chondrogenic phenotype. Biomaterials. 2019;192:199–225.
Article
CAS
PubMed
Google Scholar
Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016;32(1):97–109.
Article
PubMed
Google Scholar
Zhang Y, Liu S, Guo W, Wang M, Hao C, Gao S, et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil. 2018;26(7):954–65.
Article
CAS
Google Scholar
Qasim M, Chae DS, Lee NY. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A. 2020;108(3):394–411.
Article
CAS
PubMed
Google Scholar
Reissis D, Tang QO, Cooper NC, Carasco CF, Gamie Z, Mantalaris A, et al. Current clinical evidence for the use of mesenchymal stem cells in articular cartilage repair. Expert Opin Biol Ther. 2016;16(4):535–57.
Article
CAS
PubMed
Google Scholar
Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43-56.e21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelat R, Bhatt LK, Paunipagar B, Kurian T, Khanna A, Chandra S. Regeneration of hyaline cartilage in osteochondral lesion model using L-lysine magnetic nanoparticles labeled mesenchymal stem cells and their in vivo imaging. J Tissue Eng Regen Med. 2020;14(11):1604–17.
Article
CAS
PubMed
Google Scholar
Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, Fuentes-Boquete IM, de Toro-Santos FJ, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater. 2018;36:96–109.
Article
PubMed
Google Scholar
Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54.
Article
CAS
PubMed
Google Scholar
Lee MS, Stebbins MJ, Jiao H, Huang HC, Leiferman EM, Walczak BE, et al. Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPSCs for cartilage regeneration. Sci Adv. 2021;7(21):eabf0907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nam Y, Rim YA, Jung SM, Ju JH. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther. 2017;8(1):16.
Article
PubMed
PubMed Central
Google Scholar
Murphy C, Mobasheri A, Táncos Z, Kobolák J, Dinnyés A. The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Adv Exp Med Biol. 2018;1079:55–68.
Article
CAS
PubMed
Google Scholar
Zhang M, Shi J, Xie M, Wen J, Niibe K, Zhang X, et al. Recapitulation of cartilage/bone formation using iPSCs via biomimetic 3D rotary culture approach for developmental engineering. Biomaterials. 2020;260:120334.
Article
CAS
PubMed
Google Scholar
Lach MS, Rosochowicz MA, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: Are we ready for their clinical use? Cells. 2022;11(3):529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am. 1998;80(12):1745–57.
Article
CAS
PubMed
Google Scholar
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014;20(6):596–608.
Article
PubMed
PubMed Central
Google Scholar
Huang J, Huang Z, Liang Y, Yuan W, Bian L, Duan L, et al. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci. 2021;9(7):2620–30.
Article
CAS
PubMed
Google Scholar
de Windt TS, Vonk LA, Slaper-Cortenbach ICM, van den Broek MPH, Nizak R, van Rijen MHP, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35(1):256–64.
Article
PubMed
Google Scholar
Jiang S, Tian G, Li X, Yang Z, Wang F, Tian Z, et al. Research progress on stem cell therapies for articular cartilage regeneration. Stem Cells Int. 2021;2021:8882505.
Article
PubMed
PubMed Central
Google Scholar
Kandoi LPK, Misra S, Verma RSVKR. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9.
Article
PubMed
Google Scholar
De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol. 2018;40:74–80.
Article
PubMed
Google Scholar
Zhang Y, Guo W, Wang M, Hao C, Lu L, Gao S, et al. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol. 2018;233(3):1940–51.
Article
CAS
PubMed
Google Scholar
Parate D, Kadir ND, Celik C, Lee EH, Hui JHP, Franco-Obregón A, et al. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther. 2020;11(1):46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su YJ, Wang PW, Weng SW. The role of mitochondria in immune-cell-mediated tissue regeneration and ageing. Int J Mol Sci. 2021;22(5):2668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariani E, Pulsatelli L, Facchini A. Signaling pathways in cartilage repair. Int J Mol Sci. 2014;15(5):8667–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, et al. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res. 2013;28(3):649–59.
Article
PubMed
Google Scholar
Zieba JT, Chen YT, Lee BH, Bae Y. Notch signaling in skeletal development, homeostasis and pathogenesis. Biomolecules. 2020;10(2):332.
Article
CAS
PubMed Central
Google Scholar
Liu Z, Chen J, Mirando AJ, Wang C, Zuscik MJ, O’Keefe RJ, et al. A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal. 2015;8(386):ra71.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Du M, Wang Y, Liu S, Liu X. BMP9 overexpressing adipose-derived mesenchymal stem cells promote cartilage repair in osteoarthritis-affected knee joint via the Notch1/Jagged1 signaling pathway. Exp Ther Med. 2018;16(6):4623–31.
CAS
PubMed
PubMed Central
Google Scholar
Yu HT, Gu CZ, Chen JQ. MiR-9 facilitates cartilage regeneration of osteoarthritis in rabbits through regulating Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(12):5051–8.
PubMed
Google Scholar
Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M. Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab Invest. 2016;96(2):186–96.
Article
CAS
PubMed
Google Scholar
Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12(1):362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng Y, Zhang X, Li R, Li Z, Yang B, Shi P, et al. Biomaterial-mediated presentation of wnt5a mimetic ligands enhances chondrogenesis and metabolism of stem cells by activating non-canonical Wnt signaling. Biomaterials. 2022;281:121316.
Article
CAS
PubMed
Google Scholar
Lee J, Jeon O, Kong M, Abdeen AA, Shin JY, Lee HN, et al. Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell-based cartilage tissue engineering. Sci Adv. 2020;6(21):eaaz5913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua B, Qiu J, Ye X, Liu X. Intra-articular injection of a novel Wnt pathway inhibitor, SM04690, upregulates Wnt16 expression and reduces disease progression in temporomandibular joint osteoarthritis. Bone. 2022;158:116372.
Article
CAS
PubMed
Google Scholar
Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today. 2014;102(1):37–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang D, Jin P, Huang Q, Yang Y, Zhao J, Zheng L. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28211.
Article
PubMed
PubMed Central
Google Scholar
Ye C, Chen J, Qu Y, Liu H, Yan J, Lu Y, et al. Naringin and bone marrow mesenchymal stem cells repair articular cartilage defects in rabbit knees through the transforming growth factor-β superfamily signaling pathway. Exp Ther Med. 2020;20(5):59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying J, Wang P, Zhang S, Xu T, Zhang L, Dong R, et al. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sci. 2018;192:84–90.
Article
CAS
PubMed
Google Scholar
Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82(7):434–48.
Article
CAS
Google Scholar
Wang SN, Xie GP, Qin CH, Chen YR, Zhang KR, Li X, et al. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes. Int Immunopharmacol. 2015;24(2):408–15.
Article
PubMed
Google Scholar
Hossain MA, Adithan A, Alam MJ, Kopalli SR, Kim B, Kang C-W, et al. IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis. J Inflamm Res. 2021;14:3555–68.
Article
PubMed
PubMed Central
Google Scholar
Hsiao HY, Cheng CM, Kao SW, Liu JW, Chang CS, Harhaus L, et al. The effect of bone inhibitors on periosteum-guided cartilage regeneration. Sci Rep. 2020;10(1):8372.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Torres J, Martínez-Nava GA, Gutiérrez-Ruíz MC, Gómez-Quiroz LE, Gutiérrez M. Role of HIF-1α signaling pathway in osteoarthritis: a systematic review. Rev Bras Reumatol Engl Ed. 2017;57(2):162–73.
PubMed
Google Scholar
Silagi ES, Schipani E, Shapiro IM, Risbud MV. The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol. 2021;17(7):426–39.
Article
CAS
PubMed
Google Scholar
Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. 2011;9(2):46–52.
Article
PubMed
PubMed Central
Google Scholar
Deng C, Zhu H, Li J, Feng C, Yao Q, Wang L, et al. Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics. 2018;8(7):1940–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lutzweiler G, Ndreu Halili A, Engin Vrana N. The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. 2020;12(7):602.
Article
CAS
PubMed Central
Google Scholar
Lin R, Deng C, Li X, Liu Y, Zhang M, Qin C, et al. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics. 2019;9(21):6300–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi B, Chen L, Xiong Y, Yang Y, Panayi AC, Xue H, et al. Osteoblast/osteoclast and immune cocktail therapy of an exosome/drug delivery multifunctional hydrogel accelerates fracture repair. ACS Nano. 2022;16:771–82.
Article
CAS
PubMed
Google Scholar
Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002;3(3):439–49.
Article
CAS
PubMed
Google Scholar
Okamura G, Ebina K, Hirao M, Chijimatsu R, Yonetani Y, Etani Y, et al. Promoting effect of basic fibroblast growth factor in synovial mesenchymal stem cell-based cartilage regeneration. Int J Mol Sci. 2020;22(1):300.
Article
PubMed Central
Google Scholar
Öztürk E, Arlov Ø, Aksel S, Li L, Ornitz DM, Skjåk-Bræk G, et al. Sulfated hydrogel matrices direct mitogenicity and maintenance of chondrocyte phenotype through activation of FGF signaling. Adv Funct Mater. 2016;26(21):3649–62.
Article
PubMed
PubMed Central
Google Scholar
Öztürk E, Stauber T, Levinson C, Cavalli E, Arlov Ø, Zenobi-Wong M. Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair. Biomed Mater. 2020;15(4):045019.
Article
PubMed
Google Scholar
Haupt JL, Frisbie DD, McIlwraith CW, Robbins PD, Ghivizzani S, Evans CH, et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res. 2005;23(1):118–26.
Article
CAS
PubMed
Google Scholar
Weimer A, Madry H, Venkatesan JK, Schmitt G, Frisch J, Wezel A, et al. Benefits of recombinant adeno-associated virus (rAAV)-mediated insulinlike growth factor I (IGF-I) overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol Med. 2012;18:346–58.
Article
CAS
PubMed
Google Scholar
An C, Cheng Y, Yuan Q, Li J. IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng. 2010;38(4):1647–54.
Article
PubMed
Google Scholar
Lo WC, Dubey NK, Tsai FC, Lu JH, Peng BY, Chiang PC, et al. Amelioration of nicotine-induced osteoarthritis by platelet-derived biomaterials through modulating IGF-1/AKT/IRS-1 signaling axis. Cell Transpl. 2020;29:963689720947348.
Article
Google Scholar
Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Pawde AM, et al. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother. 2017;93:1165–74.
Article
CAS
PubMed
Google Scholar
Midgley AC, Wei Y, Li Z, Kong D, Zhao Q. Nitric-oxide-releasing biomaterial regulation of the stem cell microenvironment in regenerative medicine. Adv Mater. 2020;32(3):e1805818.
Article
PubMed
Google Scholar
Sakai D, Andersson GBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol. 2015;11(4):243–56.
Article
PubMed
Google Scholar
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK signaling in stem cell self-renewal and differentiation. Int J Mol Sci. 2020;21(7):2613.
Article
CAS
PubMed Central
Google Scholar
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79(1):143–80.
Article
CAS
PubMed
Google Scholar
Almuedo-Castillo M, Crespo-Yanez X, Crespo X, Seebeck F, Bartscherer K, Salò E, et al. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling. PLoS Genet. 2014;10(6):e1004400.
Article
PubMed
PubMed Central
Google Scholar
Dhoke NR, Geesala R, Das A. Low oxidative stress-mediated proliferation JNK-FOXO3a-catalase signaling in transplanted adult stem cells promotes wound tissue regeneration. Antioxid Redox Signal. 2018;28(11):1047–65.
Article
CAS
PubMed
Google Scholar
Jiang X, Wu F, Xu Y, Yan JX, Wu YD, Li SH, et al. A novel role of angiotensin II in epidermal cell lineage determination: angiotensin II promotes the differentiation of mesenchymal stem cells into keratinocytes through the p38 MAPK, JNK and JAK2 signalling pathways. Exp Dermatol. 2019;28(1):59–65.
Article
CAS
PubMed
Google Scholar
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281.
Article
PubMed
PubMed Central
Google Scholar
Jere SW, Houreld NN, Abrahamse H. Role of the PI3K/Akt (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev. 2019;50:52–9.
Article
CAS
PubMed
Google Scholar
Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.
Article
CAS
PubMed
Google Scholar
Hoxhaj G, Manning BD. The PI3K-Akt network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.
Article
CAS
PubMed
Google Scholar
Canaud G, Bienaimé F, Viau A, Treins C, Baron W, Nguyen C, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med. 2013;19(10):1288–96.
Article
CAS
PubMed
Google Scholar
Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell. 2009;5(3):279–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.
Article
CAS
PubMed
Google Scholar
Jamieson C, Sharma M, Henderson BR. Targeting the β-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20–9.
Article
CAS
PubMed
Google Scholar
Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, et al. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science. 2014;343(6177):1353–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Han F, Wang Y, Sun Y, Zhang M, Yu X, et al. Cells-micropatterning biomaterials for immune activation and bone regeneration. Adv Sci (Weinh). 2022;9(18):e2200670.
Article
Google Scholar
Tan SH, Barker N. Wnt signaling in adult epithelial stem cells and cancer. Prog Mol Biol Transl Sci. 2018;153:21–79.
Article
CAS
PubMed
Google Scholar
Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, et al. Regulatory role of Nrf2 signaling pathway in wound healing process. Molecules. 2021;26(9):2424.
Article
PubMed
PubMed Central
Google Scholar
Beyer TA, Auf dem Keller U, Braun S, Schäfer M, Werner S. Roles and mechanisms of action of the Nrf2 transcription factor in skin morphogenesis, wound repair and skin cancer. Cell Death Differ. 2007;14(7):1250–4.
Article
CAS
PubMed
Google Scholar
Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release. 2021;331:376–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, et al. An essential role of NRF2 in diabetic wound healing. Diabetes. 2016;65(3):780–93.
Article
CAS
PubMed
Google Scholar
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–4.
Article
CAS
PubMed
Google Scholar
Lee BC, Song J, Lee A, Cho D, Kim TS. Visfatin promotes wound healing through the activation of ERK1/2 and JNK1/2 pathway. Int J Mol Sci. 2018;19(11):3642.
Article
PubMed Central
Google Scholar
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210.
Article
CAS
PubMed
Google Scholar
Song Q, Xie Y, Gou Q, Guo X, Yao Q, Gou X. JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts. Int J Mol Med. 2017;40(2):465–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019;27(4):324–34.
Article
PubMed
Google Scholar
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706.
Article
CAS
PubMed
Google Scholar
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019;21(1):18–24.
Article
CAS
PubMed
Google Scholar
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.
Article
CAS
PubMed
Google Scholar
Lin Z, Xiong Y, Meng W, Hu Y, Chen L, Chen L, et al. Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact Mater. 2022;13:300–11.
Article
CAS
PubMed
Google Scholar
Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.
Article
CAS
PubMed
Google Scholar
Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knipper JA, Ding X, Eming SA. Diabetes impedes the epigenetic switch of macrophages into repair mode. Immunity. 2019;51(2):199–201.
Article
CAS
PubMed
Google Scholar
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):e2100176.
Article
PubMed
PubMed Central
Google Scholar
Mei J, Zhou J, Kong L, Dai Y, Zhang X, Song W, et al. An injectable photo-cross-linking silk hydrogel system augments diabetic wound healing in orthopaedic surgery through spatiotemporal immunomodulation. J Nanobiotechnol. 2022;20(1):232.
Article
CAS
Google Scholar
de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Aït-Yahia S, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol. 1998;160(4):1666–76.
PubMed
Google Scholar
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834.
Article
PubMed
Google Scholar
Batra R, Suh MK, Carson JS, Dale MA, Meisinger TM, Fitzgerald M, et al. IL-1β (interleukin-1β) and TNF-α (tumor necrosis factor-α) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization. Arterioscler Thromb Vasc Biol. 2018;38(2):457–63.
Article
CAS
PubMed
Google Scholar
Ma X. TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes Infect. 2001;3(2):121–9.
Article
CAS
PubMed
Google Scholar
Tong Y, Lear TB, Evankovich J, Chen Y, Londino JD, Myerburg MM, et al. The RNFT2/IL-3Rα axis regulates IL-3 signaling and innate immunity. JCI Insight. 2020;5(3):e133652.
Article
PubMed Central
Google Scholar
Kohler JB, Cervilha DAdB, Riani Moreira A, Santana FR, Farias TM, Alonso Vale MIC, et al. Microenvironmental stimuli induce different macrophage polarizations in experimental models of emphysema. Biol Open. 2019;8(4):bio040808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.
Article
CAS
PubMed
Google Scholar
Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM. Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol. 2017;79:567–92.
Article
CAS
PubMed
Google Scholar
Lu X, Yu C, Zhang C, Zhang H, Li Y, Cheng X, et al. Effects of Salmonella enterica serovar typhimurium sseK1 on macrophage inflammation-related cytokines and glycolysis. Cytokine. 2021;140:155424.
Article
CAS
PubMed
Google Scholar
Saini S, Dhiman A, Nanda S. Immunomodulatory properties of chitosan: Impact on wound healing and tissue repair. Endocr Metab Immune Disord Drug Targets. 2020;20(10):1611–23.
Article
CAS
PubMed
Google Scholar
Proto JD, Doran AC, Gusarova G, Yurdagul A, Sozen E, Subramanian M, et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity. 2018;49(4):666–77.e6.
Article
CAS
PubMed
Google Scholar
Zhang J, Qu C, Li T, Cui W, Wang X, Du J. Phagocytosis mediated by scavenger receptor class BI promotes macrophage transition during skeletal muscle regeneration. J Biol Chem. 2019;294(43):15672–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 2019;6(20):1900513.
Article
CAS
Google Scholar
Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, et al. Expanded antigen-experienced CD160CD8 effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J Immunother Cancer. 2021;9(4):e002189.
Article
PubMed
PubMed Central
Google Scholar
Sadtler K, Wolf MT, Ganguly S, Moad CA, Chung L, Majumdar S, et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials. 2019;192:405–15.
Article
CAS
PubMed
Google Scholar
Sobecki M, Krzywinska E, Nagarajan S, Audigé A, Huỳnh K, Zacharjasz J, et al. NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat Commun. 2021;12(1):4700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Backes CS, Friedmann KS, Mang S, Knörck A, Hoth M, Kummerow C. Natural killer cells induce distinct modes of cancer cell death: discrimination, quantification, and modulation of apoptosis, necrosis, and mixed forms. J Biol Chem. 2018;293(42):16348–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol. 2019;19(5):282–90.
Article
PubMed
Google Scholar
Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dastagir N, Beal Z, Godwin J. Tissue origin of cytotoxic natural killer cells dictates their differential roles in mouse digit tip regeneration and progenitor cell survival. Stem Cell Rep. 2022;17(3):633–48.
Article
CAS
Google Scholar
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.
Article
CAS
PubMed
Google Scholar
Jiang B, Yan L, Wang X, Li E, Murphy K, Vaccaro K, et al. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications. Stem Cells. 2019;37(5):572–81.
Article
PubMed
Google Scholar
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cell. 2020;9(5):1157–69.
Article
CAS
Google Scholar
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33.
Article
CAS
PubMed
Google Scholar
Thomas H, Jäger M, Mauel K, Brandau S, Lask S, Flohé SB. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediat Inflamm. 2014;2014:143463.
Article
Google Scholar
Petri RM, Hackel A, Hahnel K, Dumitru CA, Bruderek K, Flohe SB, et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Rep. 2017;9(3):985–98.
Article
CAS
Google Scholar
DelaRosa O, Sánchez-Correa B, Morgado S, Ramírez C, del Río B, Menta R, et al. Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev. 2012;21(8):1333–43.
Article
CAS
PubMed
Google Scholar
Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée V-P, Mendoza A, et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell. 2019;179(4):846–63.e24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.
Article
CAS
PubMed
Google Scholar
See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356(6342):eaag3009.
Article
PubMed
PubMed Central
Google Scholar
Zhu FJ, Tong YL, Sheng ZY, Yao YM. Role of dendritic cells in the host response to biomaterials and their signaling pathways. Acta Biomater. 2019;94:132–44.
Article
CAS
PubMed
Google Scholar
Lech M, Gröbmayr R, Weidenbusch M, Anders HJ. Tissues use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments. Mediat Inflamm. 2012;2012:951390.
Article
Google Scholar
Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017;53:13–28.
Article
CAS
PubMed
Google Scholar
Vinish M, Cui W, Stafford E, Bae L, Hawkins H, Cox R, et al. Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair Regen. 2016;24(1):6–13.
Article
PubMed
Google Scholar
Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci USA. 2011;108(42):17384–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007;25(8):2025–32.
Article
CAS
PubMed
Google Scholar
Silva AM, Almeida MI, Teixeira JH, Maia AF, Calin GA, Barbosa MA, et al. Dendritic cell-derived extracellular vesicles mediate mesenchymal stem/stromal cell recruitment. Sci Rep. 2017;7(1):1667.
Article
PubMed
PubMed Central
Google Scholar
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol. 2021;12:687037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Wang X, Miron RJ, Zhang X. The interactions of dendritic cells with osteoblasts on titanium surfaces: an in vitro investigation. Clin Oral Investig. 2019;23(11):4133–43.
Article
PubMed
Google Scholar
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18(10):749–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol. 2018;142(6):1710–8.
Article
CAS
PubMed
Google Scholar
Chen L, Xiong Y, Hu Y, Yu C, Panayi AC, Zhou W, et al. Regulatory T cell-exosomal miR-142-3p promotes angiogenesis and osteogenesis via TGFBR1/SMAD2 inhibition to accelerate fracture repair. Chem Eng J. 2022;427:131419.
Article
PubMed
PubMed Central
Google Scholar
Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity. 2016;44(2):355–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Tan J, Martino MM, Lui KO. Regulatory T-cells: potential regulator of tissue repair and regeneration. Front Immunol. 2018;9:585.
Article
PubMed
PubMed Central
Google Scholar
Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5(47):eaaz9631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC, Lowe MM, et al. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci Immunol. 2021;6(62):eabg2329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019;19(7):392–404.
Article
CAS
PubMed
Google Scholar
Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221–32.
Article
CAS
PubMed
Google Scholar
Hovav AH. Human γδ T cells: rapid, stable and clonally reactive. Cell Mol Immunol. 2017;14(8):646–8.
Article
PubMed
PubMed Central
Google Scholar
Xu P, Fu X, Xiao N, Guo Y, Pei Q, Peng Y, et al. Involvements of γδT lymphocytes in acute and chronic skin wound repair. Inflammation. 2017;40(4):1416–27.
Article
CAS
PubMed
Google Scholar
Liu Z, Xu Y, Zhang X, Liang G, Chen L, Xie J, et al. Defects in dermal Vγ4 γ δ T cells result in delayed wound healing in diabetic mice. Am J Transl Res. 2016;8(6):2667–80.
CAS
PubMed
PubMed Central
Google Scholar
Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016;7:10928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong WK, Yin B, Rakhmatullina A, Zhou J, Wong SHD. Engineering advanced dynamic biomaterials to optimize adoptive T-cell immunotherapy. Eng Regen. 2021;2:70–81.
Google Scholar
Sallusto F. Heterogeneity of human CD4+ T cells against microbes. Annu Rev Immunol. 2016;34:317–34.
Article
CAS
PubMed
Google Scholar
Yu Y, Chen Z, Wang Y, Li Y, Lu J, Cui L, et al. Infliximab modifies regulatory T cells and co-inhibitory receptor expression on circulating T cells in psoriasis. Int Immunopharmacol. 2021;96:107722.
Article
CAS
PubMed
Google Scholar
Bernhardsson M, Dietrich-Zagonel F, Tätting L, Eliasson P, Aspenberg P. Depletion of cytotoxic (CD8+) T cells impairs implant fixation in rat cancellous bone. J Orthop Res. 2019;37(4):805–11.
Article
CAS
PubMed
Google Scholar
Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013;5(177):177ra36.
Article
PubMed
Google Scholar
Chen L, Mehta ND, Zhao Y, DiPietro LA. Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol. 2014;23(3):189–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis PA, Corless DJ, Aspinall R, Wastell C. Effect of CD4+ and CD8+ cell depletion on wound healing. Br J Surg. 2001;88(2):298–304.
Article
CAS
PubMed
Google Scholar
Vigneswaran Y, Han H, De Loera R, Wen Y, Zhang X, Sun T, et al. This paper is the winner of an SFB Award in the Hospital Intern, Residency category: Peptide biomaterials raising adaptive immune responses in wound healing contexts. J Biomed Mater Res A. 2016;104(8):1853–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020;38(1):15–21.
Article
PubMed
Google Scholar
El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.
Article
Google Scholar
Wei F, Li Z, Crawford R, Xiao Y, Zhou Y. Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med. 2019;13(11):1978–91.
Article
CAS
PubMed
Google Scholar
Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018;20(12):1419–26.
Article
CAS
PubMed
Google Scholar
Planat-Benard V, Varin A, Casteilla L. MSCs and inflammatory cells crosstalk in regenerative medicine: concerted actions for optimized resolution driven by energy metabolism. Front Immunol. 2021;12:626755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, Wei W, Cao Y, Ao T, Huang F, Javed R, et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J Cell Mol Med. 2022;26(3):693–708.
Article
CAS
PubMed
Google Scholar
Pachler K, Ketterl N, Desgeorges A, Dunai ZA, Laner-Plamberger S, Streif D, et al. An in vitro potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles. Int J Mol Sci. 2017;18(7):1413.
Article
PubMed Central
Google Scholar
Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556.
Article
PubMed
PubMed Central
Google Scholar
Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng. 2020;6(3):1590–602.
Article
CAS
PubMed
Google Scholar
Zhang S, Wong KL, Ren X, Teo KYW, Afizah H, Choo ABH, et al. Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model. Am J Sports Med. 2022;50(3):788–800.
Article
PubMed
Google Scholar
Li Z, Wang Y, Li S, Li Y. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs. Front Endocrinol (Lausanne). 2021;12:680328.
Article
Google Scholar
Zhou S. Paracrine effects of haematopoietic cells on human mesenchymal stem cells. Sci Rep. 2015;5:10573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–8.
Article
CAS
PubMed
Google Scholar
Tan SHS, Wong JRY, Sim SJY, Tjio CKE, Wong KL, Chew JRJ, et al. Mesenchymal stem cell exosomes in bone regenerative strategies-a systematic review of preclinical studies. Mater Today Bio. 2020;7:100067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, et al. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun. 2022;13(1):3960.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Xu X, Zhang Y, An X, Zhang X, Chen G, et al. Duo cadherin-functionalized microparticles synergistically induce chondrogenesis and cartilage repair of stem cell aggregates. Adv Healthc Mater. 2022;11(13):e2200246.
Article
PubMed
Google Scholar
Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–9.
Article
CAS
PubMed
Google Scholar
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm. 2022;172:41–52.
Article
CAS
PubMed
Google Scholar
Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10(3):244–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med. 2020;18(1):449.
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23(11):1233–44.
Article
CAS
PubMed
Google Scholar
Shpigelman J, Lao FS, Yao S, Li C, Saito T, Sato-Kaneko F, et al. Generation and application of a reporter cell line for the quantitative screen of extracellular vesicle release. Front Pharmacol. 2021;12:668609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019;200:35–47.
Article
CAS
PubMed
Google Scholar
Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 2018;17(21–22):2411–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao G, Hu S, Zhang Z, Wu P, Zhao X, Lin R, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med. 2018;22(11):5354–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.
Article
CAS
Google Scholar
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.
Article
CAS
PubMed
Google Scholar
Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200–12.
Article
PubMed
PubMed Central
Google Scholar
Won Lee G, Thangavelu M, Joung Choi M, Yeong Shin E, Sol Kim H, Seon Baek J, et al. Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. J Cell Biochem. 2020;121(7):3642–52.
Article
PubMed
Google Scholar
Zhang M, Chen D, Zhang F, Zhang G, Wang Y, Zhang Q, et al. Serum exosomal hsa-miR-135b-5p serves as a potential diagnostic biomarker in steroid-induced osteonecrosis of femoral head. Am J Transl Res. 2020;12(5):2136–54.
CAS
PubMed
PubMed Central
Google Scholar
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.
Article
CAS
PubMed
Google Scholar
Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9(1):1709262.
Article
PubMed
PubMed Central
Google Scholar
Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. 2016;126(4):1216–23.
Article
PubMed
PubMed Central
Google Scholar
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Syn NL, Wang L, Chow EKH, Lim CT, Goh BC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–76.
Article
CAS
PubMed
Google Scholar
Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, et al. Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev Rep. 2017;13(2):226–43.
Article
CAS
PubMed
Google Scholar
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–69.
Article
CAS
PubMed
Google Scholar
Roohani I, Yeo GC, Mithieux SM, Weiss AS. Emerging concepts in bone repair and the premise of soft materials. Curr Opin Biotechnol. 2022;74:220–9.
Article
CAS
PubMed
Google Scholar
Oh J, Xia X, Wong WKR, Wong SHD, Yuan W, Wang H, et al. The effect of the nanoparticle shape on T cell activation. Small. 2022;18(36):e2107373.
Article
PubMed
Google Scholar
Yin B, Yang H, Yang M. Integrating soft hydrogel with nanostructures reinforces stem cell adhesion and differentiation. J Compos Sci. 2022;6(1):19.
Article
CAS
Google Scholar
Wong DSH, Li J, Yan X, Wang B, Li R, Zhang L, et al. Magnetically tuning tether mobility of integrin ligand regulates adhesion, spreading, and differentiation of stem cells. Nano Lett. 2017;17(3):1685–95.
Article
CAS
PubMed
Google Scholar
Christman KL. Biomaterials for tissue repair. Science. 2019;363(6425):340–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasani-Sadrabadi MM, Sarrion P, Nakatsuka N, Young TD, Taghdiri N, Ansari S, et al. Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering. ACS Nano. 2019;13(4):3830–38.
Article
CAS
PubMed
Google Scholar
Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97(3):258–67.
Article
PubMed
PubMed Central
Google Scholar
Wu S, Ma J, Liu J, Liu C, Ni S, Dai T, et al. Immunomodulation of telmisartan-loaded PCL/PVP scaffolds on macrophages promotes endogenous bone regeneration. ACS Appl Mater Interfaces. 2022;14(14):15942–55.
Article
CAS
PubMed
Google Scholar
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory biomaterials for tissue repair. Chem Rev. 2021;121(18):11305–35.
Article
CAS
PubMed
Google Scholar
Lin C, Tao B, Deng Y, He Y, Shen X, Wang R, et al. Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease. Biomaterials. 2019;217:119300.
Article
CAS
PubMed
Google Scholar
Zhou W, Lin Z, Xiong Y, Xue H, Song W, Yu T, et al. Dual-targeted nanoplatform regulating the bone immune microenvironment enhances fracture healing. ACS Appl Mater Interfaces. 2021;13(48):56944–60.
Article
CAS
PubMed
Google Scholar
Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter. 2012;2(4):226–36.
Article
PubMed
PubMed Central
Google Scholar
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019;15(9):550–70.
Article
PubMed
PubMed Central
Google Scholar
Steinberg J, Southam L, Fontalis A, Clark MJ, Jayasuriya RL, Swift D, et al. Linking chondrocyte and synovial transcriptional profile to clinical phenotype in osteoarthritis. Ann Rheum Dis. 2021;80(8):1070–4.
Article
CAS
PubMed
Google Scholar
Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis. 2018;77(10):1524–34.
Article
CAS
PubMed
Google Scholar
Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: A potential target on cartilage regeneration. Front Immunol. 2020;11:111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huleihel L, Dziki JL, Bartolacci JG, Rausch T, Scarritt ME, Cramer MC, et al. Macrophage phenotype in response to ECM bioscaffolds. Semin Immunol. 2017;29:2–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci. 2016;1383(1):139–59.
Article
CAS
PubMed
Google Scholar
Changchen W, Hongquan W, Bo Z, Leilei X, Haiyue J, Bo P. The characterization, cytotoxicity, macrophage response and tissue regeneration of decellularized cartilage in costal cartilage defects. Acta Biomater. 2021;136:147–58.
Article
PubMed
Google Scholar
Tian G, Jiang S, Li J, Wei F, Li X, Ding Y, et al. Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote osteochondral repair through immunomodulatory macrophages: In vitro and in vivo preclinical study. Acta Biomater. 2021;127:131–45.
Article
CAS
PubMed
Google Scholar
Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials. 2018;180:91–103.
Article
CAS
PubMed
Google Scholar
Gan D, Jiang Y, Hu Y, Wang X, Wang Q, Wang K, et al. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J Orthop Translat. 2022;33:120–31.
Article
PubMed
PubMed Central
Google Scholar
Sumayya AS, Muraleedhara Kurup G. Anti-inflammatory potential of marine macromolecules cross-linked bio-composite scaffold on LPS stimulated RAW 264.7 macrophage cells for cartilage tissue engineering applications. J Biomater Sci Polym Ed. 2021;32(8):1040–56.
Article
CAS
PubMed
Google Scholar
Yuan Z, Long T, Zhang J, Lyu Z, Zhang W, Meng X, et al. 3D printed porous sulfonated polyetheretherketone scaffold for cartilage repair: Potential and limitation. J Orthop Translat. 2022;33:90–106.
Article
PubMed
PubMed Central
Google Scholar
Zhai D, Chen L, Chen Y, Zhu Y, Xiao Y, Wu C. Lithium silicate-based bioceramics promoting chondrocyte maturation by immunomodulating M2 macrophage polarization. Biomater Sci. 2020;8(16):4521–34.
Article
CAS
PubMed
Google Scholar
Takenaka M, Yabuta A, Takahashi Y, Takakura Y. Interleukin-4-carrying small extracellular vesicles with a high potential as anti-inflammatory therapeutics based on modulation of macrophage function. Biomaterials. 2021;278:121160.
Article
CAS
PubMed
Google Scholar
Gong L, Li J, Zhang J, Pan Z, Liu Y, Zhou F, et al. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater. 2020;117:246–60.
Article
PubMed
Google Scholar
Jiang G, Li S, Yu K, He B, Hong J, Xu T, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 2021;128:150–62.
Article
CAS
PubMed
Google Scholar
Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Front Bioeng Biotechnol. 2020;8:575057.
Article
PubMed
PubMed Central
Google Scholar
Chahal J, Gómez-Aristizábal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med. 2019;8(8):746–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Chen B, Lv T, Liu X, Fu X, Wang Q, et al. Bone marrow mesenchymal stem cell-based engineered cartilage ameliorates polyglycolic acid/polylactic acid scaffold-induced inflammation through M2 polarization of macrophages in a pig model. Stem Cells Transl Med. 2016;5(8):1079–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, et al. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater. 2021;6(9):2711–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue YZB, Niu YM, Tang B, Wang CM. PCL/EUG scaffolds with tunable stiffness can regulate macrophage secretion behavior. Prog Biophys Mol Biol. 2019;148:4–11.
Article
CAS
PubMed
Google Scholar
Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017;6(21). https://doi.org/10.1002/adhm.201700289.
Kang H, Wong SHD, Pan Q, Li G, Bian L. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 2019;19(3):1963–75.
Article
CAS
PubMed
Google Scholar
Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20(8):1811.
Article
CAS
PubMed Central
Google Scholar
Parkatzidis K, Chatzinikolaidou M, Kaliva M, Bakopoulou A, Farsari M, Vamvakaki M. Multiphoton 3D printing of biopolymer-based hydrogels. ACS Biomater Sci Eng. 2019;5(11):6161–70.
Article
CAS
PubMed
Google Scholar
Shivakumar P, Gupta MS, Jayakumar R, Gowda DV. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020). Int J Biol Macromol. 2021;184:701–12.
Article
CAS
PubMed
Google Scholar
Ashouri F, Beyranvand F, Beigi Boroujeni N, Tavafi M, Sheikhian A, Varzi AM, et al. Macrophage polarization in wound healing: role of aloe vera/chitosan nanohydrogel. Drug Deliv Transl Res. 2019;9(6):1027–42.
Article
CAS
PubMed
Google Scholar
Chouhan D, Lohe TU, Samudrala PK, Mandal BB. In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthc Mater. 2018;7(24):e1801092.
Article
PubMed
Google Scholar
Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al. Application of Ti C MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater. 2019;8(16):e1900569.
Article
PubMed
Google Scholar
Chen TY, Wen TK, Dai NT, Hsu SH. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials. 2021;269:120608.
Article
CAS
PubMed
Google Scholar
Saleh B, Dhaliwal HK, Portillo-Lara R, Shirzaei Sani E, Abdi R, Amiji MM, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small. 2019;15(36):e1902232.
Article
PubMed
PubMed Central
Google Scholar
San Emeterio CL, Hymel LA, Turner TC, Ogle ME, Pendleton EG, York WY, et al. Nanofiber-based delivery of bioactive lipids promotes pro-regenerative inflammation and enhances muscle fiber growth after volumetric muscle loss. Front Bioeng Biotechnol. 2021;9:650289.
Article
PubMed
PubMed Central
Google Scholar
Xi K, Gu Y, Tang J, Chen H, Xu Y, Wu L, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun. 2020;11(1):4504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonito V, Koch SE, Krebber MM, Carvajal-Berrio DA, Marzi J, Duijvelshoff R, et al. Distinct effects of heparin and interleukin-4 functionalization on macrophage polarization and in situ arterial tissue regeneration using resorbable supramolecular vascular grafts in rats. Adv Healthc Mater. 2021;10(21):e2101103.
Article
PubMed
Google Scholar
Tidball JG, Flores I, Welc SS, Wehling-Henricks M, Ochi E. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis. Exp Gerontol. 2021;145:111200.
Article
CAS
PubMed
Google Scholar
Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science. 2016;352(6283):366–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estrellas KM, Chung L, Cheu LA, Sadtler K, Majumdar S, Mula J, et al. Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. J Biol Chem. 2018;293(40):15594–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saffari TM, Chan K, Saffari S, Zuo KJ, McGovern RM, Reid JM, et al. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng. 2021;118(7):2804–14.
Article
CAS
PubMed
Google Scholar
Huang L, Fu C, Xiong F, He C, Wei Q. Stem cell therapy for spinal cord injury. Cell Transpl. 2021;30:963689721989266.
Article
Google Scholar
Spejo AB, Chiarotto GB, Ferreira ADF, Gomes DA, Ferreira RS, Barraviera B, et al. Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells. J Neuroinflammation. 2018;15(1):230.
Article
CAS
PubMed
PubMed Central
Google Scholar