Vorobyov V, Janac B, Pesic V, Prolic Z. Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study. Int J Radiat Biol. 2010;86:376–83.
Article
CAS
PubMed
Google Scholar
Eliyahu I, Luria R, Hareuveny R, Margaliot M, Meiran N, Shani G. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics. 2006;27:119–26.
Article
PubMed
Google Scholar
Sage C, Carpenter D, Hardell L. Comments on SCENIHR: opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015;36:480–4.
Article
Google Scholar
Szmigielski S. Cancer risks related to low-level RF/MW exposures, including cell phones. Electromagn Biol Med. 2013;32:273–80.
Article
PubMed
Google Scholar
Kan P, Simonsen SE, Lyon JL, Kestle JR. Cellular phone use and brain tumor: a meta-analysis. J Neuro-Oncol. 2008;86:71–8.
Article
Google Scholar
Khurana VG, Teo C, Kundi M, Hardell L, Carlberg M. Cell phones and brain tumors: a review including the long-term epidemiologic data. Surg Neurol. 2009;72:205–14.
Article
PubMed
Google Scholar
Myung SK, Ju W, McDonnell DD, Lee YJ, Kazinets G, Cheng CT, et al. Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 2009;27:5565–72.
Article
PubMed
Google Scholar
Johansen C, Boice JD, McLaughlin JK, Olsen JH. Cellular telephones and cancer—a nationwide cohort study in Denmark. J Natl Cancer Inst. 2001;93:203–7.
Article
CAS
PubMed
Google Scholar
Muscat JE, Malkin MG, Thompson S, Shore RE, Stellman SD, McRee D, et al. Handheld cellular telephone use and risk of brain cancer. JAMA. 2000;284:3001–7.
Article
CAS
PubMed
Google Scholar
Lönn S, Ahlbom A, Hall P, Feychting M. Long-term mobile phone use and brain tumor risk. Am J Epidemiol. 2005;161:526–35.
Article
PubMed
Google Scholar
Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-Jessen M, Schüz J. Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ. 2011;343:522–4.
Schüz J, Jacobsen R, Olsen JH, Boice JD, McLaughlin JK, Johansen C. Cellular telephone use and cancer risk: update of a nationwide Danish cohort. J Natl Cancer Inst. 2006;98:1707–13.
Article
PubMed
Google Scholar
Interphone study group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol. 2010;39:675–94.
Article
Google Scholar
Larjavaara S, Schüz J, Swerdlow A, Feychting M, Johansen C, Lagorio S, et al. Location of gliomas in relation to mobile telephone use: a case-case and case-specular analysis. Am J Epidemiol. 2011;174:2–11.
Article
PubMed
Google Scholar
Hardell L, Carlberg M, Mild KH, Eriksson M. Case-control study on the use of mobile and cordless phones and the risk for malignant melanoma in the head and neck region. Pathophysiology. 2011;18:325–33.
Article
PubMed
Google Scholar
Dasdag S, Balci K, Celik M, Batun S, Kaplan A, Bolaman Z, et al. Neurologic and biochemical findings and CD4/CD8 ratio in people occupationally exposed to RF and microwave. Biotechnol Biotechnol Equip. 1992;6:37–9.
Article
Google Scholar
Oto R, Akdaǧ Z, Daşdaǧ S, Celik Y. Evaluation of Psychologic parameters in people occupationally exposed to radiofrequencies and microwave. Biotechnol Biotechnol Equip. 1994;8:71–4.
Article
Google Scholar
Mortazavi SMJ, Taeb S, Dehghan N. Alterations of visual reaction time and short term memory in military radar personnel. Iran J Public Health. 2013;42:428.
PubMed
PubMed Central
Google Scholar
Naser D, Shahram T. Adverse health effects of occupational exposure to radiofrequency radiation in airport surveillance radar operators. Indian J Occup Environ Med. 2013;17:7–11.
Article
Google Scholar
Singh S, Mani KV, Kapoor N. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels. Int J Radiat Biol. 2015;91:426–34.
Article
CAS
PubMed
Google Scholar
Richter ED, Berman T, Ben-Michael E, Laster R, Westin JB. Cancer in radar technicians exposed to radiofrequency/microwave radiation: sentinel episodes. Int J Occup Environ Health. 2000;6:187–93.
Article
CAS
PubMed
Google Scholar
Richter ED, Berman T, Levy O. Brain cancer with induction periods of less than 10 years in young military radar workers. Arch Environ Health. 2002;57:270–2.
Article
PubMed
Google Scholar
Szmigielski S. Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci Total Environ. 1996;180:9–17.
Article
CAS
PubMed
Google Scholar
Otto M, von Mühlendahl KE. Electromagnetic fields (EMF): do they play a role in children's environmental health (CEH)? Int J Hyg Environ Health. 2007;210:635–44.
Article
PubMed
Google Scholar
Aydin D, Feychting M, Schüz J, Andersen TV, Poulsen AH, Prochazka M, et al. Predictors and overestimation of recalled mobile phone use among children and adolescents. Prog Biophys Mol Biol. 2011;107:356–61.
Article
PubMed
Google Scholar
Mortazavi S, Tavakkoli-Golpayegani A, Haghani M, Mortazavi S. Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation. J Environ Health Sci Eng. 2014;12:75.
Article
PubMed
PubMed Central
Google Scholar
Mortazavi S, Rouintan M, Taeb S, Dehghan N, Ghaffarpanah A, Sadeghi Z, et al. Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time. Acta Neurol Belg. 2012;112:171–5.
Article
CAS
PubMed
Google Scholar
Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmäki L, Laine M, et al. Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport. 2000;11:413–5.
Article
CAS
PubMed
Google Scholar
Preece A, Iwi G, Davies-Smith A, Wesnes K, Butler S, Lim E, et al. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol. 1999;75:447–56.
Koivisto M, Krause CM, Revonsuo A, Laine M, Hämäläinen H. The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport. 2000;11:1641–3.
Article
CAS
PubMed
Google Scholar
Edelstyn N, Oldershaw A. The acute effects of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport. 2002;13:119–21.
Article
PubMed
Google Scholar
Lee TM, Ho SM, Tsang LY, Yang SY, Li LS, Chan CC. Effect on human attention of exposure to the electromagnetic field emitted by mobile phones. Neuroreport. 2001;12:729–31.
Article
CAS
PubMed
Google Scholar
Smythe JW, Costall B. Mobile phone use facilitates memory in male, but not female, subjects. Neuroreport. 2003;14:243–6.
Article
PubMed
Google Scholar
Dasdag S, Balci K, Ayyildiz M, Celik M, Tekes S, Kaplan A. Blood biochemical parameters of the radio-link station. Eastern J Med. 1999;4:10–2.
Google Scholar
Schüz J, Waldemar G, Olsen JH, Johansen C. Risks for central nervous system diseases among mobile phone subscribers: a Danish retrospective cohort study. PLoS One. 2009;4:e4389.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.
Article
CAS
PubMed
Google Scholar
Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M. Spatial memory perfomance of wistar rats exposed to mobile phone. Clinics. 2009;64:231–4.
Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L, et al. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol. 2013;89:1100–7.
Article
CAS
PubMed
Google Scholar
Lai H, Horita A, Guy AW. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics. 1994;15:95–104.
Article
CAS
PubMed
Google Scholar
Cosquer B, Kuster N, Cassel JC. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter 12-arm radial-maze with reduced access to spatial cues in rats. Behav Brain Res. 2005;161:331–4.
Article
PubMed
Google Scholar
Cassel JC, Cosquer B, Galani R, Kuster N. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res. 2004;155:37–43.
Article
PubMed
Google Scholar
Cobb BL, Jauchem JR, Adair ER. Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics. 2004;25:49–57.
Article
PubMed
Google Scholar
Kesari KK, Behari J. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol. 2009;158:126–39.
Article
CAS
PubMed
Google Scholar
Li M, Wang Y, Zhang Y, Zhou Z, Yu Z. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J Radiat Res (Tokyo). 2008;49:163–70.
Article
CAS
Google Scholar
Li Z, Peng RY, Wang SM, Wang LF, Gao YB, Ji D, et al. Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci. 2012;25:182–8.
PubMed
Google Scholar
Xiong L, Sun CF, Zhang J, Gao YB, Wang LF, Zuo HY, et al. Microwave exposure impairs synaptic plasticity in the rat hippocampus and pc12 cells through over-activation of the nmda receptor signaling pathway. Biomed Environ Sci. 2015;28:13–24.
PubMed
Google Scholar
Srinivasan R. Anatomical constraints on source models for high-resolution EEG and MEG derived from MRI. Technol Cancer Res Treat. 2006;5:389.
PubMed
PubMed Central
Google Scholar
Jeong J. EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol. 2004;115:1490–505.
Article
PubMed
Google Scholar
Hinrikus H, Bachmann M, Lass J, Karai D, Tuulik V. Effect of low frequency modulated microwave exposure on human EEG: individual sensitivity. Bioelectromagnetics. 2008;29:527–38.
Article
PubMed
Google Scholar
Li HJ, Peng RY, Wang CZ, Qiao SM, Yong Z, Gao YB, et al. Alterations of cognitive function and 5-HT system in rats after long term microwave exposure. Physiol Behav. 2015;140:236–46.
Article
CAS
PubMed
Google Scholar
Vakalopoulos C. The EEG as an index of neuromodulator balance in memory and mental illness. Front Neurosci. 2014;8:63.
Article
PubMed
PubMed Central
Google Scholar
Thuröczy G, Kubinyi G, Bodo M, Bakos J, Szabo L. Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health. 1994;10:135–48.
Article
PubMed
Google Scholar
Chizhenkova R. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves. Bioelectromagnetics. 1988;9:337–45.
Article
CAS
PubMed
Google Scholar
Nakatani-Enomoto S, Furubayashi T, Ushiyama A, Groiss SJ, Ueshima K, Sokejima S, et al. Effects of electromagnetic fields emitted from W-CDMA-like mobile phones on sleep in humans. Bioelectromagnetics. 2013;34:589–98.
Article
PubMed
Google Scholar
Schmid MR, Murbach M, Lustenberger C, Maire M, Kuster N, Achermann P, et al. Sleep EEG alterations: effects of pulsed magnetic fields versus pulse-modulated radio frequency electromagnetic fields. J Sleep Res. 2012;21:620–9.
Article
PubMed
Google Scholar
Vecchio F, Babiloni C, Lizio R, Fallani FV, Blinowska K, Verrienti G, et al. Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2012;62:223–36.
Article
Google Scholar
Perentos A, Cuesta-Soto F, Canciamilla A, Vidal B, Pierno L, Losilla NS, et al. Using a ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links. Phot J. 2013;5:5500110.
Article
CAS
Google Scholar
Suhhova A, Bachmann M, Karai D, Lass J, Hinrikus H. Effect of microwave radiation on human EEG at two different levels of exposure. Bioelectromagnetics. 2013;34:264–74.
Article
PubMed
Google Scholar
Othman H, Ammari M, Rtibi K, Bensaid N, Sakly M, Abdelmelek H. Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. Environ Toxicol Pharmacol. 2017;52:239–47.
Article
CAS
PubMed
Google Scholar
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of prenatal exposure to WIFI signal (2.45 GHz) on postnatal development and behavior in rat: influence of maternal restraint. Behav Brain Res. 2017;326:291.
Article
CAS
PubMed
Google Scholar
Zhang Y, Li Z, Gao Y. Effects of fetal microwave radiation exposure on offspring behavior in mice. J Radiat Res (Tokyo). 2015;56:261–8.
Article
CAS
Google Scholar
Qiao S, Peng R, Yan H, Gao Y, Wang C, Wang S, et al. Reduction of Phosphorylated Synapsin I (Ser-553) leads to spatial memory impairment by attenuating GABA release after microwave exposure in Wistar rats. PLoS One. 2014;9:e95503.
Article
PubMed
PubMed Central
Google Scholar
Ning W, Chiang H, Yang W. Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons. Acta Pharmacol Sin. 2007;28:1873–80.
Article
CAS
PubMed
Google Scholar
Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett. 2006;398:253–7.
Article
CAS
PubMed
Google Scholar
Wang L, Hu X, Peng R. Influence of long-term microwave radiation on contents of amino acids and monoamines in urine of Wistar rats. Chin J Indus Hyg. 2010;28:445.
CAS
Google Scholar
Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Rev. 2003;41:268–87.
Article
CAS
PubMed
Google Scholar
Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res. 2003;140:1–47.
Article
CAS
PubMed
Google Scholar
Wang L, Peng R, Hu X, Gao Y, Wang S, Zhao L, et al. Abnormality of synaptic vesicular associated proteins in cerebral cortex and hippocampus after microwave exposure. Synapse. 2009;63:1010–6.
Article
CAS
PubMed
Google Scholar
Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;2004:1–9.
Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–92.
Article
CAS
PubMed
Google Scholar
Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.
Article
CAS
PubMed
Google Scholar
Wang H, Peng R, Zhao L, Wang S, Gao Y, Wang L, et al. The relationship between NMDA receptors and microwave induced learning and memory impairment: a long term observation on Wistar rats. Int J Radiat Biol. 2014:1–25.
Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, et al. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett. 2010;473:52–5.
Article
CAS
PubMed
Google Scholar
Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007;96:2181–96.
Article
CAS
PubMed
Google Scholar
Dasdag S, Bilgin H, Akdag M, Celik H, Aksen F. Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip. 2008;22:992–7.
Article
Google Scholar
Shahin S, Banerjee S, Singh SP, Chaturvedi CM. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism. Toxicol Sci. 2015;148:1–50.
Kumar M, Singh SP, Chaturvedi CM. Chronic nonmodulated microwave radiations in mice produce anxiety-like and depression-like behaviours and calcium- and NO-related biochemical changes in the brain. Exp Neurobiol. 2016;25:318–27.
Article
PubMed
PubMed Central
Google Scholar
Mack A, Georg T, Kreis P, Eickholt BJ. Defective actin dynamics in dendritic spines: cause or consequence of age-induced cognitive decline? Biol Chem. 2016;397:223–9.
Article
PubMed
CAS
Google Scholar
Kayhan H, Esmekaya MA, Saglam AS, Tuysuz MZ, Canseven AG, Yagci AM, et al. Does MW radiation affect gene expression, apoptotic level, and cell cycle progression of human sh-sy5y neuroblastoma cells? Cell Biochem Biophys. 2016;74:99–107.
Article
CAS
PubMed
Google Scholar
Joubert V, Bourthoumieu S, Leveque P, Yardin C. Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiat Res. 2008;169:38–45.
Article
CAS
PubMed
Google Scholar
Motawi TK, Darwish HA, Moustafa YM, Labib MM. Biochemical modifications and neuronal damage in brain of young and adult rats after long-term exposure to mobile phone radiations. Cell Biochem Biophys. 2014;70:845–55.
Article
CAS
PubMed
Google Scholar
Dasdag S, Akdag MZ, Aksen F, Bashan M, Buyukbayram H. Does 900 MHZ GSM mobile phone exposure affect rat brain? Electromagn Biol Med. 2004;23:201–14.
Article
CAS
Google Scholar
Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, et al. Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med. 2012;31:250–74.
Article
CAS
PubMed
Google Scholar
Verma RK, Sisodia R, Bhatia A. Radioprotective role of Amaranthus Gangeticus Linn.: a biochemical study on mouse brain. J Med Food. 2002;5:189–95.
Article
CAS
PubMed
Google Scholar
Sharma A, Sisodia R, Bhatnagar D, Saxena VK. Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Radiat Biol. 2014;90:29–35.
Article
CAS
PubMed
Google Scholar
Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, et al. Modulation of HSP response in SH-SY5Y cells following exposure to microwaves of a mobile phone. World J Biol Chem. 2012;3:34–40.
Article
PubMed
PubMed Central
Google Scholar
Calabrò E, Magazù S. Inspections of mobile phone microwaves effects on proteins secondary structure by means of Fourier transform infrared spectroscopy. J Electromagnet Anal. 2010;2010
Koch C, Zador A. The function of dendritic spines: devices subserving biochemical rather than electrical computation. J Neurosci. 1993;13:413–22.
CAS
PubMed
Google Scholar
Harris KM. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol. 1999;9:343–8.
Article
CAS
PubMed
Google Scholar
Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313–53.
Article
CAS
PubMed
Google Scholar
Johnson OL, Ouimet CC. Protein synthesis is necessary for dendritic spine proliferation in adult brain slices. Brain Res. 2004;996:89–96.
Article
CAS
PubMed
Google Scholar
Dasdag S, Akdag MZ, Kizil G, Kizil M, Cakir DU, Yokus B. Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain. Electromagn Biol Med. 2012;31:67–74.
Article
CAS
PubMed
Google Scholar
Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 2012;35:325–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe M, Bonini NM. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 2013;23:30–6.
Article
CAS
PubMed
Google Scholar
Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73:473–7.
Article
CAS
PubMed
Google Scholar
Stahlhut Espinosa CE, Slack FJ. The role of microRNAs in cancer. Yale J Biol Med. 2006;79:131–40.
PubMed
Google Scholar
Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, et al. Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain. Int J Radiat Biol. 2015;91:306–11.
Article
CAS
PubMed
Google Scholar
Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, et al. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. 2015;91:555–61.
Article
CAS
PubMed
Google Scholar
Zhao L, Sun C, Xiong L, Yang Y, Gao Y, Wang L, et al. MicroRNAs: novel mechanism involved in the pathogenesis of microwave exposure on rats’ hippocampus. J Mol Neurosci. 2014;53:222–30.
Article
CAS
PubMed
Google Scholar
Hassanshahi A, Shafeie SA, Fatemi I, Hassanshahi E, Allahtavakoli M, Shabani M, et al. The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurol Sci. 2017;38:1069–76.
Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 2015;51:158–65.
Article
CAS
PubMed
Google Scholar
Belyaev IY, Koch CB, Terenius O, Roxström-Lindquist K, Malmgren LO, Sommer HW, et al. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 2006;27:295–306.
Article
CAS
PubMed
Google Scholar
Merola P, Marino C, Lovisolo G, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics. 2006;27:164–71.
Article
CAS
PubMed
Google Scholar
Qutob S, Chauhan V, Bellier P, Yauk C, Douglas G, Berndt L, et al. Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res. 2006;165:636–44.
Article
CAS
PubMed
Google Scholar
Wang LF, Tian DW, Li HJ, Gao YB, Wang CZ, Zhao L, et al. Identification of a novel rat nr2b subunit gene promoter region variant and its association with microwave-induced neuron impairment. Mol Neurobiol. 2016;53:2100–11.
Article
CAS
PubMed
Google Scholar
Gibson GE, Jope R, Blass J. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J. 1975;148:17–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosconi L, Tsui WH, Rusinek H, De Santi S, Li Y, Wang GJ, et al. Quantitation, regional vulnerability, and kinetic modeling of brain glucose metabolism in mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2007;34:1467–79.
Article
CAS
PubMed
Google Scholar
Nicholson RM, Kusne Y, Nowak LA, LaFerla FM, Reiman EM, Valla J. Regional cerebral glucose uptake in the 3xTG model of Alzheimer's disease highlights common regional vulnerability across AD mouse models. Brain Res. 2010;1347:179–85.
Article
CAS
PubMed
Google Scholar
Gage FH, Kelly P, Bjorklund A. Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J Neuro. 1984;4:2856–65.
CAS
Google Scholar
Choeiri C, Staines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience. 2005;130:591–600.
Article
CAS
PubMed
Google Scholar
Kwon MS, Vorobyev V, Kännälä S, Laine M, Rinne JO, Toivonen T, et al. GSM mobile phone radiation suppresses brain glucose metabolism. J Cereb Blood Flow Metab. 2011;31:2293–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durkin TP, Messier C, de Boer P, Westerink B. Raised glucose levels enhance scopolamine-induced acetylcholine overflow from the hippocampus: an in vivo microdialysis study in the rat. Behav Brain Res. 1992;49:181–8.
Article
CAS
PubMed
Google Scholar
Ragozzino ME, Unick KE, Gold PE. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. P Nat Acad. 1996;93:4693–8.
Article
CAS
Google Scholar
Messier C, Durkin T, Mrabet O, Destrade C. Memory-improving action of glucose: indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behav Brain Res. 1990;39:135–43.
Article
CAS
PubMed
Google Scholar
Gold PE. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem. 2003;80:194–210.
Article
CAS
PubMed
Google Scholar
Gold PE. Acetylcholine: cognitive and brain functions. Neurobiol Learn Mem. 2003;80:177.
Article
PubMed
Google Scholar
Krylova I, Dukhanin A, Il'in A, Kuznetsova EY, Balaeva N, Shimanovskii N, et al. Effect of microwave radiation on learning and memory. Bull Exp Biol Med. 1992;114:1620–2.
Article
Google Scholar
Wang L, Li X, Peng R, Gao Y, Zhao L, Wang S, et al. A metabolomic approach to screening urinary metabolites upon microwave exposure in monkeys. Mil Med Sci. 2011;35:369–78.
CAS
Google Scholar
Sanders AP, Joines WT. The effects of hyperthermia and hyperthermia plus microwaves on rat brain energy metabolism. Bioelectromagnetics. 1984;5:63–70.
Article
CAS
PubMed
Google Scholar
Zhao L, Peng RY, Gao YB, Wang SM, Wang LF, Dong J, et al. Mitochondria morphologic changes and metabolic effects of rat hippocampus after microwave irradiation. Chin J Radiol Med Prot. 2007;27:602–4.
CAS
Google Scholar
Wang Q, Cao Z. Effect of microwave electromagnetic fields on activity of energy metabolism cytochrome oxidase in cerebral cortical neurons of postnatal rats. J Environ Health. 2005;22:329–31.
CAS
Google Scholar
Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene. 2005;360:65–77.
Article
CAS
PubMed
Google Scholar
Chandrasekaran K, Hatanpää K, Rapoport SI, Brady DR. Decreased expression of nuclear and mitochondrial DNA-encoded genes of oxidative phosphorylation in association neocortex in Alzheimer disease. Mol Brain Res. 1997;44:99–104.
Article
CAS
PubMed
Google Scholar
Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, et al. Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol. 2005;25:10190–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem RM, Moreau J, et al. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother. 2004;48:4662–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang D, Hamasaki N. Mitochondrial transcription factor a in the maintenance of mitochondrial DNA. Ann N Y Acad Sci. 2005;1042:101–8.
Article
CAS
PubMed
Google Scholar
Li H, Li C. Apoptosis gene expression and their relationship to mtDNA mutation in tumor tissues of gynecologic oncology patients. Chin J Birth Health Hered. 2003;11:34–6.
Google Scholar
Lu M, Zhu J, Qian C, Wang G, Nie J, Tong J. Biological effects of 2450 MHz microwave combined with γ-rays on rat cultured gliacytes. J Radiat Proc. 2010;3:46–50.
Google Scholar