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Abstract

Background: The vital signs of trauma patients are complex and changeable, and the prediction of blood
transfusion demand mainly depends on doctors’ experience and trauma scoring system; therefore, it cannot be
accurately predicted. In this study, a machine learning decision tree algorithm [classification and regression tree
(CRT) and eXtreme gradient boosting (XGBoost)] was proposed for the demand prediction of traumatic blood
transfusion to provide technical support for doctors.

Methods: A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical
Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency
trauma database. The vital signs, laboratory examination parameters and blood transfusion volume were used as
variables, and the non-invasive parameters and all (non-invasive + invasive) parameters were used to construct an
intelligent prediction model for red blood cell (RBC) demand by logistic regression (LR), CRT and XGBoost. The
prediction accuracy of the model was compared with the area under the curve (AUC).

Results: For non-invasive parameters, the LR method was the best, with an AUC of 0.72 [95% confidence interval
(C) 0.657-0.775], which was higher than the CRT (AUC 0.69, 95% Cl 0.633-0.751) and the XGBoost (AUC 0.71, 95%
Cl 0.654-0.756, P < 0.05). The trauma location and shock index are important prediction parameters. For all the
prediction parameters, XGBoost was the best, with an AUC of 0.94 (95% ClI 0.893-0.981), which was higher than the
LR (AUC 0.80, 95% Cl 0.744-0.850) and the CRT (AUC 0.82, 95% ClI 0.779-0.853, P < 0.05). Haematocrit (Hct) is an
important prediction parameter.

Conclusions: The classification performance of the intelligent prediction model of red blood cell transfusion in
trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method. It
can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in
emergency rescue environment, so as to improve the success rate of patient treatment.
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Background

Trauma accounts for approximately 9% of global deaths
[1], and deaths mainly occur within the first 12 h after
trauma [2]. The first step in trauma treatment is to con-
trol the bleeding as soon as possible, identify the mech-
anism of trauma, and directly transfer the patients to a
nearby trauma treatment institution [3]. Post-traumatic
blood loss is a potential and preventable leading cause of
death [4]. The core principle of treatment is to identify
the risk of haemorrhagic shock as early as possible;
meanwhile, fluid resuscitation and blood transfusion are
needed to maintain the stability of basic vital signs and
haemodynamics [5]. The study found that blood transfu-
sion products pre-hospital within 15 min or 15 min after
injury were associated with 24-h mortality (5.6% vs.
20.2%) and 30-day mortality (11.8% vs. 22.9%) compared
with delayed or non-transfusion [6]. Delayed blood
transfusion can lead to pulmonary complications and
death [7]. Several studies have found that RBC transfu-
sion in trauma patients is associated with increased mor-
bidity and mortality [8, 9]. Kotwal et al. [10] found that
the death rate of the massive blood transfusion group
was significantly lower than that of the non-massive
blood transfusion group, especially in severe and ex-
tremely severe trauma [injury severity score (ISS) > 15].
However, regardless of the trauma severity, the mortality
decreased gradually in the massive blood transfusion
group, non-massive blood transfusion group and non-
transfusion group, and there was a significant difference.
With the increase in blood transfusion, the mortality
rate gradually increased during hospitalization [10].
Therefore, blood products should be given early in the
pre-hospital transfer to improve the patients’ survival
rate after trauma, and then other interventions should
occur as soon as possible to strictly control the amount
of blood transfused.

At present, there are many studies on traumatic
massive blood transfusion, including various trauma
scoring systems for on the battlefield and for civilians
[11-13], which are used to predict when to initiate
massive blood transfusion programmes. However, in re-
cent years, with the improvement of early pre-hospital
and hospitalization trauma management measures, the
proportion of patients with massive blood transfusion
has gradually decreased [14]. For traumatic patients who
do not meet the massive blood transfusion standard,
there are few studies on the need for blood transfusion.
The fifth edition of the European Trauma Guide recom-
mends that the target haemoglobin (Hb) should be
maintained at (70-90) g/L [5], which can be used as a
reference for blood transfusion needs, but the guideline
also suggests that the normal initial test results of Hb
may mask bleeding, and it is recommended to use the
results of repeated Hb tests as laboratory indicators of
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bleeding. Therefore, only the results of Hb determine
whether to perform a blood transfusion, and the refer-
ence value is limited. How to judge the best demand for
blood transfusion according to the changing vital signs
of trauma patients is a difficult problem for emergency
doctors. At present, most of the blood transfusion deci-
sions made by doctors are based on their personal expe-
riences, but there is no feasible and recognized reference
standard for different individuals. Transfusion too early
will not only waste blood components but also affect the
prognosis of patients with excessive blood transfusion
[10, 15]. A delayed blood transfusion will lead to
haemorrhagic shock, aggravate complications such as
hypothermia, acidosis and coagulation dysfunction, and
seriously affect the survival rate of patients [16].

We believe that compared with traditional statistical
methods, the application of machine learning methods
can help us to identify whether patients need a blood
transfusion and reduce unnecessary complications
caused by delayed transfusion, insufficient blood transfu-
sion or excessive transfusion. Therefore, this study pro-
poses a new method to establish an artificial intelligence
mathematical model by retrospective analysis of patients’
vital signs, laboratory tests and other data to assist doc-
tors in quickly making decisions on whether a blood
transfusion is needed after trauma and to improve the
success rate of patient treatment.

Methods

Clinical data

The Emergency Trauma Database of the First Medical
Center of Chinese PLA General Hospital is a compre-
hensive, unidentified dataset containing medical infor-
mation on 22,491 critically ill patients from January
2014 to January 2018 [17, 18]. All patients were admit-
ted to the Emergency Department. The medical infor-
mation of 1371 trauma patients who were triaged to a
critical rescue room was extracted. The data related to
blood transfusion were provided by the clinical blood
transfusion intelligent management and evaluation sys-
tem database established by the Department of Transfu-
sion Medicine of the First Medical Center of Chinese
PLA General Hospital [19]. The patients’ information in
the two databases associated were uniquely identified
with the outpatient number. In the process of data ex-
traction, the original data were completely consistent
with the database data through quality control. The
Medical Ethics Committee of the Chinese PLA General
Hospital waived the requirement for written informed
consent.

Contains variables
Basic information (age, sex, height, weight), diagnosis,
admission time, discharge time, after-department track,
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blood transfusion time, blood transfusion components,
RBC infusion volume were collected.

Non-invasive detection parameters include vital signs
[heart rate (HR), respiration (R), shock index (SI), sys-
tolic blood pressure (SBP), diastolic blood pressure
(DBP), blood oxygen saturation (SpO,), temperature (T)]
and test time, trauma location were collected.

Invasive detection parameters include routine blood
test parameters [Hb, haematocrit (Hct), platelet count
(PLT), C-reactive protein (CRP), interleukin (IL)-6] and
test time; coagulation indicators [prothrombin time
(PT), activated partial thromboplastin time (APTT),
international standardized ratio (INR), prothrombin ac-
tivity (PTA), fibrinogen (Fib)] and test time; blood gas
test parameters [potential of hydrogen (pH), partial pres-
sure of oxygen (PO,), partial pressure of carbon dioxide
(PCO,), total carbon dioxide (TCQO,), lactate (Lac), ac-
tual bicarbonate (AB), standard bicarbonate (SB), potas-
sium (K)] and detection time; trauma severity
classification (first level, second level and third level);
endotracheal intubation; and vasoactive drugs were
collected.

Construct new variables: For the trauma diagnostic
classification, we divided the variables into the fields of
trauma type (open trauma, blunt injury) and trauma lo-
cation (head and neck, upper extremity, lower extremity,
chest and abdomen, spine, trunk and pelvis). Examples
of 10 patients with their features show in more detail in
Additional file 1: Table 1.

Variable dimensionality reduction: To reduce the time
and complexity of the model operation, only one vari-
able with a high correlation coefficient was retained,
such as Hb and Hct, and only the variable Hct was
retained.

Inclusion criteria: (1) patients’ diagnoses were matched
or fuzzy matched with “injury”, and (2) patients were
triaged from the emergency department to a critical res-
cue room. Exclusion criteria: (1) patients with non-
external trauma, and (2) age < 18 years old.

Acquisition of variables

The process of obtaining variables included extracting
and aggregating variables, cleaning variables, and pro-
cessing variables.

Variable extraction

The numerical variables were extracted directly, includ-
ing vital sign parameters, laboratory test results, and in-
formation related to blood transfusion in the database.
The results of the first examination when entering the
emergency department were used as variables to predict
the demand for blood transfusion. If multiple tests were
performed before or after blood transfusion, the results
closest to the time blood transfusion were included in
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the analysis. We used natural language processing to ex-
tract effective information from unstructured text vari-
ables in the database in advance, such as diagnosis and
medical orders. We extracted the variable information
from the emergency trauma database and then used the
patient’s unique identification as the centre, associated it
with the blood transfusion information of the clinical
blood transfusion database system, and aggregated it
into a record.

Variable cleaning

We needed to clean duplicate data and formulate reten-
tion principles, such as testing the changes of vital signs
many times after entering the emergency department
and taking the results of the first test as the key variable
to judge whether a blood transfusion occurred, checking
the invalid value and establishing the criteria, such as
height and weight with — 1, 0, etc., checking the logical
relationship among the data, such as the time of admis-
sion, the time of laboratory examination, and the blood
transfusion start time.

Variable processing

(1) Classify variable processing: Convert the variables
into a numerical vector and then use it to build models,
such as gender and other variables; (2) Unstructured text
variable processing: Use the automatic counting word
segmentation algorithm in natural language processing
to transform words into numerical variables; (3) Con-
struct new variables: Divide the diagnostic information
of patients, such as diagnostic details and variable pro-
cessing of trauma location, into phrases and fields and
then count and score the different categories in the tar-
get variables and train the model using the learned rules
to construct new variables.

Establishing the model
SPSS 22.0 software (IBM, USA) was used to establish
the LR model and CRT model. CRT is supervised ana-
lysis technology, which uses the binary classification
method to divide the data into two pieces at a time and
enter it into the left and right two trees. The root node
of the tree is a dependent variable, and the child node is
based on the classification variable (parent node). The
minimum sample size on the CRT parent node estab-
lished by the non-invasive parameter is 20, and the child
node is 10. The minimum sample size of the CRT parent
node for invasive parameters is 50, and the child node is
20. If the sample size on the node does not meet this re-
quirement, the node is a terminal node and will no lon-
ger be segmented [20].

XGBoost is a gradient lifting decision tree algorithm
provided by the Python language. XGBoost is a super-
vised learning method and is an integrated learning
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model that is used for classification analysis (processing
discrete data) and regression tree analysis (processing
continuous data). The XGBoost algorithm is composed
of a loss function and a regular function. The loss func-
tion calculates the error between the prediction and the
real result, and the loss function is constrained based on
the minimum error in the actual calculation. The regular
function is used to detect the complexity of the model
to avoid overfitting. The loss function and the objective
function are given according to the actual situation.

Statistical analysis

The counting data are described by frequency and per-
centage [n (%)], and the measurement data are expressed
by mean and standard deviation [mean (SD)] or median
and quartile spacing [median (range)]. The measurement
data of the two groups were compared by analysis of
variance or Kruskal-Wallis non-parametric test, and the
counting data of the two groups were compared by the
chi-square test. If P < 0.05, the difference was statistically
significant.

The LR method was used to screen the significant var-
iables with P<0.05 as independent variables and
whether a blood transfusion was used as the dependent
variable to establish the model. After the regression co-
efficient was standardized, the risk factor (OR) and 95%
CI were used to express the relationship between vari-
ables and the occurrence of blood transfusion.

CRT and XGBoost models used the original variables,
combined variables or constructed new variables of his-
torical datasets for model training. The historical dataset
was randomly divided into an 80% training set and a
20% test set. The model was trained on the training set,
and the effect of the model was evaluated on the test set.

LR, CRT and XGBoost models were compared with
whether a blood transfusion was used as the target
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variable, method 1 (basic information + non-invasive
parameters) as analysis variables, and method 2 (basic
information + non-invasive parameters + invasive pa-
rameters) as analysis variables to establish models, and
AUCs were drawn and analyzed. The AUC results of the
two methods and three models were compared by ¢ test
method provided by SciPy library in Python software; if
P<0.05, the difference was statistically significant
(Fig. 1).

According to the node level (root node, child node) of
each variable in the decision tree, the CRT model re-
flects the importance of each variable. The XGBoost
model is represented by the weight of the factors in the
tree model of the gradient lifting decision tree algorithm.

Results

Patient characteristics

The emergency trauma database of the First Medical
Center of Chinese PLA General Hospital contains the
medical information of 22,491 critically ill patients. We
included 1371 patients who met the study criteria for
analysis. Among them, there were 324 females (23.6%)
and 1047 males (76.4%). A total of 1183 patients (86.3%)
did not receive blood transfusion, and 188 patients
(13.7%) received blood transfusion. There were signifi-
cant differences between the transfusion group and the
non-transfusion group in age, HR, SBP, DBP, SI, Hb,
Hct, PLT, PT, APTT, PTA, Fib, pH, PO,, TCO,, Lac,
AB, SB, K, endotracheal intubation, vasoactive drugs,
trauma location, RBC volume, 24-h RBC and emergency
department time (P <0.05). There were no significant
differences between the transfusion group and the non-
transfusion group in sex, height, weight, R, SpO,, T,
CRP, IL-6, INR, PCO,, trauma severity classification and
trauma type (P > 0.05) (Table 1).

Statistical analysis

v v
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Basic information+non-invasive
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Univariate analysis of predicting
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Fig. 1 Flowchart of statistical analysis. LR logistic regression, CRT classification and regression tree, XGBoost eXtreme gradient boosting, AUC area
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Table 1 Univariate analysis of predicting factors for transfusion
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Variable No-transfusion (n=1183) Transfusion (n = 188) P-value
Age [year, median (range)] 4400 (29.00, 56.50) 42.00 (28.00, 54.25) 0.049
Gender [n (%)] 0.468
Female 284 (24.0) 40 (21.3)
Male 899 (76.0) 148 (78.7)
Height [cm, median (range)]” 170.00 (164.00, 175.00) 170.00 (163.50, 173.25) 0.242
Weight [kg, median (range)]” 68.00 (60.00, 75.00) 67.75 (60.00, 76.00) 0.541
Non-invasive parameters
HR [beat/min, mean (SD)]" 96.95 (24.31) 103.55 (25.87) 0.000
R [beat/min, median (range)]“ 21.00 (19.00, 23.00) 21.00 (19.00, 26.00) 0.071
SBP [mmHg, mean Sy 124.32 (25.28) 117.65 (27.46) 0.000
DBP [mmHg, mean (SD)J" 77.58 (15.96) 74.62 (17.83) 0.000
SpO, [%, median (range)]” 98.00 (96.00, 99.00) 98.00 (96.00, 99.00) 0.113
Sl [mean (SD)]" 0.82 (0.29) 0.95 (043) 0.000
T [°C, median (range)]* 37.00 (36.80, 37.30) 37.00 (36.70, 37.30) 0.389
Invasive detection parameters
Hb [g/L, median (range)]* 126.00 (107.00, 143.00) 107.00 (82.00, 135.00) 0.000
Hct [L/L, median (range)]* 3.80 (0.50, 22.00) 046 (0.25, 4.00) 0.000
PLT [x 10°/L, mean (SD)I" 216.81 (94.70) 201.76 (99.53) 0.000
CRP [mg/L, median (range)]* 0.95 (0.10, 4.87) 041 (0.10, 341) 0.806
IL-6 [pg/ml, mean (SD)I" 182.37 (380.08) 219.26 (38841) 0412
PT [s, median (range)]* 14.70 (14.00, 16.00) 15.40 (14.20, 17.08) 0.000
APTT [s, mean (SD)]" 37.03 (10.39) 38.50 (12.86) 0.000
INR [median (range)]” 1540 (14.60, 16.40) 15.60 (14.60, 16.60) 0.698
PTA [%, median (range)]’ 80.00 (68.00, 89.00) 73.50 (61.25, 85.00) 0.000
Fib [g/L, mean SDy 3.15(1.76) 2.72 (1.51) 0.000
pH [median (range)]’ 1.16 (1.08, 1.28) 1.22 (1.11,1.39) 0.000
PO, [mmHg, mean (SD)I" 120.73 (62.16) 134.12 (73.88) 0.001
PCO, [mmHg, median (range)]* 37.00 (33.00, 41.00) 37.00 (32.00, 41.00) 0.116
TCO, [mmol/L, mean (SD)I" 2401 (4.38) 22.66 (4.85) 0.000
Lac [mmol/L, median (range)]* 741 (7.37,745) 7.39 (7.35, 743) 0.000
AB [mmol/L, mean (SD)]" 22.88 (4.24) 21.54 (4.73) 0.000
SB [mmol/L, mean (SD)" 23.69 (3.56) 22.39 (4.31) 0.000
K [mmol/L, median (range)]* 3.88 (3.56, 4.10) 3.90 (3.60, 4.24) 0.008
Endotracheal intubation [n (%)] 0011
No 1003 (84.8) 145 (77.1)
Yes 180 (15.2) 43 (229)
Vasoactive drugs [n (%)] 0.000
No 1113 (94.1) 151 (80.3)
Yes 70 (5.9) 37 (19.7)
Trauma location [n (%)] 0.000
Upper extremity 21 (1.8) 3(16)
Lower extremity 42 (3.6) 7 (3.7)
Head and neck 386 (32.6) 28 (14.9)
Chest and abdomen 538 (45.5) 101 (53.7)
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Table 1 Univariate analysis of predicting factors for transfusion (Continued)
Variable No-transfusion (n=1183) Transfusion (n = 188) P-value
Spine 62 (5.2) 13 (6.9
Trunk 20 (1.7) 7 (3.7)
Pelvis 57 (4.8) 22 (11.7)
NA 57 (4.8) 7 (3.7)
Trauma severity classification [n (%)] 0.529
First level 999 (84.4) 163 (86.7)
Second level 179 (15.1) 25 (13.3)
Third level 5(04) 0
Trauma type [n (%)) 0921
Open trauma 747 (63.1) 120 (63.8)
Blunt injury 436 (36.9) 68 (36.2)
RBC volume [U, median (range)] 0.00 2.00 [0.00, 4.00] 0.000
24 h RBC [U, median (range)] 0.00 2.00 [0.00, 4.00] 0.000
Emergency department time [h, mean (SD)] 23.58 (33.69) 25.61 (37.80) 0.001

“Insufficient data and missing. HR heart rate, R respiration, SBP systolic blood pressure, DBP diastolic blood pressure, SpO, blood oxygen saturation, S/ shock index,
T temperature, Hb haemoglobin, Hct haematocrit, PLT platelet count, CRP C-reactive protein, IL-6 interleukin-6, PT prothrombin time, APTT activated partial
thromboplastin time, INR international standardized ratio, PTA prothrombin activity, Fib fibrinogen, pH potential of hydrogen, PO, partial pressure of oxygen, PCO,
partial pressure of carbon dioxide, TCO, total carbon dioxide, SPO, oxygen saturation, Lac lactate, AB actual bicarbonate, SB standard bicarbonate, K potassium,
RBC volume of red blood cell transfusion, 24 h RBC the volume of 24 h red blood cell transfusion, N number, NA not available

Model prediction

Method 1

The model established with non-invasive parameters pre-
dicted the need for blood transfusion after trauma. The
AUC of LR model was 0.72 (95% CI 0.657-0.775), which
was higher than that of the XGBoost model (0.71, 95% CI
0.654—0.756) and the CRT model (0.69, 95% CI 0.633—
0.751) (Fig. 2a). There was a significant difference in the
AUC among the three models (P < 0.05). The accuracy of
the XGBoost model was 0.75, which was higher than that
of LR model (0.55) and CRT model (0.48).

Method 2
The model established with all parameters was used to
predict the need for blood transfusion after trauma. The

AUC of the XGBoost model was 0.94 (95% CI 0.893—
0.981), which was higher than that of the CRT model
(0.82, 95% CI 0.779-0.853) and the LR model (0.80, 95%
CI 0.744-0.850) (Fig. 2b). There was a significant differ-
ence in the AUC among the three models (P <0.05).
The accuracy of the CRT model is 0.89, which is higher
than that of XGBoost model (0.83) and LR model (0.72)
(Table 2).

Variable importance analysis

Predicting blood transfusion with non-invasive detection
parameters

LR analysis showed that trauma location (OR = 18.371,
95% CI 4.019-83.931, P<0.05) and SI (OR =3.463, 95%
CI 1.763-6.801, P < 0.05) were risk factors for predicting
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Table 2 Comparison between the LR, CRT and XGBoost models in predicting blood transfusion
Parameter type Methods AUC Sensitivity Specificity Accuracy Youden index P-value
Non-invasive parameters XGBoost 0.705 0.66 0.77 0.75 0.19 <0.001
LR 0.716 0.86 0.50 0.55 0.12
CRT 0.692 0.89 042 048 0.16
All parameters XGBoost 0937 0.94 0.82 083 0.10 <0.001
LR 0.797 0.80 0.70 0.72 0.12
CRT* 0.816 0.69 092 0.89 0.09

“Non-invasive parameter prediction, there was a significant difference in the AUC between CRT and the XGBoost model (P < 0.05)
*All parameter prediction, there was a significant difference in the AUC between LR and the XGBoost model (P < 0.05), and there was a significant difference in

the AUC between CRT and the XGBoost model (P < 0.05)

&All parameter prediction, there was a significant difference in the AUC between CRT and the LR model (P < 0.05)
AUC area under the curve, XGBoost eXtreme gradient boosting, LR logistic regression, CRT classification and regression tree

blood transfusion (Additional file 1: Table 2). The results
of the CRT model analysis show that the order of im-
portance of the variables was SI, trauma location, age
and SpO, (Fig. 3a). The top five variables in the
XGBoost model were trauma location, SBP, SI, DBP and
HR (Fig. 4a).

Predicting blood transfusion with all test parameters

LR analysis showed that trauma location (OR=7.961,
95% CI 1.422-44.567), vasoactive drugs (OR =2.039,
95% CI 1.092-3.808), PLT (OR =0.995, 95% CI 0.992—
0.998), PTA (OR=0.975 95% CI 0.964-0.988), Hct
(OR =0.923, 95% CI 0.899-0.948), SB (OR =0.898, 95%
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CI 0.844—0.957) and Fib (OR=0.789, 95% CI 0.674—
0.924) were risk factors for blood transfusion (P < 0.05)
(Table 3). The results of the CRT model analysis showed
that the order of importance of the variables was Hct,
Fib and CRP (Fig. 3b). The top five variables in the
XGBoost model were Hct, TCO,, pH, PCO, and CRP
(Fig. 4b).

Discussion

In our study, non-invasive detection parameters and all
parameters were established to predict blood transfusion
in trauma patients, and the decision tree algorithm
(CRT and XGBoost) was compared with the traditional
statistical method (LR). The results showed that the LR
model with basic information and non-invasive parame-
ters was the best, but the sensitivity of the CRT model
was the highest, and the specificity and accuracy of the
XGBoost model were the highest. The AUC of the basic
information + non-invasive parameter + invasive param-
eter model was higher than that of the non-invasive par-
ameter model. The XGBoost model was the best, and
the sensitivity was the highest, but the CRT model had
the highest specificity.

AUC embodies the classification ability of the model.
LR had the best classification ability in non-invasive par-
ameter prediction, but it was suitable for data analysis
and could not be used in clinical applications. The deci-
sion tree algorithm had its advantages, and the CRT
model had the highest sensitivity and the best ability to
identify patients who needed blood transfusion. The spe-
cificity and accuracy of the XGBoost model were the
highest, and the ability to identify blood transfusion/
non-transfusion was the best. When predicting all the
parameters, the XGBoost model was the best, and the
ability to identify blood transfusion was the best. The
CRT model had the best ability to identify transfusion/
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Table 3 Binary logistic regression analysis for predicting
transfusion with all (non-invasive + invasive) parameters

Variable OR 95% Cl P-value
SB 0.898 0.844-0.957 0.001
Hct 0.923 0.899-0.948 0.000
VD 2.039 1.092-3.808 0.025
Trauma location 7.961 1.422-44.567 0.018
PTA 0.975 0.964-0.988 0.000
SpO, 1.023 0.977-1.071 0323
PLT 0.995 0.992-0.998 0.001
Fib 0.789 0.674-0.924 0.003

Cl confidence interval, SB standard bicarbonate, Hct haematocrit, VD
vasoactive drugs, PTA prothrombin activity, SpO, blood oxygen saturation, PLT
platelet count, Fib fibrinogen, OR odds ratio

non-transfusion. The results showed that the more pa-
rameters there are, the more prominent the advantages
of the decision tree model. The non-invasive parameters
can be quickly obtained after trauma patients have ob-
tained medical resources, and the input data can be used
to quickly feedback the results of whether the patients
need blood transfusion by using the decision tree model.
Although the prediction efficiency is slightly lower than
all parameters, its time advantage is incomparable.
Moreover, trauma is accompanied by changes in blood
loss and fluid volume, and vital signs are complex and
changeable. The detection time of invasive parameters is
approximately 1h. When the results are obtained, they
no longer reflect the current physiological parameters of
the patients. Therefore, the non-invasive parameters ob-
tained at any time can reflect the vital signs of patients
at that time, and the model can be used to predict at
any time, which is convenient for clinical application.
When predicting all the parameters, the blood
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transfusion decisions made by clinicians based on ex-
perience are often not accurate. In the case of covering
as many data and variables as possible, through a part of
the data as a training set, on the basis of learning the ex-
perience of clinicians, the machine learning method can
more accurately and digitally assist doctors in the deci-
sion support of blood transfusion for trauma patients.

Trauma treatment should account for the mechanism of
the trauma (open trauma or blunt injury), the location of
the trauma (head, chest, etc.), pre-hospital resources, hos-
pital emergency room settings (I, II, etc.) and trauma
centre facilities (immediate detection equipment and re-
sources) [21]. Similarly, this study found that when pre-
dicting non-invasive parameters, the trauma location and
SI had the greatest impact on blood transfusion. The
model established by combining age, sex, pre-hospital SI,
admission HR, Hb and SpO, can better predict blood
transfusion 3 h before admission [22]. The post-traumatic
SI is important in assessing the need for blood transfusion
and can predict the demand for massive blood transfusion,
laparotomy and mortality [23]. The shock index is more
sensitive than the ABC score in predicting traumatic
massive blood transfusion [24].

Among the predictive variables of all parameters, Hct
had a great influence on blood transfusion in the three
models. Consistent with our study, many models or
scoring systems use Hct as the main parameter for the
prediction of traumatic massive blood transfusion [12,
13, 25], which is also consistent with the recommenda-
tion that Hb repeat test results should be used as a la-
boratory indicator of bleeding [5]. Different models have
different parameters that affect whether a blood transfu-
sion is carried out. The LR model judges the influence
of variables on blood transfusion by risk factors, and the
results are generally recognized clinically. Except for
trauma location and Hct, vasoactive drugs, PLT, PTA,
and Fib were risk factors for blood transfusion demand.
The study found that the use of vasoactive drugs can im-
prove vital signs [26], and early routine medication can
improve the effective rate of treatment of patients with
severe trauma. Traumatic coagulation easily occurs in
the early stage of trauma, and the coagulation index
(PLT, PTA, Fib) affects the demand for blood transfu-
sion [16, 27]. In the process of building the CRT model,
the variables corresponding to the root nodes are the
most important, followed by the leaf nodes, which split
in turn [20]. In addition to Hct and Fib, CRP is an im-
portant variable for predicting blood transfusion. Be-
cause CRP is an indicator of body stress, CRP stress
increases after trauma, which can reflect the trauma se-
verity [28]. In the process of establishing the XGBoost
model, the more times the nodes are traversed, the more
important the variables corresponding to the nodes are.
The importance of variables is mathematically relevant,
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and whether they have clinical guiding value needs to be
comprehensively analyzed in combination with clinical
experience.

With the progress of science and technology, artificial
intelligence methods have been widely used in the field
of medicine [29-32]. There is considerable research on
machine learning methods in trauma [33-35]. There has
been considerable research on the prediction of massive
blood transfusion, and the prediction accuracy of the de-
cision tree algorithm is (0.695-0.814), [36, 37]. Machine
learning (mostly neural networks) has been used in a
large number of studies to predict the prognosis of
trauma. Most studies have proven the benefits of ma-
chine learning methods, and the sensitivity-specificity
difference ranges from 0.035 to 0.927 [38]. The neural
network algorithm accuracy (98.7%) and specificity
(51.5%) were the highest in predicting the survival rate
of trauma patients [39].

Our research compares the traditional statistical
methods with the machine learning decision tree algo-
rithm, and the decision tree algorithm has outstanding
advantages: (1) Most of the data in the real world are in-
complete (missing key indicators) and noisy (numerical
errors/anomalies). Artificial intelligence can allow cases
with missing data or outliers to be retained by
interpolation and other methods. The larger the number
of cases, the more meaningful the statistical results; (2)
The XGBoost algorithm is widely used in medicine, and
the prediction performance is good [40, 41], 3) The
model can reconstruct more effective features from the
training process of blood transfusion big data, which can
be used to predict the blood transfusion volume of pa-
tients to make the model have stronger generalization
ability and reduce overfitting; (4) Using the difference
between the prediction results and the training data for
training, with the gradual increase in the data quantity,
the accuracy improves in the iterative process, which en-
sures the incremental learning characteristics of the
model; and (5) Currently, doctors are widely used to
make blood transfusion decisions by combining various
physiological parameters, symptoms and clinical experi-
ence. Our research uses a large quantity of historical
data as a reference on the basis of doctors’ rich clinical
experience, establishes a mathematical model, and ad-
justs the output of multiple experiments to obtain the
best results. It has more practical value for primary hos-
pitals or inexperienced doctors. In the future, with the
increase in the data quantity, the model can be opti-
mized by self-learning, and the prediction performance
will continuously improve. The artificial intelligence
mathematical model we constructed can be transformed
into intelligent prediction software, which can be con-
nected with ambulances and doctors’ working computers
and can be widely used in clinics as an auxiliary tool to
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provide blood transfusion decision support for clinicians.
The mature prediction model we constructed has wide
applicability, and the data from other medical institu-
tions can be retrained and applied to clinical practice. In
the future, we can work with multiple medical centers to
verify the predictive performance and universal applic-
ability of the model.

Limitations of the study: The study data are available
from the authors upon reasonable request and with permis-
sion from the Chinese National Engineering Laboratory for
Medical Big Data Application Technology. Therefore, the
database is not completely open, and cannot be disclosed.
The artificial intelligence method is used to construct the
mathematical model, which is limited to the fact that the
data quantity is not large enough, and the accuracy of the
model needs to be improved, but with the increase in the
data quantity and the continuous optimization of the
model, the prediction accuracy of the model will gradually
improve. The variables extracted from unstructured text in-
formation are limited, which does not improve the per-
formance of the model, so how to use the effective
information to improve the prediction efficiency of the
model is the direction of our future research. Some of the
patients in our trauma database were transferred to our
hospital from primary hospitals after emergency treatment
(including blood transfusion), so the number of patients re-
quiring emergency massive blood transfusion was relatively
small, but it does not affect the establishment and ap-
plication of the model. Our model can make decisions
on whether a transfusion is based on changing, real-
time vital signs and laboratory data in the process of
trauma development. With large blood loss after
trauma, complications such as hypothermia, acidosis
and coagulation dysfunction easily occur, and the
amount of plasma and platelet transfusion has an ef-
fect on the RBC demand. However, our model in-
cludes indicators that reflect these symptoms, so the
effects of these complications and blood components
on erythrocyte demand have been considered.

Conclusions

The traditional LR has the best classification ability
when using non-invasive parameter prediction in the in-
telligent evaluation of post-traumatic blood transfusion
demand, but it is only suitable for data analysis and can-
not be used in clinical applications. The classification
performance of the intelligent prediction model con-
structed by the decision tree algorithm is not inferior to
that of the traditional LR method. With the increase in
data quantity, the accuracy of the model improves in the
iteration process, and the prediction performance con-
tinuously improves, which is conducive to clinical appli-
cation and wide promotion.
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