Rah S, Blanch RJ, Morgan-Warren PJ. Aspects of ocular war injuries. Trauma. 2015;17(2):83–92.
Article
Google Scholar
Lew HL, Poole JH, Guillory SB, Rm S, Leskin G, Sigford B. Persistent problems after traumatic brain injury: the need for long-term follow-up and coordinated care. J Rehabil Res Dev. 2006;43(2):vii–x.
Jones E, Fear N, Wessely S. Shell shock and mild traumatic brain injury: a historical review. Am J Psychiatry. 2007;164(11):1641–5. https://doi.org/10.1176/appi.ajp.2007.07071180.
Article
PubMed
Google Scholar
Vance MC, Howell JD. Shell shock and PTSD: a tale of two diagnoses. Mayo Clin Proc. 2020;95(9):1827–30. https://doi.org/10.1016/j.mayocp.2020.06.002.
Article
PubMed
Google Scholar
Shively SB, Perl DP. Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military--past, present, and future. J Head Trauma Rehabil. 2012;27(3):234–9. https://doi.org/10.1097/HTR.0b013e318250e9dd.
Article
PubMed
Google Scholar
Taber K, Warden D, Hurley R. Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci. 2006;18(2):141–5. https://doi.org/10.1176/jnp.2006.18.2.141.
Article
PubMed
Google Scholar
Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma. 2009;66(5):1468–77. https://doi.org/10.1097/TA.0b013e3181a27e7f.
Article
PubMed
Google Scholar
Mckee AC, Robinson ME. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement. 2014;10(3 Suppl):S242–53. https://doi.org/10.1016/j.jalz.2014.04.003.
Article
PubMed
PubMed Central
Google Scholar
DoD. Health.mil DoD TBI Worldwide Numbers. 2020. https://www.health.mil/About-MHS/OASDHA/Defense-Health-Agency/Research-and-Development/Traumatic-Brain-Injury-Center-of-Excellence/DoD-TBI-Worldwide-Numbers. Accessed 18 Feb 2021.
Okie S. Traumatic brain injury in the war zone. N Engl J Med. 2005;352(20):2043–7. https://doi.org/10.1056/NEJMp058102.
Article
CAS
PubMed
Google Scholar
Tsao JW, Garber B. Operational Considerations/Blast TBI 2015. https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-HFM-240/EN-HFM-240-02.pdf. Accessed 14 Jun 2021.
Robinson-Freeman KE, Collins KL, Garber B, Terblanche R, Risling M, Vermetten E, et al. A decade of mTBI experience: what have we learned? A summary of proceedings from a NATO lecture series on military mTBI. Front Neurol. 2020;11:836. https://doi.org/10.3389/fneur.2020.00836.
Rona RJ, Jones M, Fear NT, Sundin J, Hull L, Wessely S. Frequency of mild traumatic brain injury in Iraq and Afghanistan: are we measuring incidence or prevalence? J Head Trauma Rehabil. 2012;27(1):75–82. https://doi.org/10.1097/HTR.0b013e31823029f6.
Article
PubMed
Google Scholar
Rona RJ, Jones M, Fear NT, Hull L, Murphy D, Machell L, et al. Mild traumatic brain injury in UK military personnel returning from Afghanistan and Iraq: cohort and cross-sectional analyses. J Head Trauma Rehabil. 2012;27(1):33–44. https://doi.org/10.1097/HTR.0b013e318212f814.
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018;16(8):1224–38. https://doi.org/10.2174/1570159X15666170613083606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528. https://doi.org/10.3389/fncel.2019.00528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spitz G, Maller JJ, O'Sullivan R, Ponsford JL. White matter integrity following traumatic brain injury: the association with severity of injury and cognitive functioning. Brain Topogr. 2013;26(4):648–60. https://doi.org/10.1007/s10548-013-0283-0.
Article
PubMed
Google Scholar
Yin TC, Voorhees JR, Genova RM, Davis KC, Madison AM, Britt JK, et al. Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice. eNeuro. 2016;3(5):ENEURO.0220–16.2016. https://doi.org/10.1523/ENEURO.0220-16.2016.
Brady S. Sudden visual loss after closed head injury. Emerg Med J. 2002;19(5):475–6. https://doi.org/10.1136/emj.19.5.475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risling M, Smith D, Stein TD, Thelin EP, Zanier ER, Ankarcrona M, et al. Modelling human pathology of traumatic brain injury in animal models. J Intern Med. 2019;285(6):594–607. https://doi.org/10.1111/joim.12909.
Shah EJ, Gurdziel K, Ruden DM. Mammalian models of traumatic brain injury and a place for drosophila in TBI research. Front Neurosci. 2019;13:409. https://doi.org/10.3389/fnins.2019.00409.
Article
PubMed
PubMed Central
Google Scholar
Rossi T, Boccassini B, Esposito L, Clemente C, Iossa M, Placentino L, et al. Primary blast injury to the eye and orbit: finite element modeling. Invest Ophthalmol Vis Sci. 2012;53(13):8057–66. https://doi.org/10.1167/iovs.12-10591.
Esposito L, Clemente C, Bonora N, Rossi T. Modelling human eye under blast loading. Comput Methods Biomech Biomed Engin. 2015;18(2):107–15. https://doi.org/10.1080/10255842.2013.779684.
Article
CAS
PubMed
Google Scholar
Liu X, Wang L, Wang C, Fan J, Liu S, Fan Y. Prediction of globe rupture caused by primary blast: a finite element analysis. Comput Methods Biomech Biomed Engin. 2015;18(9):1024–9. https://doi.org/10.1080/10255842.2013.869317.
Article
PubMed
Google Scholar
Tong J, Kedar S, Ghate D, Gu L. Indirect traumatic optic neuropathy induced by primary blast: a fluid-structure interaction study. J Biomech Eng. 2019;141(10). https://doi.org/10.1115/1.4043668.
Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5(1):4047. https://doi.org/10.1038/ncomms5047.
Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, Noorizadeh F, et al. Organoids and organ chips in ophthalmology. Ocul Surf. 2021;19:1–15. https://doi.org/10.1016/j.jtos.2020.11.004.
Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97. https://doi.org/10.1016/j.cell.2016.05.082.
Article
CAS
PubMed
Google Scholar
Salman MM, Marsh G, Kusters I, Delincé M, Di Caprio G, Upadhyayula S, et al. Design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging. Front Bioeng Biotechnol. 2020;8:573775. https://doi.org/10.3389/fbioe.2020.573775.
Article
PubMed
PubMed Central
Google Scholar
Cockerham GC, Rice TA, Hewes EH, Cockerham KP, Lemke S, Wang G, et al. Closed-eye ocular injuries in the Iraq and Afghanistan wars. N Engl J Med. 2011;364(22):2172–3. https://doi.org/10.1056/NEJMc1010683.
Kallela IHT, Paukku P, Iizuka T, Lindqvist C. Blindness after maxillofacial blunt trauma. Evaluation of candidates for optic nerve decompression surgery. J Craniomaxillofac Surg. 1994;22(4):220–5. https://doi.org/10.1016/S1010-5182(05)80561-X.
Article
CAS
PubMed
Google Scholar
Yu B, Ma YJ, Tu YH, Wu WC. Newly onset indirect traumatic optic neuropathy-surgical treatment first versus steroid treatment first. Int J Ophthalmol. 2020;13(1):124–8. https://doi.org/10.18240/ijo.2020.01.18.
Article
PubMed
PubMed Central
Google Scholar
Sarkies N. Traumatic optic neuropathy. Eye (Lond). 2004;18(11):1122–5. https://doi.org/10.1038/sj.eye.6701571.
Article
CAS
Google Scholar
Tzekov R, Quezada A, Gautier M, Biggins D, Frances C, Mouzon B, et al. Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model. J Neuropathol Exp Neurol. 2014;73(4):345–61. https://doi.org/10.1097/NEN.0000000000000059.
Wang HC, Choi JH, Greene WA, Plamper ML, Cortez HE, Chavko M, et al. Pathophysiology of blast-induced ocular trauma with apoptosis in the retina and optic nerve. Mil Med. 2014;179(8 Suppl):34–40. https://doi.org/10.7205/MILMED-D-13-00504.
Article
PubMed
Google Scholar
Chen YJ, Liang CM, Tai MC, Chang YH, Lin TY, Chung CH, et al. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: a 10-year follow-up nationally representative Taiwan survey. Oncotarget. 2017;8(49):86924–33. https://doi.org/10.18632/oncotarget.21008.
Urosevich TG, Boscarino JJ, Hoffman SN, Kirchner HL, Figley CR, Adams RE, et al. Visual dysfunction and associated co-morbidities as predictors of mild traumatic brain injury seen among veterans in non-VA facilities: implications for clinical practice. Mil Med. 2018;183(11–12):e564–70. https://doi.org/10.1093/milmed/usy102.
Yu B, Ma Y, Tu Y, Wu W. The outcome of endoscopic transethmosphenoid optic canal decompression for indirect traumatic optic neuropathy with no-light-perception. J Ophthalmol. 2016;2016:6492858–5. https://doi.org/10.1155/2016/6492858.
Article
PubMed
PubMed Central
Google Scholar
Atkins EJ, Newman NJ, Biousse V. Post-traumatic visual loss. Rev Neurol Dis. 2008;5(2):73–81.
PubMed
PubMed Central
Google Scholar
Anderson RL, Panje WR, Gross CE. Optic nerve blindness following blunt forehead trauma. Ophthalmology. 1982;89(5):445–55. https://doi.org/10.1016/S0161-6420(82)34769-7.
Article
CAS
PubMed
Google Scholar
Jang SY. Traumatic optic neuropathy. Korean J Neurotrauma. 2018;14(1):1–5. https://doi.org/10.13004/kjnt.2018.14.1.1.
Article
PubMed
PubMed Central
Google Scholar
Bernardo-Colon A, Vest V, Ml C, Sa N, Dj C, Ts R. Progression and pathology of traumatic optic neuropathy from repeated primary blast exposure. Front Neurosci. 2019;13:719.
Article
Google Scholar
Sen N. An insight into the vision impairment following traumatic brain injury. Neurochem Int. 2017;111:103–7. https://doi.org/10.1016/j.neuint.2017.01.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Hamm RJ, Povlishock JT. Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback, and reorganization. J Neurotrauma. 2011;28(7):1185–98. https://doi.org/10.1089/neu.2011.1756.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weichel ED, Colyer MH, Ludlow SE, Bower KS, Eiseman AS. Combat ocular trauma visual outcomes during operations iraqi and enduring freedom. Ophthalmology. 2008;115(12):2235–45.
Das M, Tang X, Mohapatra SS, Mohapatra S. Vision impairment after traumatic brain injury: present knowledge and future directions. Rev Neurosci. 2019;30(3):305–15. https://doi.org/10.1515/revneuro-2018-0015.
Article
PubMed
Google Scholar
Yu-Wei-Man P. Traumatic optic neuropathy—clinical features and management issues. Taiwan J Opthalmol. 2015;5(1):3–8. https://doi.org/10.1016/j.tjo.2015.01.003.
Article
Google Scholar
Evans LP, Newell EA, Mahajan M, Tsang SH, Ferguson PJ, Mahoney J, et al. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol. 2018;5(3):240–51. https://doi.org/10.1002/acn3.523.
Mohan K, Kecova H, Hernandez-Merino E, Kardon RH, Harper MM. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophthalmol Vis Sci. 2013;54(5):3440–50. https://doi.org/10.1167/iovs.12-11522.
Article
PubMed
PubMed Central
Google Scholar
Dutca LM, Stasheff SF, Hedberg-Buenz A, Rudd DS, Batra N, Blodi FR, et al. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest Ophthalmol Vis Sci. 2014;55(12):8330–41. https://doi.org/10.1167/iovs.14-15468.
Petras JM, Bauman RA, Elsayed NM. Visual system degeneration induced by blast overpressure. Toxicology. 1997;121(1):41–9. https://doi.org/10.1016/S0300-483X(97)03654-8.
Article
CAS
PubMed
Google Scholar
Heidari E, Taheri N. Surgical treatment of severely traumatized eyes with no light perception. Retina. 2010;30(2):294–9. https://doi.org/10.1097/IAE.0b013e3181babd75.
Article
PubMed
Google Scholar
Demar J, Sharrow K, Hill M, Berman J, Oliver T, Long J. Effects of primary blast overpressure on retina and optic tract in rats. Front Neurol. 2016;7:59.
Article
Google Scholar
Mammadova N, Ghaisas S, Zenitsky G, Ds S, Ag K, Jj G, et al. Lasting retinal injury in a mouse model of blast-induced trauma. Am J Pathol. 2017;187(7):1459–72. https://doi.org/10.1016/j.ajpath.2017.03.005.
Article
CAS
PubMed
Google Scholar
Moodley A. Understanding vision and the brain. Community Eye Health. 2016;29(96):61–3.
PubMed
PubMed Central
Google Scholar
Cowey A. Visual system: how does blindsight arise? Curr Biol. 2010;20(17):R702–4. https://doi.org/10.1016/j.cub.2010.07.014.
Article
CAS
PubMed
Google Scholar
Alnawmasi MM, Chakraborty A, Dalton K, Quaid P, Dunkley BT, Thompson B. The effect of mild traumatic brain injury on the visual processing of global form and motion. Brain Inj. 2019;33(10):1354–63. https://doi.org/10.1080/02699052.2019.1641842.
Article
PubMed
Google Scholar
Blinded Veterans Association. Testimony presented by Thomas A. Zampieri Ph.D. BVA national president before a joint session of the house and senate committees on veterans affairs. 2019. https://www.veterans.senate.gov/imo/media/doc/4%20-%20BVA%20Testimony%2003.12.19.pdf. Accessed 14 Jun 2021.
Google Scholar
Frick KD, Singman EL. Cost of military eye injury and vision impairment related to traumatic brain injury: 2001-2017. Mil Med. 2019;184(5–6):e338–43. https://doi.org/10.1093/milmed/usy420.
Article
PubMed
Google Scholar
Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46(6):CP1–68.
Google Scholar
Cockerham GC, Goodrich GL, Weichel ED, Orcutt JC, Rizzo JF, Bower KS, et al. Eye and visual function in traumatic brain injury. J Rehabil Res Dev. 2009;46(6):811–8. https://doi.org/10.1682/JRRD.2008.08.0109.
Article
PubMed
Google Scholar
Merezhinskaya N, Mallia RK, Park D, Dw B, Mathur K, Barker FM. Visual deficits and dysfunctions associated with traumatic brain injury: a systematic review and meta-analysis. Optom Vis Sci. 2019;96(8):542–55. https://doi.org/10.1097/OPX.0000000000001407.
Article
PubMed
Google Scholar
Goodrich G, Kirby J, Cockerham G, Ingalla S, Lew H. Visual function in patients of a polytrauma rehabilitation Centre: a descriptive study. J Rehabil Res Dev. 2007;44(7):929–36. https://doi.org/10.1682/JRRD.2007.01.0003.
Article
PubMed
Google Scholar
Stelmack JA, Frith T, Van Koevering D, Rinne S, Stelmack TR. Visual function in patients followed at a veterans affairs polytrauma network site: an electronic medical record review. Optometry. 2009;80(8):419–24. https://doi.org/10.1016/j.optm.2009.02.011.
Article
PubMed
Google Scholar
Goodrich G, Flyg H, Kirby J, Chang C, Martinsen G. Mechanisms of TBI and visual consequences in military and veteran populations. Optom Vis Sci. 2013;90(2):105–12. https://doi.org/10.1097/OPX.0b013e31827f15a1.
Article
PubMed
Google Scholar
Brahm K, Wilgenburg H, Kirby J, Ingalla S, Chang C, Goodrich G. Visual impairment and dysfunction in combat-injured servicemembers with traumatic brain injury. Optom Vis Sci. 2009;86(7):817–25. https://doi.org/10.1097/OPX.0b013e3181adff2d.
Article
PubMed
Google Scholar
Dougherty AL, Macgregor AJ, Han PP, Heltemes KJ, Galarneau MR. Visual dysfunction following blast-related traumatic brain injury from the battlefield. Brain Inj. 2011;25(1):8–13. https://doi.org/10.3109/02699052.2010.536195.
Article
PubMed
Google Scholar
Magone MT, Kwon E, Shin SY. Chronic visual dysfunction after blast-induced mild traumatic brain injury. J Rehabil Res Dev. 2014;51(1):71–80. https://doi.org/10.1682/JRRD.2013.01.0008.
Article
PubMed
Google Scholar
Capó-Aponte J, Urosevich T, Temme L, Tarbett A, Sanghera N. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury. Mil Med. 2012;177(7):804–13. https://doi.org/10.7205/MILMED-D-12-00061.
Article
PubMed
Google Scholar
Capó-Aponte J, Jorgensen-Wagers K, Sosa J, Walsh D, Goodrich G, Temme L, et al. Visual dysfunctions at different stages after blast and non-blast mild traumatic brain injury. Optom Vis Sci. 2017;94(1):7–15. https://doi.org/10.1097/OPX.0000000000000825.
Article
PubMed
Google Scholar
Cogan AM, Mccaughey VK, Scholten J. Gender differences in outcomes after traumatic brain injury among service members and veterans. PM R. 2020;12(3):301–14. https://doi.org/10.1002/pmrj.12237.
Article
PubMed
Google Scholar
Meltzer KJ, Juengst SB. Associations between frequent pain or headaches and neurobehavioral symptoms by gender and TBI severity. Brain Inj. 2021;35(1):41–7. https://doi.org/10.1080/02699052.2020.1857438:1-7.
Article
PubMed
Google Scholar
Farace E, Alves WM. Do women fare worse? A metaanalysis of gender differences in outcome after traumatic brain injury. Neurosurg Focus. 2000;8(1):e6. https://doi.org/10.3171/foc.2000.8.1.152.
Article
CAS
PubMed
Google Scholar
Bazarian JJ, Blyth B, Mookerjee S, He H, Mcdermott MP. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma. 2010;25(3):527–39.
Article
Google Scholar
Office for National Statistics. Domestic abuse victim characteristics, England and Wales year ending March 2019. 2019. https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/articles/domesticabusevictimcharacteristicsenglandandwales/yearendingmarch2019. Accessed 27 February 2021.
Google Scholar
Koerte IK, Schultz V, Sydnor VJ, Howell DR, Guenette JP, Dennis E, et al. Sex-related differences in the effects of sports-related concussion: a review. J Neuroimaging. 2020;30(4):387–409. https://doi.org/10.1111/jon.12726.
Colantonio A, Harris JE, Ratcliff G, Chase S, Ellis K. Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury. BMC Neurol. 2010;10(1):102. https://doi.org/10.1186/1471-2377-10-102.
Article
PubMed
PubMed Central
Google Scholar
Iverson KM, Hendricks AM, Kimerling R. Psychiatric diagnoses and neurobehavioral symptom severity among OEF/OIF VA patients with deployment-related traumatic brain injury: a gender comparison. Womens Health Issues. 2011;21(4 Suppl):S210–7. https://doi.org/10.1016/j.whi.2011.04.019.
Article
PubMed
PubMed Central
Google Scholar
Yaffe K, Sj L, Hoang TD, Xia F, Barnes DE, Maguen S, et al. Military-related risk factors in female veterans and risk of dementia. Neurology. 2019;92(3):e205–11. https://doi.org/10.1212/WNL.0000000000006778.
Article
PubMed
PubMed Central
Google Scholar
Brickell TA, Lippa SM, French LM, Kennedy JE, Bailie JM, Lange RT. Female service members and symptom reporting after combat and non-combat-related mild traumatic brain injury. J Neurotrauma. 2017;34(2):300–12. https://doi.org/10.1089/neu.2016.4403.
Article
PubMed
Google Scholar
Monteith LL, Holliday R, Hoffmire CA, Bahraini NH. Female veterans’ willingness to seek veterans health administration and non–veterans health administration services for suicidal thoughts and mental health concerns. Med Care. 2021;59:S23–30. https://doi.org/10.1097/MLR.0000000000001480.
Article
PubMed
Google Scholar
Washington D, Bean-Mayberry B, Riopelle D, Yano EM. Access to care for women veterans: delayed healthcare and unmet need. J Gen Intern Med. 2011;26 (Suppl 2):655–61.
O’Sullivan M, Fitzsimons S, Ramos S, Oddy M, Glorney E, Sterr A. Utility of the brain injury screening index in identifying female prisoners with a traumatic brain injury and associated cognitive impairment. J Correct Health Care. 2019;25(4):313–27. https://doi.org/10.1177/1078345819879898.
Article
PubMed
Google Scholar
Woolhouse R, Mckinlay A, Grace RC. Women in prison with traumatic brain injury: prevalence, mechanism, and impact on mental health. Int J Offender Ther Comp Criminol. 2018;62(10):3135–50. https://doi.org/10.1177/0306624X17726519.
Article
PubMed
Google Scholar
Durand E, Watier L, Lécu A, Fix M, Weiss JJ, Chevignard M, et al. Traumatic brain injury among female offenders in a prison population: results of the FleuryTBI study. Brain Behav. 2016;7(1):e00535. https://doi.org/10.1002/brb3.535.
The Disabilities Trust. Making the Link Female. Offending and Brain Injury. 2019. https://www.thedtgroup.org/media/163444/making-the-link-female-offending-and-brain-injury.pdf. Accessed 14 Jun 2021.
Google Scholar
Wladis EJ, Aakalu VK, Sobel RK, McCulley TJ, Foster JA, Tao JP, et al. Interventions for indirect traumatic optic neuropathy: a report by the american academy of ophthalmology. Ophthalmology. 2021;128(6):928–37. https://doi.org/10.1016/j.ophtha.2020.10.038.
Article
PubMed
Google Scholar
Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—outcomes at 6 months. Lancet. 2005;365(9475):1957–9. https://doi.org/10.1016/S0140-6736(05)66552-X.
Article
CAS
PubMed
Google Scholar
Rabinowitz AR, Li X, McCauley SR, Wilde EA, Barnes A, Hanten G, et al. Prevalence and predictors of poor recovery from mild traumatic brain injury. J Neurotrauma. 2015;32(19):1488–96. https://doi.org/10.1089/neu.2014.3555.
Article
PubMed
PubMed Central
Google Scholar
Raabe J, Kini A, Lee AG. Optical lens tinting—a review of its functional mechanism, efficacy, and applications. US Ophthalmic Rev. 2019;12(2):85–7. https://doi.org/10.17925/USOR.2019.12.2.85.
Article
Google Scholar
Armstrong RA. Visual problems associated with traumatic brain injury. Clin Exp Optom. 2018;101(6):716–26. https://doi.org/10.1111/cxo.12670.
Article
PubMed
Google Scholar
Mondello S, Schmid K, Berger RP, Kobeissy F, Italiano D, Jeromin A, et al. The challenge of mild traumatic brain injury: role of biochemical markers in diagnosis of brain damage. Med Res Rev. 2014;34(3):503–31. https://doi.org/10.1002/med.21295.
Koerte IK, Hufschmidt J, Muehlmann M, Lin AP, Shenton ME. Advanced neuroimaging of mild traumatic brain injury. In: Laskowitz D, Grant G, editors. Translational research in traumatic brain injury. Boca Raton: CRC Press/Taylor & Francis Group; 2016. Chapter 13.
Google Scholar
Ventura RE, Balcer LJ, Galetta SL, Rucker JC. Ocular motor assessment in concussion: current status and future directions. J Neurol Sci. 2016;361:79–86. https://doi.org/10.1016/j.jns.2015.12.010.
Article
PubMed
Google Scholar
Voelker R. Eye-tracking test approved to help diagnose concussion. JAMA. 2019;321(7):638. https://doi.org/10.1001/jama.2019.0611.
Article
PubMed
Google Scholar
Samadani U, Ritlop R, Reyes M, Nehrbass E, Li M, Lamm E, et al. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion. J Neurotrauma. 2015;32(8):548–56. https://doi.org/10.1089/neu.2014.3687.
FDA. De Novo Classification Request for EyeBOX. 2017. https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170091.pdf. Accessed 14 Jun 2021.
Google Scholar
Zelnick LR, Morrison LJ, Devlin SM, Bulger EM, Brasel KJ, Sheehan K, et al. Addressing the challenges of obtaining functional outcomes in traumatic brain injury research: missing data patterns, timing of follow-up, and three prognostic models. J Neurotrauma. 2014;31(11):1029–38. https://doi.org/10.1089/neu.2013.3122.