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Abstract 

Single-cell RNA sequencing (scRNA-seq) is a comprehensive technical tool to analyze intracellular and intercellular 
interaction data by whole transcriptional profile analysis. Here, we describe the application in biomedical research, 
focusing on the immune system during organ transplantation and rejection. Unlike conventional transcriptome analy‑
sis, this method provides a full map of multiple cell populations in one specific tissue and presents a dynamic and 
transient unbiased method to explore the progression of allograft dysfunction, starting from the stress response to 
final graft failure. This promising sequencing technology remarkably improves individualized organ rejection treat‑
ment by identifying decisive cellular subgroups and cell-specific interactions.
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Background
The demand for organs due to end-stage organ failure 
is permanently increasing. The best solution is autolo-
gous transplantation, enabled by patient-derived induced 
pluripotent stem cells. This approach is currently envis-
aged for single cells and basic cellular units such as islets. 
Tissue engineering is being optimized as one solution for 
larger organs. However, this option is not realistic pres-
ently. Xenotransplantation could soon become available 
clinically and an alternative backup for allotransplanta-
tion. However, both will depend on matching grafts and 
require immune suppression. The importance of under-
standing immune reactions, identifying cellular subtypes 
involved in graft acceptance and tolerance induction and 
identifying early indicators for rejection mechanisms 
require detailed immune cell profiling.

The immune system is a complex biological network 
comprising multiple layers of orchestrated genes, pro-
teins and cells. In response to the challenge of pathogens 
or transplants, the immune system triggers various inter-
actions between immune cells and other cells, provok-
ing specific responses [1]. Innate and adaptive immune 
cells interact to ensure tissue protection according to 
functional requirements. Disruption of immune system 
homeostasis causes transplant rejection [2, 3]. Although 
inhibition of acute rejection has improved significantly in 
the past two decades, long-term rejection and immuno-
suppression can lead to high morbidity and mortality, and 
chronic transplant rejection can cause irreversible dam-
age to the graft [4, 5]. The most common clinical acute 
rejection is mainly mediated by cellular responses, while 
hyperacute rejection and chronic rejection are mainly 
mediated by humoral immunity. The transplant rejection 
mechanism is an immunological reaction that recognizes 
foreign molecules of the donor cells, triggering attack and 
destruction. Various immunological factors are involved 
in acute and chronic rejection, including human leuko-
cyte antigen (HLA) mismatch, donor-specific antibodies 
and non-immune factors (e.g., donor age, infection, and 
immunosuppressive drug toxicity) [6, 7].
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Assessing the immune reaction
Cellular and molecular assays to measure immune cell 
differentiation, cellular function and antigen specificity 
contribute to solving important problems in immune-
mediated transplant rejection. Fluorescence-activated 
cell sorting (FACS) is used for post-transplantation 
immune surveillance to identify cells of the immune sys-
tem by detecting surface marker expression or intracel-
lular proteins, including cytokines. This tool has been 
supplemented by in situ histological tests [8, 9]. However, 
histological diagnosis may miss subtle alterations in indi-
vidual patients, which are essential for rejective pathol-
ogy [10]. Therefore, the combination of transcript sets 
and histological diagnosis of tissue samples is used to 
predict antibody-mediated or cellular rejections [11, 12]. 
Additionally, bulk RNA sequencing of allograft biopsies 
is a method to determine gene-specific single-nucleotide 
variants of donors and recipients [13]. Microarray tech-
nology has been used to study the pathogenesis of trans-
plant rejection processes. For example, Roedder et al. [14] 
used microarray technology to determine a test set of 17 
relevant genes to predict renal rejection. Each of these 
approaches provides valuable insights. However, they 
are subject to limitations due to the complex immune 
rejection response. Furthermore, extensive analysis can-
not resolve phenotypic heterogeneity and distinguish the 
gene profile of donors and recipients in mixed cell popu-
lations [15]. Even with the application of Cytometry by 
Time of Flight (CyTOF), it remains challenging to assess 
a truly unbiased dataset of a single cell, a process that 
requires single-cell resolution [16]. Among single-cell 
profiling methods, scRNA-seq comprehensively meas-
ures the transcriptional expression of bulk cells [1, 17] 
and quantitatively analyzes all transcripts expressed in a 
single cell, providing an unbiased strategy to identify and 
characterize different cell populations [18–20].

This review discusses the development and application 
of scRNA-seq in organ transplantation. This cutting-edge 
technology will improve immunotherapies and help to 
predict recipient outcomes.

Sample harvest and tissue processing
The entire process starting with sample isolation to the 
final evaluation of scRNA-seq data is summarized in 
Fig.  1. The first step of scRNA-seq analysis is the dis-
sociation of the graft tissue, which is obtained in most 
cases by biopsies. The currently used protocols were 
developed and improved over decades, and each has its 
strengths and weaknesses. For transplanted organs, laser 
capture microdissection, digestion or enzyme-related 
approaches, followed by density gradient centrifuga-
tion or fluorescence-activated cell sorting are used. Tis-
sue dissociation is more difficult to implement for frozen 

samples, e.g., those of the liver [21]. In particular, for liver 
samples, a different sensitivity to cell death caused by the 
dissociation step may result in bias because hepatocytes 
die very fast, while other cells become activated during 
tissue dissociation, indicating a transcriptional stress 
response. Macparland et  al. [22] developed a milder 
approach to reduce the cell damage rates by maintaining 
the tissue at 4  °C during all steps, including collagenase 
perfusion. Wang et al. [23] used a hypothermic strategy 
for kidney preservation for up to 4  days for scRNA-seq 
analysis. Recently, Guillaumet-Adkins et  al. [24] pub-
lished an improved method for sample preservation, 
gradual freezing by 1 ℃ per minute to -80 ℃, that does 
not change the transcriptional profiles and makes cryo-
preserved cells and tissues applicable for scRNA-seq. 
However, frozen tissues cannot be processed like fresh 
tissues. Tissue dissociation leads to the loss of spatial and 
anatomical information for cells, and the precise location 
of each cell should not be ignored. To address this issue, 
RNA probes identifying cellular transcriptional organiza-
tion [25] or spatial transcriptomic protocols [26] are both 
helpful alternative methods.

Single‑cell methods
The next steps after tissue dissociation include RNA cap-
ture, reverse transcription, RNA sequencing, and library 
construction. Selection of a suitable sequencing method 
is challenging because several methods exist, such as 
CEL-seq2, Drop-seq, MARS-seq, MATQ-seq, Quartz-
seq, SCRB-seq, Smart-seq, Smart-seq2, Drop-seq, FB5P-
seq, SPLIT-seq, and DNBelab C4 [27–30]. We summarize 
the most commonly used scRNA-seq methods in Table 
1 according to their capturing format, cDNA amplifica-
tion, sequencing method, transcript coverage advantages 
and limitations. Microfluidic technologies for scRNA-
seq involve droplet-based and plate-based technolo-
gies. Amplification is performed by PCR for Smart-seq 
[31, 32] and Quartz-seq [33, 34] and in  vitro transcrip-
tion, generating RNA in  vitro, e.g., by InDrop [35] and 
CEL-seq [36, 37]. Drop-seq [38], InDrop [35], and CEL-
seq [36, 37] incorporate unique molecular identifiers 
(UMIs) into cDNA. A UMI is a short sequence barcode 
to detect and quantify transcripts. These molecular bar-
codes uniquely tag each molecule in a sample library 
and reduce quantitative and error biases introduced by 
amplification. Smart-seq2, Quartz-seq, and MATQ-seq 
produce almost full-length sequencing data, while oth-
ers (e.g., CEL-seq and Drop-seq) only capture the 3’-end 
sequence or 5’-sequence (e.g., FB5P-seq and STRT-seq) 
[10, 30, 39, 40]. Each platform provides multiple and 
specific but not completely comprehensive advantages 
in data capture. The reduction of mRNA amplification 
noise by CEL-seq2, InDrop, Drop-seq, MARS-seq, and 
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SCRB-seq is a favorable feature that makes these plat-
forms preferable. However, MARS-seq, SCRB-seq, and 
particularly Smart-seq2 platforms capture more genes 
using the same number of cells, making them prefer-
able for relatively low quantities [41]. Drop-seq analyzes 
thousands of individual cells simultaneously without 
losing the original transcript [38]. Compared with other 
widely used single-cell RNA sequencing platforms (such 
as Smart-seq2), 10× Genomics Chromium is a more 
cost-effective and time-efficient system. This platform 
generates droplets and forms a single-cell suspension. 
Additionally, it can process many cells and detect even 
rare cell types or transcripts [42] by combining one of 
the following methods: InDrop for rare cell populations 
[38] or CEL-seq for complex tissues containing multiple 
cell populations [36, 37]. Smart-seq increases the ther-
mal stability of DNA base pairs [31, 32]. MATQ-seq is 
implemented on low-abundance genes and noncoding 
and non-polyadenylated RNA [43]. Quartz-seq is applied 

to detect the different cell cycle phases and transcrip-
tome heterogeneity. SCRB-seq is used for heterogeneous 
populations [33, 34]. FB5P-seq [30] and T-cell recep-
tor repertoire sequencing (TCR-seq) [44] are used to 
identify the repertoire and diversity of BCRs and TCRs. 
STRT-seq tracks the cell origin efficiency without quan-
titative bias against long transcripts. One of the common 
disadvantages is the limited throughput and read cover-
age, e.g., by Smart-seq 1 and 2 [31, 32]. Another is the 
requirement for skilled technicians, e.g., for Quartz-seq 
1 and 2 [33, 34]. Because each method has weaknesses 
(Table 1), investigators must choose a platform according 
to their specific interests.

Data analysis
Data analysis after sequencing generally comprises qual-
ity control (QC), batch effect correction, normalization, 
data imputation, dimensionality adjustment, subsequent 
expression analysis and cell subpopulation identification 

Fig. 1  Steps of scRNA-seq to analyzing organ rejection. After biopsies of graft tissues, cells are isolated and can be used for droplet- or plate-based 
sequencing approaches. After batch effect correction, normalization, data imputation and dimensionality adjustments, specific cellular subtypes 
can be identified. Analysis of heterogeneity and prediction of tolerance is used to identify target genes and molecular interactions that are the basis 
for gene therapy approaches and long-term graft acceptance. QC quality control; DCs dendritic cells
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[39]. QC is required for high technical noise and low-
quality data, which are often generated because of dead 
cells. Batch effects are caused by large-scale scRNA-seq 
datasets, samples prepared in different laboratories, even 
those based on the same protocol, and large data gener-
ated from separate technicians or different time points 
[49, 50]. They can cause systematic errors and differ-
ences among multiple transcriptional profiles. Thus, 
batch effect correction is vital to avoid this misinterpreta-
tion, and removing unwanted variation (RUV) is a good 
normalization strategy to adjust confounding technical 
effects [51]. Data normalization is necessary to adjust 
technical biases. Two types of normalization are used: 
sample normalization, which adjusts within-sample dif-
ferences, and gene profile normalization, which elimi-
nates gene expression biases. Data imputation is an 
effective strategy to insert substituted values into drop-
outs, eliminating the influence of missing data. Because 
of technological developments in scRNA-seq and bulk 
data generation with high dimensionalities, compu-
tational bioinformatics analysis is essential to process 
raw data. Automatic annotation methods such as the 
"SingleR" package [52], online databases [53] and gene 
expression markers [54] can be used for cell marker iden-
tification. The commonly used "SingleR" labels new cells 
from the scRNA-seq dataset based on similarity to the 
reference dataset of samples with known labels.

Challenges during data analysis involve multiple biases 
in the entire procedure and high dimensional datasets 
[55]. The possibility of low-quality data or dropouts in the 
scRNA-seq results, caused by low viability or dead cells, 
can lead to misinterpretation [56]. An optimal method 
can avoid false results to enable correct transcrip-
tional interpretation (Table  2). "Seurat" is an R package 
designed for QC, analysis and exploration of scRNA-seq 
data to reduce some biases [54, 57]. To distinguish tech-
nical biases from biological signals, Bayesian Inference 
for Single-cell ClUstering and ImpuTing (BISCUIT) pro-
vides a discernible advantage for graphical algorithms. 
BISCUIT imputes dropouts and improves both cluster-
ing and normalization [58]. Using these tools, the data 
are clustered to reduce technical variations (amplification 
bias, sequencing depth, GC content, capture inefficiency, 

and RNA content variations [59]). Because scRNA-seq 
data contain many genes and cells in high dimensions, 
large-scale computational resources are required. T-dis-
tributed stochastic neighbor embedding (tSNE) is an 
approach for high-dimensional data because of the com-
putation time and potentially manifold embeddings for 
the same datasets from run to run [60]. PhenoGraph is 
also an algorithmic method used for partitions of high-
dimensional data into distinct subgroups within complex 
tissues [61]. Dimensional reduction and uniform mani-
fold approximation and projection (UMAP) are alterna-
tive methods for data analysis developed to project the 
data into lower dimensions and visualize cell clusters 
with high reproducibility without losing the properties 
of the original data [62]. Xu et al. described a new clus-
tering algorithm of graph-based shared nearest neighbor 
(SNN)-Cliq implemented in Python and MATLAB soft-
ware, considering the surrounding data points, including 
low-density region data and detecting more cell subtypes 
with high accuracy [63]. For zero-inflated data compris-
ing an excessive number of zeros, zero inflated factor 
analysis (ZIFA) is a novel approach to reduce dataset 
dimensions [64]. "Harmony" is another R package with 
an efficient batch algorithm method to integrate multi-
ple datasets and requires fewer computational resources. 
Korsunsky et  al. [65] developed this method (https://​
github.​com/​immun​ogeno​mics/​harmo​ny) and applied it 
to large datasets integrated with spatial transcriptomics 
data.

However, these algorithms are most commonly used 
for static analysis. Another promising means, consid-
ering a continuous transition between different cellu-
lar states, are the machine learning approaches listed 
in Table  3, Monocle [66], Monocle2 [67], TSCAN [68], 
Wishbone [69], Slingshot [70], Diffusion pseudotime 
software [71] and Wanderlust [72] allow the construc-
tion of trajectories of cells in dynamic gene regulation 
and explain normal physiological and pathophysiologic 
alterations of cellular subgroups in specific locations of 
the human body. Saelens et al. [73] concluded that Sling-
shot, TSCAN and Monocle2 exhibited better trajectory 
identification. Therefore, the combination of personal-
ized medicine and artificial intelligence will become 

Table 2  Tools for scRNA-seq data analysis

Challenge Method References

Multiple biases "Seurat" is an R package designed for quality control, analysis, and exploration of scRNA-seq data [54, 57]

BISCUIT provides the graphical algorithm and imputes dropouts, improving both clustering and normalization and 
reducing the technical biases from biological signals

[58]

Dimension tSNE, PhenoGraph and ZIFA are used for high dimensional data. UMAP and SNN project the data into lower dimensions [59–64]

"Harmony" is an efficient batch algorithm method to integrate multiple datasets and requires fewer computational 
resources

[65]

https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
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applicable in the near future [41]. This combination will 
provide a map of cells, considering temporal dynamics 
and spatial positioning by evaluating the pathological 
microenvironment, phase of the cell cycle and responses 
to clinical medication. For transplanted organs, selecting 
an optimized process for accurate subsequent analysis is 
highly recommended.

Applications of scRNA‑seq for transplantation
Currently, the main difficulties for successful transplanta-
tion comprise, among others, best-matched donor selec-
tion and a reduction in lifelong immunosuppression [74]. 
For transplant rejection, the latest advances in scRNA-
seq provide an opportunity to fully reveal new cell types 
and states without result bias and RNA degradation [75]. 
Snapshots of the single-cell transcriptome exhibit various 
stages of immune differentiation and activation, while 
these stages are rarely synchronized among cells [76]. At 
single-cell resolution, it can describe immune cells, stro-
mal cells and new cell subtypes that undergo immune 
rejection and further compare the unique characteristics 
of the signaling pathways between different cellular sub-
groups [57]. Here, we describe the advantages of scRNA-
seq in the fields of kidney, liver, lung and hematopoietic 
stem cell (HSC) transplantation and for immunological 
applications.

Kidney transplantation
T cells play a crucial role in graft rejection. Most stud-
ies have focused on bulk methods based on biopsy 
samples without providing information about αβ 
chain pairing of T-cell receptors (TCRs) [77]. This lack 
can underestimate actual library differences and fails 
to reflect that T cells with the same TCR can exert 
opposite biological functions. ScRNA-seq technol-
ogy overcomes the abovementioned limitations and 
brings library analysis a higher diversity [78]. ScRNA-
seq detects T-cell subclones [79]. For example, Morris 
et al. [80] monitored donor-reactive T cells in patients 
with tolerant and non-tolerant kidney transplantation. 

Donor reactivity has been detected in patients with tol-
erance. The decrease in T-cell clones in non-tolerant 
patients did not show a reduced number of donor-
reactive T cells. Contrary to data from tolerant patients 
undergoing standard immunosuppression, an expan-
sion of donor-reactive T-cell clones was observed in 
peripheral blood [81–83]. Antibody-mediated rejection 
(AMR) in the kidney is not easily identified by histo-
logical diagnoses. However, a transcriptional expres-
sion profile can strengthen the diagnosis. AMR injury 
is the most common driver of late allograft loss [12, 84]. 
Several groups have performed scRNA-seq of kidney 
allograft undergoing AMR, where monocytes, B cells, 
plasma cells and T cells invade into the tissue [85] and 
donor endothelial cells (ECs) are the primary targets 
of the recipients’ humoral immune response [86, 87]. 
Thus, scRNA-seq provides a comprehensive under-
standing of subtle mechanisms in conceptualizing het-
erogeneous kidney rejection. Macrophages and T cells, 
activated in the recipient, significantly differ from the 
original populations in either the donor or recipient. 
Some of these immune cells exist for only a few days 
after transplantation, but macrophages can persist for 
several years [88]. Furthermore, immune cell popula-
tions residing in donor-derived tissues can be replaced 
by recipient cells, particularly during rejection [89]. 
Liu et  al. [57] presented a novel heterogeneous pro-
file of immune cells based on allograft biopsies and 
matching healthy kidneys by scRNA-seq, integrating 
the key alterations of molecular functions, establishing 
therapeutic surveillance for kidney allograft rejection 
and improving allograft survival [90]. They identified 
subclusters of cytotoxic T lymphocytes that exhibit 
a more proinflammatory role in renal allograft rejec-
tion, while activated B cells interacted with surround-
ing stromal cells, mostly emerging in allograft kidneys, 
leading to immune cell recruitment and an activated 
inflammatory response. Non-invasive urine or blood 
biomarkers are applicable for a limited group of pathol-
ogies [91], whereas invasive biopsies are used to profile 

Table 3  Tools for scRNA-seq trajectory inference

Method URL References

Monocle http://​cole-​trapn​ell-​lab.​github.​io/​monoc​le-​relea​se/ [66]

Monocle2 http://​cole-​trapn​ell-​lab.​github.​io/​monoc​le-​relea​se/ [67]

TSCAN https://​github.​com/​zji90/​TSCAN [68]

Wishbone https://​github.​com/​ManuS​etty/​wishb​one [69]

Slingshot https://​github.​com/​kstre​et13/​sling​shot [70]

Diffusion Pseudotime Software https://​static-​conte​nt.​sprin​ger.​com/​esm/​art%​3A10.​1038%​2Fnme​th.​3971/​Media​Objec​ts/​
41592_​2016_​BFnme​th3971_​MOESM​375_​ESM.​zip

[71]

Wanderlust https://​github.​com/​wande​rlust/​wande​rlust [72]

http://cole-trapnell-lab.github.io/monocle-release/
http://cole-trapnell-lab.github.io/monocle-release/
https://github.com/zji90/TSCAN
https://github.com/ManuSetty/wishbone
https://github.com/kstreet13/slingshot
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3971/MediaObjects/41592_2016_BFnmeth3971_MOESM375_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.3971/MediaObjects/41592_2016_BFnmeth3971_MOESM375_ESM.zip
https://github.com/wanderlust/wanderlust
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non-circulating immune cells in transplant rejection, 
providing more diagnostic accuracy and prognostic 
biomarkers amenable to therapeutic tools [10, 85].

Liver transplantation
The interaction of immune cells and liver cells in a trans-
plant setting is a key mechanism for liver tolerance induc-
tion [92]. ScRNA-seq can improve the hepatic immune 
cellular map in interpreting the specific CD4+ T-cell 
subgroup from other T cells in liver transplant rejection 
and tolerance [93]. Immune cells such as dendritic cells 
(DCs), T cells, and probably NK cells interact with liver 
sinusoidal ECs and hepatocytes, adding specific signal-
ing molecules to generate a tolerogenic state. Apoptosis 
of infiltrating T cells may be critical for allograft toler-
ance [93, 94]. Despite possible tolerance induction after 
liver transplantation, human liver allografts are likely to 
be rejected without applying immunosuppressive drugs 
[95]. Approximately 10%-30% of allograft recipients are 
diagnosed with acute cellular rejection [96], likely due to 
T-cell-related immune responses [97]. Applying scRNA-
seq may better elucidate the cellular immune responses 
in the liver allograft.

Lung transplantation
Using scRNA-seq to test single cells isolated from lung 
transplantation donors and lung fibrosis has revealed 
transcriptionally distinct populations of alveolar mac-
rophages that express profibrotic genes in patients with 
pulmonary fibrosis [98, 99]. Some mesenchymal cell 
markers that play a role in Wnt/β-catenin signaling dur-
ing lung regeneration and some previously described rare 
cell populations have been identified. These technologies 
can improve the diagnosis of patients with fibrosis after 
lung transplantation and can be used to identify patients 
most likely to benefit from targeted therapy and monitor 
their response during disease progression [100]. Mould 
et al. [101] assessed the cell populations between healthy 
samples and found highly conserved cellular heterogene-
ity in bronchoalveolar lavage (BAL) cells. By dynamically 
comparing the lungs of donors and recipients, persistent 
donor resident memory T cells are correlated with better 
clinical outcomes [102], providing a potential therapeutic 
tool for extended allograft survival.

HSC transplantation
To study the rejection of transplanted HSCs, Dong et al. 
[103] used scRNA-seq to obtain a transcriptome-based 
classification of 28 hematopoietic cell types. According to 
this classification, most transplanted HSCs are dedicated 
to transcriptional immunophenotypical multipotent pro-
genitors (tMPP1). Transcriptional analysis and functional 
evaluation showed that the proliferation of transplanted 

cells is accompanied by a gradually decreased percentage 
of HSCs [104]. However, a balance between proliferation, 
differentiation and stem cell maintenance likely exists. 
Graft-versus-host disease (GVHD) is the main compli-
cation of allogeneic hematopoietic cell transplantation 
(HCT) [105]. Acute GVHD is mediated by donor T cells 
[106]. TCR-seq, as a type of scRNA-seq, can clarify how 
acute GVHD occurs. Although donor T-cell pools have 
highly similar TCRs, the TCR repertoire after HCT is 
very specific to recipients. TCR recombination is highly 
stochastic and may not depend on evaluating the most 
expanded TCR clones in any single recipient but on the 
complex polyclonal architecture. These results can be 
used to guide clinical decisions to prevent or treat acute 
GVHD [78]. By analyzing skin and peripheral blood 
T cells using TCR-seq, host skin-resident T cells were 
found to have an unanticipatedly pathogenic impact on 
GVHD [107].

Immunological applications of scRNA‑seq
ScRNA-seq identifies gene profiles of various cell popu-
lations. This technical tool avoids the weakness of bulk 
analysis, which is likely to miss cell-specific signatures 
[85]. It also improves the understanding of immune cell 
ontogeny and interaction with stromal cells in a given 
organ. The advantages of scRNA are maximized by its 
combination with databases or improvements by other 
techniques [such as single-nucleus RNA sequencing 
(snRNA-seq)] [108]. The Immune Cell Atlas (ICA) is an 
essential part of the international Human Cell Atlas ini-
tiative (https://​www.​human​cella​tlas.​org/), which collects 
samples from patients who have undergone rejection 
response and evaluates different reaction stages using 
scRNA-seq technology. By visualizing the dynamic 
observation of cell processes, the subtle transcriptional 
differences among cell types can be qualitative. The rejec-
tion response, caused by specific gene regulation, pro-
vides robust target genes and molecular mechanisms 
to diagnose and treat transplant rejection and identify 
potential diagnostic markers [109, 110]. The limitations 
of scRNA-seq due to fresh tissue requirements, arti-
factual transcriptional biases and loss of fragile or low 
viability cells can be overcome by snRNA-seq, enabling 
the storage of frozen samples and analysis using a qual-
ity comparable to scRNA-seq [108, 111–113]. The lat-
est developments in snRNA-seq, imaging technologies 
[such as single-molecule fluorescence in  situ hybridiza-
tion (FISH)], proteomics (MIBI-TOF), and genomics all 
together provide benefits to further investigate cellular 
functions [114].

Classical immune cell characterization in differ-
ent organs has limitations due to technologies such as 

https://www.humancellatlas.org/
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microscopy and high-affinity antibody labeling. Addi-
tionally, conventional transcriptome studies may miss 
some essential immune cell subtypes [85]. ScRNA-seq 
is currently widely used in immunology to unravel 
the differentiation process of HSCs, resolve previ-
ously under recognized immune cellular heterogeneity, 
decipher the immune cellular repertoire and predict 
disease-related phenotypes [39, 115, 116]. ScRNA-seq 
can help identify HSC fate branch points during dif-
ferentiation; for example, conventional dendritic cells 
(cDCs) rely on the abundance of Siglec‑H and Ly6C to 
determine the direction of cDC type 1 (cDC1) or cDC 
type 2 (cDC2) [117]. The myeloid progenitor cells that 
produce mast cells and eosinophils or monocytes and 
macrophages depend on the presence of GATA1 [118]. 
Jaitin et  al. [119] performed scRNA-seq on DCs and 
found different states of bone marrow-derived and 
other immune tissue-derived cells. Using scRNA-seq, 
progenitor immune cells can be identified by analyzing 
transcriptional variations in immature bone marrow 
and mature resident immune cells of specific organs 
[22]. Many new types of immune cells were identified 
using scRNA-seq, which can analyze cell differentiation 
and cell lineages, including innate lymphocytes and 
lung interstitial macrophages [57]. Recent studies have 
shown the heterogeneity of hematopoietic progenitor 
cells with a mixed lymphoid phenotype using scRNA-
seq. This technology can also be used to identify novel 
cell types in several diseases, for example, cancer diag-
nosis and efficacy evaluation. By analyzing circulating 
tumor cells (CTCs) from prostate cancer patients, Miy-
amoto et al. [120] found that CTCs are highly heteroge-
neous in gene expression. The special feature of CTCs 
is that they activate Wnt signaling, which increases 
resistance to drug therapy. By analyzing brain cells in 
Alzheimer’s disease, scRNA-seq also enables the iden-
tification of microglia and perivascular macrophages 
related to neurodegenerative diseases [121]. ScRNA-
seq also improves the diagnosis of disease heterogene-
ity, such as identifying specific B-cell receptor signaling 
pathways and gene expression patterns in non-Hodg-
kin’s lymphoma. Most adult B-cell lymphomas exhibit a 
B-cell phenotype at the germinal center (GC). By com-
bining scRNA-seq, the mixed characteristics of B cells 
derived from GC and follicular lymphoma (FL) revealed 
unique transcription characteristics [122, 123]. In 
the future, organ transplantation single-cell sequenc-
ing will likely help further elucidate the pathogenesis 
of transplant rejection and initiate the development 
of clinical trials and the emergence of more effective 
drugs to reduce the immune response associated with 

transplant rejection, thereby improving the quality of 
life of patients and extending patient survival.

Conclusion
Taken together, scRNA-seq can accurately interpret gene 
expression data, recognize cell heterogeneity, including 
new cell types or subtypes, and take snapshots of gene 
expression during the transition of cells from one state to 
another. All data can be integrated to define the critical 
process of cell development and differentiation, reveal the 
key signaling pathways and understand the gene regulatory 
network that predicts immune function [124–127].
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