Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711–21.
CAS
PubMed
Google Scholar
Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci. 2009;364(1527):2275–89.
CAS
PubMed
PubMed Central
Google Scholar
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088-e117.
CAS
PubMed
PubMed Central
Google Scholar
Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173.
Google Scholar
Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16(8):472–82.
CAS
PubMed
Google Scholar
World Health Organization. The evolving threat of antimicrobial resistance: options for action. World Health Organization, Geneva; 2012. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.646.1286&rep=rep1&type=pdf
O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. United Kingdom: Review on Antimicrobial Resistance. 2016.
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–81.
PubMed
Google Scholar
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):e00181-e219.
PubMed
PubMed Central
Google Scholar
Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, De La Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74(3):434–52.
CAS
PubMed
PubMed Central
Google Scholar
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid. 2005;54(1):1–25.
PubMed
Google Scholar
Botelho J, Schulenburg H. The role of integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol. 2021;29(1):8–18.
CAS
PubMed
Google Scholar
Wang R, Van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9(1):1179.
PubMed
PubMed Central
Google Scholar
Wu W, Feng Y, Tang G, Qiao F, Mcnally A, Zong Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115-e118.
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Dong N, Chan EW, Zhang R, Chen S. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83.
CAS
PubMed
Google Scholar
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.
PubMed
Google Scholar
Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis. 2017;17(4):400–10.
CAS
PubMed
Google Scholar
Cox KEL, Schildbach JF. Sequence of the R1 plasmid and comparison to F and R100. Plasmid. 2017;91:53–60.
CAS
PubMed
Google Scholar
Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, De La Cruz F, Rocha EP. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 2014;42(9):5715–27.
CAS
PubMed
PubMed Central
Google Scholar
Garcillán-Barcia MP, Francia MV, De La Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev. 2009;33(3):657–87.
PubMed
Google Scholar
Cabezón E, Ripoll-Rozada J, Peña A, De La Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev. 2015;39(1):81–95.
PubMed
Google Scholar
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes (Basel). 2020;11(11):1239.
CAS
Google Scholar
Christie PJ. The mosaic type IV secretion systems. EcoSal Plus. 2016;7(1):10.
PubMed Central
Google Scholar
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107(4):455–71.
CAS
PubMed
PubMed Central
Google Scholar
Baltrus DA. Exploring the costs of horizontal gene transfer. Trends Ecol Evol. 2013;28(8):489–95.
PubMed
Google Scholar
Koraimann G, Wagner MA. Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol. 2014;4:54.
PubMed
PubMed Central
Google Scholar
Lu J, Peng Y, Wan S, Frost LS, Raivio T, Glover JNM. Cooperative function of TraJ and ArcA in regulating the F plasmid tra operon. J Bacteriol. 2019;201(1):e00448-e518.
CAS
PubMed
Google Scholar
Rodriguez-Maillard JM, Arutyunov D, Frost LS. The F plasmid transfer activator TraJ is a dimeric helix-turn-helix DNA-binding protein. FEMS Microbiol Lett. 2010;310(2):112–9.
CAS
PubMed
Google Scholar
Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS. The FinO family of bacterial RNA chaperones. Plasmid. 2015;78:79–87.
CAS
PubMed
Google Scholar
Frost L, Lee S, Yanchar N, Paranchych W. finP and fisO mutations in FinP anti-sense RNA suggest a model for FinOP action in the repression of bacterial conjugation by the Flac plasmid JCFL0. Mol Gen Genet. 1989;218(1):152–60.
CAS
PubMed
Google Scholar
Koraimann G, Teferle K, Markolin G, Woger W, Högenauer G. The FinOP repressor system of plasmid R1 analysis of the antisense RNA control of traJ expression and conjugative DNA transfer. Mol Microbiol. 1996;21(4):811–21.
CAS
PubMed
Google Scholar
van Biesen T, Frost LS. The FinO protein of IncF plasmids binds FinP antisense RNA and its target, traJ mRNA, and promotes duplex formation. Mol Microbiol. 1994;14(3):427–36.
PubMed
Google Scholar
Arthur DC, Edwards RA, Tsutakawa S, Tainer JA, Frost LS, Glover JN. Mapping interactions between the RNA chaperone FinO and its RNA targets. Nucleic Acids Res. 2011;39(10):4450–63.
CAS
PubMed
PubMed Central
Google Scholar
Zahrl D, Wagner M, Bischof K, Koraimann G. Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli. J Bacteriol. 2006;188(18):6611–21.
CAS
PubMed
PubMed Central
Google Scholar
Bidlack JE, Silverman PM. An active type IV secretion system encoded by the F plasmid sensitizes Escherichia coli to bile salts. J Bacteriol. 2004;186(16):5202–9.
CAS
PubMed
PubMed Central
Google Scholar
Grace ED, Gopalkrishnan S, Girard ME, Blankschien MD, Ross W, Gourse RL, et al. Activation of the σE-dependent stress pathway by conjugative TraR may anticipate conjugational stress. J Bacteriol. 2015;197(5):924–31.
PubMed
PubMed Central
Google Scholar
Bates S, Roscoe RA, Althorpe NJ, Brammar WJ, Wilkins BM. Expression of leading region genes on IncI1 plasmid ColIb-P9: genetic evidence for single-stranded DNA transcription. Microbiology (Reading). 1999;145(Pt 10):2655–62.
CAS
Google Scholar
Manwaring NP, Skurray RA, Firth N. Nucleotide sequence of the F plasmid leading region. Plasmid. 1999;41(3):219–25.
CAS
PubMed
Google Scholar
Jones AL, Barth PT, Wilkins BM. Zygotic induction of plasmid ssb and psiB genes following conjugative transfer of Incl1 plasmid Collb-P9. Mol Microbiol. 1992;6(5):605–13.
CAS
PubMed
Google Scholar
Masai H, Arai K. Frpo: a novel single-stranded DNA promoter for transcription and for primer RNA synthesis of DNA replication. Cell. 1997;89(6):897–907.
CAS
PubMed
Google Scholar
Althorpe NJ, Chilley PM, Thomas AT, Brammar WJ, Wilkins BM. Transient transcriptional activation of the IncI1 plasmid anti-restriction gene (ardA) and SOS inhibition gene (psiB) early in conjugating recipient bacteria. Mol Microbiol. 1999;31(1):133–42.
CAS
PubMed
Google Scholar
Raghunathan S, Kozlov AG, Lohman TM, Waksman G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol. 2000;7(8):648–52.
CAS
PubMed
Google Scholar
Savvides SN, Raghunathan S, Fütterer K, Kozlov AG, Lohman TM, Waksman G. The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci. 2004;13(7):1942–7.
CAS
PubMed
PubMed Central
Google Scholar
Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature. 1995;376(6538):362–6.
CAS
PubMed
Google Scholar
Bianco PR. The tale of SSB. Prog Biophys Mol Biol. 2017;127:111–8.
CAS
PubMed
Google Scholar
Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, et al. SSB functions as a sliding platform that migrates on DNA via reptation. Cell. 2011;146(2):222–32.
CAS
PubMed
PubMed Central
Google Scholar
Harami GM, Kovacs ZJ, Pancsa R, Palinkas J, Barath V, Tarnok K, et al. Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A. 2020;117(42):26206–17.
CAS
PubMed
PubMed Central
Google Scholar
Costes A, Lecointe F, Mcgovern S, Quevillon-Cheruel S, Polard P. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 2010;6(12):e1001238.
PubMed
PubMed Central
Google Scholar
Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, et al. Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J. 2011;30(20):4236–47.
CAS
PubMed
PubMed Central
Google Scholar
Roy R, Kozlov AG, Lohman TM, Ha T. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature. 2009;461(7267):1092–7.
CAS
PubMed
PubMed Central
Google Scholar
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res. 2021;49(4):1987–2004.
CAS
PubMed
PubMed Central
Google Scholar
Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science. 2019;364(6442):778–82.
CAS
PubMed
Google Scholar
Roy D, Huguet KT, Grenier F, Burrus V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation. Nucleic Acids Res. 2020;48(16):8815–27.
CAS
PubMed
PubMed Central
Google Scholar
Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet. 2010;6(10):e1001165.
PubMed
PubMed Central
Google Scholar
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: a complex and tightly regulated response to DNA damage. Environ Mol Mutagen. 2019;60(4):368–84.
CAS
PubMed
PubMed Central
Google Scholar
Michel B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 2005;3(7):e255.
PubMed
PubMed Central
Google Scholar
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev. 2014;38(6):1126–45.
CAS
PubMed
Google Scholar
Murata M, Nakamura K, Kosaka T, Ota N, Osawa A, Muro R, et al. Cell Lysis Directed by SulA in Response to DNA Damage in Escherichia coli. Int J Mol Sci. 2021;22(9).
Petrova V, Satyshur KA, George NP, Mccaslin D, Cox MM, Keck JL. X-ray crystal structure of the bacterial conjugation factor PsiB, a negative regulator of RecA. J Biol Chem. 2010;285(40):30615–21.
CAS
PubMed
PubMed Central
Google Scholar
Bagdasarian M, Bailone A, Angulo JF, Scholz P, Bagdasarian M, Devoret R. PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient. Mol Microbiol. 1992;6(7):885–93.
CAS
PubMed
Google Scholar
Al Mamun AAM, Kishida K, Christie PJ. Protein transfer through an F plasmid-encoded type IV secretion system suppresses the mating-induced SOS response. mBio. 2021;12(4):e01629–21.
Petrova V, Chitteni-Pattu S, Drees JC, Inman RB, Cox MM. An SOS inhibitor that binds to free RecA protein: the PsiB protein. Mol Cell. 2009;36(1):121–30.
CAS
PubMed
PubMed Central
Google Scholar
Loenen WA, Dryden DT, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014;42(1):20–44.
CAS
PubMed
Google Scholar
Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 2014;42(1):3–19.
CAS
PubMed
Google Scholar
Rao DN, Dryden DT, Bheemanaik S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res. 2014;42(1):45–55.
CAS
PubMed
Google Scholar
Tock MR, Dryden DT. The biology of restriction and anti-restriction. Curr Opin Microbiol. 2005;8(4):466–72.
CAS
PubMed
Google Scholar
Wilkins BM. Plasmid promiscuity: meeting the challenge of DNA immigration control. Environ Microbiol. 2002;4(9):495–500.
CAS
PubMed
Google Scholar
Delver EP, Kotova VU, Zavilgelsky GB, Belogurov AA. Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid ColIb-P9. J Bacteriol. 1991;173(18):5887–92.
CAS
PubMed
PubMed Central
Google Scholar
Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol. 2007;365(2):284–97.
CAS
PubMed
Google Scholar
Mcmahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, White JH, et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 2009;37(15):4887–97.
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Cao D, Zhu J, Feng H, Luo X, Liu S, et al. Structural insights into assembly, operation and inhibition of a type I restriction-modification system. Nat Microbiol. 2020;5(9):1107–18.
CAS
PubMed
Google Scholar
Belogurov AA, Delver EP, Rodzevich OV. Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J Bacteriol. 1993;175(15):4843–50.
CAS
PubMed
PubMed Central
Google Scholar
Serfiotis-Mitsa D, Herbert AP, Roberts GA, Soares DC, White JH, Blakely GW, et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res. 2010;38(5):1723–37.
CAS
PubMed
Google Scholar
Kamachi K, Sota M, Tamai Y, Nagata N, Konda T, Inoue T, et al. Plasmid pBP136 from Bordetella pertussis represents an ancestral form of IncP-1beta plasmids without accessory mobile elements. Microbiology (Reading). 2006;152(Pt 12):3477–84.
CAS
Google Scholar
Liang W, Xie Y, Xiong W, Tang Y, Li G, Jiang X, et al. Anti-restriction protein, KlcAHS, promotes dissemination of carbapenem resistance. Front Cell Infect Microbiol. 2017;7:150.
PubMed
PubMed Central
Google Scholar
Liang W, Tang Y, Li G, Shen P, Tian Y, Jiang H, et al. KlcAHS genes are ubiquitous in clinical, blaKPC-2-positive Klebsiella pneumoniae isolates. Infect Genet Evol. 2019;70:84–9.
CAS
PubMed
Google Scholar
Belogurov AA, Delver EP, Agafonova OV, Belogurova NG, Lee LY, Kado CI. Antirestriction protein Ard (Type C) encoded by IncW plasmid pSa has a high similarity to the “protein transport” domain of TraC1 primase of promiscuous plasmid RP4. J Mol Biol. 2000;296(4):969–77.
CAS
PubMed
Google Scholar
González-Montes L, Del Campo I, Garcillán-Barcia MP, De La Cruz F, Moncalian G. ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLoS Genet. 2020;16(4):e1008750.
Rees CE, Wilkins BM. Protein transfer into the recipient cell during bacterial conjugation studies with F and RP4. Mol Microbiol. 1990;4(7):1199–205.
CAS
PubMed
Google Scholar
Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009;33(3):488–503.
CAS
PubMed
Google Scholar
Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, et al. The epigenomic landscape of prokaryotes. PLoS Genet. 2016;12(2):e1005854.
Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol. 2012;30(12):1232–9.
CAS
PubMed
Google Scholar
Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM, Yamamoto N, et al. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res. 2015;43(1):348–60.
CAS
PubMed
Google Scholar
Sampei GI, Furuya N, Tachibana K, Saitou Y, Suzuki T, Mizobuchi K, et al. Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid. 2010;64(2):92–103.
CAS
PubMed
Google Scholar
Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191(1):261–77.
CAS
PubMed
Google Scholar
Fomenkov A, Sun Z, Murray IA, Ruse C, Mcclung C, Yamaichi Y, et al. Plasmid replication-associated single-strand-specific methyltransferases. Nucleic Acids Res. 2020;48(22):12858–73.
PubMed
PubMed Central
Google Scholar
Smith J. Superinfection drives virulence evolution in experimental populations of bacteria and plasmids. Evolution. 2011;65(3):831–41.
PubMed
Google Scholar
Subbiah M, Top EM, Shah DH, Call DR. Selection pressure required for long-term persistence of blaCMY-2-positive IncA/C plasmids. Appl Environ Microbiol. 2011;77(13):4486–93.
CAS
PubMed
PubMed Central
Google Scholar
Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20(6):262–7.
CAS
PubMed
Google Scholar
Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol. 2018;64(5):293–304.
CAS
PubMed
Google Scholar
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 2021. https://doi.org/10.1016/j.tim.2021.11.001.
Article
PubMed
Google Scholar
Salje J, Gayathri P, Löwe J. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol. 2010;8(10):683–92.
CAS
PubMed
Google Scholar
Pilla G, Tang CM. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol. 2018;16(8):484–95.
CAS
PubMed
Google Scholar
Gerdes K, Howard M, Szardenings F. Pushing and pulling in prokaryotic DNA segregation. Cell. 2010;141(6):927–42.
CAS
PubMed
Google Scholar
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70(5):768–84.
CAS
PubMed
Google Scholar
Schumacher MA. Bacterial plasmid partition machinery: a minimalist approach to survival. Curr Opin Struct Biol. 2012;22(1):72–9.
CAS
PubMed
Google Scholar
Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid. 2008;60(1):1–18.
PubMed
Google Scholar
Humbert M, Huguet KT, Coulombe F, Burrus V. Entry exclusion of conjugative plasmids of the IncA, IncC, and related untyped incompatibility groups. J Bacteriol. 2019;201(10):e00731-e818.
CAS
PubMed
PubMed Central
Google Scholar
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994;58(2):162–210.
CAS
PubMed
PubMed Central
Google Scholar
Achtman M, Kennedy N, Skurray R. Cell-cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc Natl Acad Sci U S A. 1977;74(11):5104–8.
CAS
PubMed
PubMed Central
Google Scholar
Firth N, Skurray R. Characterization of the F plasmid bifunctional conjugation gene, traG. Mol Gen Genet. 1992;232(1):145–53.
CAS
PubMed
Google Scholar
Audette GF, Manchak J, Beatty P, Klimke WA, Frost LS. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology (Reading). 2007;153(Pt 2):442–51.
CAS
Google Scholar
Achtman M, Manning PA, Kusecek B, Schwuchow S, Neil W. A Genetic analysis of F sex factor cistrons needed for surface exclusion in Escherichia coli. J Mol Biol. 1980;138(4):779–95.
CAS
PubMed
Google Scholar
Skurray RA, Reeves P. Characterization of lethal zygosis associated with conjugation in Escherichia coli K-12. J Bacteriol. 1973;113(1):58–70.
CAS
PubMed
PubMed Central
Google Scholar
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363(4):fnw002.
Getino M, de la Cruz F. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol Spectr. 2018. https://doi.org/10.1128/microbiolspec.MTBP-0015-2016.
Article
PubMed
Google Scholar
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36.
CAS
PubMed
Google Scholar
Gama JA, Zilhão R, Dionisio F. Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid. 2018;99:82–8.
CAS
PubMed
Google Scholar
Gasson MJ, Willetts NS. Five control systems preventing transfer of Escherichia coli K-12 sex factor F. J Bacteriol. 1975;122(2):518–25.
CAS
PubMed
PubMed Central
Google Scholar
Wong JJW, Lu J, Edwards RA, Frost LS, Glover JNM. Structural basis of cooperative DNA recognition by the plasmid conjugation factor. TraM Nucleic Acids Res. 2011;39(15):6775–88.
CAS
PubMed
Google Scholar
Peng Y, Lu J, Wong JJW, Edwards RA, Frost LS, Mark Glover JN. Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein. TraM J Mol Biol. 2014;426(22):3783–95.
CAS
PubMed
Google Scholar
Ham LM, Skurray R. Molecular analysis and nucleotide sequence of finQ, a transcriptional inhibitor of the F plasmid transfer genes. Mol Gen Genet. 1989;216(1):99–105.
CAS
PubMed
Google Scholar
Close SM, Kado CI. The Osa gene of pSa encodes a 211-kilodalton protein that suppresses Agrobacterium tumefaciens oncogenicity. J Bacteriol. 1991;173(17):5449–56.
CAS
PubMed
PubMed Central
Google Scholar
Getino M, Palencia-Gándara C, Garcillán-Barcia MP, De La Cruz F. PifC and Osa, plasmid weapons against rival conjugative coupling proteins. Front Microbiol. 2017;8:2260.
PubMed
PubMed Central
Google Scholar
Maindola P, Raina R, Goyal P, Atmakuri K, Ojha A, Gupta S, et al. Multiple enzymatic activities of ParB/Srx superfamily mediate sexual conflict among conjugative plasmids. Nat Commun. 2014;5:5322.
CAS
PubMed
Google Scholar
Willetts N. Interactions between the F conjugal transfer system and CloDF13: TnA plasmids. Mol Gen Genet. 1980;180(1):213–7.
CAS
PubMed
Google Scholar
Zhong L, Shi XZ, Su L, Liu ZF. Sequential intraventricular injection of tigecycline and polymyxin B in the treatment of intracranial Acinetobacter baumannii infection after trauma: a case report and review of the literature. Mil Med Res. 2020;7(1):23.
PubMed
PubMed Central
Google Scholar
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa-Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019;44:100640.
PubMed
Google Scholar
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–75.
CAS
PubMed
Google Scholar
Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018;11:1249–60.
CAS
PubMed
PubMed Central
Google Scholar
Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes. 2016;2:16022.
PubMed
PubMed Central
Google Scholar
Li C, Chen J, Li SC. Understanding Horizontal Gene Transfer network in human gut microbiota. Gut Pathog. 2020;12:33.
PubMed
PubMed Central
Google Scholar
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017;4:14.
PubMed
PubMed Central
Google Scholar