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Abstract

Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment,
and military applications. Microwave radiation may cause injuries to both the structures and functions of various
organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health.
Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by
microwave radiation. The successful establishment of injury models is of great importance to the reliability and
reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to
establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to
evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
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Background
The World Health Organization (WHO) has listed elec-
tromagnetic radiation as one of the most common and
fastest growing environmental influences [1]. Microwave
radiation is a form of electromagnetic waves, with fre-
quencies ranging from 300 MHz to 300 GHz. Micro-
wave radiation has been widely used in various fields,
such as communication, industry, medical treatment,
and the military. Previous studies have shown that
microwave radiation can cause injuries to both the struc-
tures and functions of the brain, heart, reproductive or-
gans and endocrine organs, which endangers human
health [2–9]. Studies on the biological effects induced by
microwave radiation are essential for unveiling the
mechanisms of these injuries and promoting the devel-
opment of more efficient prevention methods and more
profound treatment strategies. Successful establishment
of injury models plays an important role in studies on
the biological effects of microwave radiation. Not only is

the successful establishment of injury models the prem-
ise of these studies, but it also has great importance to
their reliability and reproducibility.
Generally, the establishment of injury models induced

by microwave radiation requires stable microwave ex-
posure conditions, suitable subjects, appropriate
methods, and reliable biological indicators. The stable
microwave exposure conditions promise the reproduci-
bility of the microwave-radiation-induced biological ef-
fects [10]. Suitable subjects sensitive to specific
microwave radiation injuries are essential in establishing
different types of injury models. The appropriate
methods are helpful in screening biological indicators
sensitive to microwave radiation, which are important
for assessing the successful establishment of injury
models, understanding the underlying mechanisms of
microwave radiation injuries, and laying foundations for
corresponding clinical diagnosis and the development of
targeted therapeutic drugs.
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Microwave exposure conditions
The microwave exposure conditions determine the re-
producibility of the microwave-radiation-induced bio-
logical effects. The most commonly used parameters to
depict the microwave exposure conditions in previous
studies include the source frequency, the average inci-
dent power density, the specific absorption rate (SAR),
the time variability and frequency variability, and the
proximity of the subjects to the microwave exposure
source.
The source frequency is one of the most important

physical parameters of electromagnetic exposure. Micro-
wave frequency bands, including the L band (1 - 2 GHz)
[11], S band (2 - 4 GHz) [12–14], and X band (8 - 12
GHz) [15, 16], which are widely used in radar communi-
cation systems, were implemented in previous studies.
In addition, frequencies such as 900 MHz [17–22], 1800
MHz [18, 22–24] (Global System for Mobile Communi-
cations signals), and 2450 MHz [2, 25–34] (microwave
oven and WiFi equipment) were also implemented in re-
lated studies.
The average power density is another significant phys-

ical parameter of electromagnetic exposure. The average
power densities of 2.5, 5, 10, 30, and 50 mW/cm2 were
used to establish biological injury models to illuminate the
relationship between the biological effects and the micro-
wave radiation doses [4, 35–39]. For instance, Wang et al.
[4] found that long-term microwave exposure (2.5 – 10.0
mW/cm2) could cause spatial learning and memory defi-
cits in rats, which were positively correlated with the aver-
age power densities. In addition, a microwave exposure
system with lower average power densities ranging from
10-2 mW/cm2 to 10-1 mW/cm2 was also used to establish
biological injury models [40–42].
The SAR value is an internationally accepted electro-

magnetic radiation dosimetric parameter. The SAR value
distribution in animals or cells relies not only on the fre-
quency, incident direction, and E-polarization direction
but also on the structure of the subject under exposure
and the electromagnetic properties of different tissues.
To date, the SAR values implemented in studies on
microwave radiation biological effects range from 10-4

W/kg to 35 W/kg [12, 13, 18, 43].
The time variability on many time scales may influ-

ence the establishment of a microwave injury model. For
example, microwave exposure can be classified into
pulsed wave (PW) exposure and continuous wave (CW)
exposure. Pulsed microwave exposure is characterized
by its nonlinearity and instantaneous nature, which may
be the reason why the adverse effects are more serious
than those caused by continuous exposure [44]. More-
over, microwave exposure can also be classified as single
exposure and multiple exposures based on the number
of exposures. On the one hand, a single exposure was

widely used in studies on biological effects after acute
high-dose microwave radiation [38]. On the other hand,
a multiple-exposure mode was implemented in studies
on the biological effects of long-term low-dose micro-
wave radiation [42, 45].
The frequency variability has also been studied. For in-

stance, single-frequency and combined microwave expo-
sures are classified according to their frequency domain
properties. Most studies on microwave radiation expos-
ure have focused on single-frequency exposure. In fact,
simultaneous exposure to different frequency microwave
radiation is closer to the real scenario. For example, an
in vivo study reported that cognitive dysfunctions in-
duced by combined exposure (1.5 GHz and 2.856 GHz)
were more serious than those induced by single-
frequency exposure [11].
The proximity of the subjects to the microwave expos-

ure source is another parameter that may influence the
establishment of a microwave radiation injury model,
since the mechanism of subject heating is different in
near-field and far-field exposures (mostly electrical field
driven vs radiation absorption). In medical applications,
near-field effects are predominant, whereas in telecom-
munications, far-field effects are predominant [46–53].
Other exposure conditions that could influence the es-

tablishment of a microwave radiation injury model, in-
cluding but not limited to the modulation, the
waveform, chemical cofactors, whole-animal or head-
only exposure, the duration of exposure, and the time
between exposure and measurement, have also been in-
vestigated [54–64].

Subjects used to establish injury models
Appropriate subjects are the premises for establishing
in vivo and in vitro injury models of microwave radi-
ation. On the one hand, in vivo studies are crucial to ex-
plore the biological effects of microwave radiation in
complex biological conditions. On the other hand,
in vitro studies are often used to unveil the biological
mechanisms. Since different subjects have different sen-
sitivities to microwave radiation, the choice of animal
species, cell types or other organisms should be deter-
mined by their special microwave sensitivities and the
specific purpose of the study.

Animal species
Various animal species (rats, mice, rabbits, monkeys,
etc.) have been used in studies on the biological ef-
fects of microwave radiation. Each of these animal
species has a unique advantage in studying the bio-
logical effects of microwave radiation on specific tar-
get organs or tissues.
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Rats
Rats, including Wistar rats, Sprague-Dawley (SD) rats,
and Fischer-344 rats, were widely used in studies on the
biological effects of microwave radiation. Wistar rats
were the most commonly used rodent for the detection
of microwave-radiation-induced injury effects on target
organs, such as the brain [3, 4, 12, 13, 17, 37, 65–78],
heart [79–83], reproductive organs [79, 83–86], and
endocrine organs [6]. SD rats were mainly used in stud-
ies on the effects of microwave radiation on the brain
[87–103], heart [104–108], and skin [109]. In addition,
Fischer-344 rats were used to evaluate the biological ef-
fects of microwave radiation on cognitive function [110–
113] and the blood-brain barrier (BBB) [114–118].

Mice
Mouse species such as Kunming mice, Swiss mice,
BALB/c mice, C57BL/6 mice, and NMRI mice were also
used in studies of the effects of microwave radiation on
brain function. Among these species, Kunming mice
were mainly chosen by Chinese scholars in their studies
[119, 120]. Swiss mice were more commonly used by
scholars from other countries [2, 15, 16, 40, 95, 121–
123]. In addition, BALB/c mice were also used to study
the effects of microwave radiation on learning and mem-
ory functions. Furthermore, NMRI mice [124] and
C57BL/6 mice [125, 126] were widely used to study the
effects of microwave radiation on locomotor activity.
In addition, several studies have been conducted with

transgenic heterozygous and heterozygous knockout
mice, which are prone to specific tumors. These mice
were used to study tumorigenesis induced by microwave
radiation [127, 128].

Rabbits
It is well known that rabbits are sensitive to stress, espe-
cially during pregnancy. Pregnant female rabbits can
miscarry easily when they are under stress [129–131].
Furthermore, rabbits easily yield semen at the appointed
time, which is suitable for longitudinal studies [132].
Therefore, New Zealand white rabbits were used to in-
vestigate the biological effects of microwave radiation on
pregnant women, the developmental stages of children’s
brains from conception to childhood, and the male re-
productive system [7, 129, 131–135].
Rabbits have also been used to establish microwave in-

jury models of the brain, heart, spinal cord, and eye
[136–139].

Monkeys
Since their corneas are similar to humans, rhesus mon-
keys (Macaca mulatta) were used to evaluate the bioef-
fects of microwave exposure on eyes [140–144]. The
average thickness of the central cornea in rhesus

monkeys is approximately 0.50 mm, which is close to
that of humans (0.56 mm). Furthermore, similar to
humans, in rhesus monkeys, the corneal endothelium is
not capable of mitotic potential under pathological con-
ditions [141].

Other animal species
Poultry eggs were implemented as typical animal models
in biological effect studies of microwave radiation on
embryonic development due to the well-developed ner-
vous system and short feeding cycle of chickens [23,
145]. For instance, Yakymenko et al. [23] reported an in-
creased embryo mortality of developing quail embryos
after exposure to the Global System for Mobile Commu-
nication (GSM) signal of 1800 MHz.
Transgenic nematodes have also been used to establish

microwave injury models [146].

Cell types
Cell models are essential for studies on the biological
mechanisms of microwave radiation injuries since they
can exclude the influence of complex in vivo environ-
ments. The most widely used cell types in previous stud-
ies on microwave radiation injuries included neurons,
germ cells, and heart cells.

Neurons
Neurons were often used in studies on brain injuries in-
duced by microwave radiation. Previous studies imple-
mented either primarily cultured neurons or neuron-like
cell lines according to the specific scientific purposes
and the advantages of different cell types. Primarily cul-
tured neurons were isolated from in vivo rodent brains.
Due to the indivisibility of mature neurons, they are not
suitable for experiments that require a large number of
cells. The primary cultured neurons used in previous
studies on microwave radiation bioeffects included pri-
mary cortical neurons, hippocampal neurons, and astro-
cytes [147–150].
The neuron-like cell line mostly used in previous in-

vestigations of microwave radiation bioeffects was the
PC12 cell line. The PC12 cell line is derived from rat ad-
renal pheochromocytoma cells with fast proliferation.
They can be induced to generate a neuron-like cell type
that has synapses when treated with nerve growth factor
(NGF). The PC12 cell line is widely used to study the
mechanisms of learning and memory after microwave
exposure [36, 37, 67, 77, 151]. Moreover, HT22 cells
[152, 153] and MN9D cells [154] were also used in stud-
ies on the biological effects of microwave radiation.

Germ cells
There are two main common germ cell types used in
studies on the reproductive system of microwave
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radiation. One was the mouse spermatocyte line GC-
2spd (ts) [155, 156], and the other was Sertoli cells [14].
The GC-2spd (ts) cell line derived from the cotransfec-
tion of mouse spermatocytes with the simian virus 40
(SV40) large T antigen gene and a temperature-sensitive
mutant of the p53 gene is immortalized. The GC-2spd
(ts) cell line expresses the lactate dehydrogenase C4 iso-
zyme and the cytochrome ct isoform. The GC-2spd (ts)
line forms round spermatids [157]. Sertoli cells play a
key role in the maintenance of normal spermatogenesis
[158].

Heart cells
As the structural basis of cardiac excitatory contraction
function, cardiomyocytes were often used to investigate
the effects of microwave radiation on the myocardial cell
membrane and intracellular calcium levels [80, 147, 159,
160]. Most studies showed that the intracellular calcium
concentration decreased in primary cardiomyocytes ex-
posed to microwave radiation at the frequencies of 2.856
and 9 GHz [147, 159], whereas the opposite finding was
reported by Wolke et al. [160].

Other organisms
Microwave radiation injury models are not restricted to
the animal species and cell types mentioned above.
Many different organisms, including even plants [161,
162], bacteria [163], and viruses [164, 165], have also
been implemented to establish microwave radiation in-
jury models, although nonmammalian studies are clearly
less directly relevant to human effects.

Methods for the assessment of microwave
radiation injuries
Methods for the evaluation of functional injuries
Brain function injuries
Numerous studies have reported that microwave radi-
ation might influence brain functions [38, 65, 166]. Vari-
ous methods were developed to investigate changes in
brain function-related behavior, electrophysiological ac-
tivities and BBB permeability. The methods used to
study the harmful effects on brain functions induced by
microwave radiation are described in the following
sections.

1) Behavior

The behavioral methods used in studies on the bio-
logical effects induced by microwave radiation mainly fo-
cused on evaluating the function of learning and
memory, anxiety, locomotor activity, depression, and
excitability.
The Morris water maze (MWM), named after its in-

ventor Richard Morris [167], was the most widely used

behavioral method for learning and memory evaluation,
especially for rodents [3, 4, 12, 13, 15, 16, 37, 40, 65, 68,
71, 73, 94, 110–112, 168–170]. In addition, other
methods, such as the Y-maze, eight-arm radial maze,
and elevated plus maze (EPM), were also used to study
the effect induced by microwave exposure on learning
and memory [2, 110, 112, 124, 171].
The most common methods to assess anxiety behavior

induced by microwave exposure were the EPM and open
field test (OFT) [71, 168, 172]. The EPM was designed
based on the conflict between a rodent's instinct to ex-
plore a novel environment and their preference for
closed arms. The EPM was widely used in anxiety assays
[173]. As a popular behavioral test, the OFT is appropri-
ate for social rodents with small living conditions. The
OFT was used to measure anxiety-like behaviors in stud-
ies on microwave-radiation-induced injuries [71, 168,
174].
In addition, the behavioral tests commonly used to as-

sess locomotor activities included the OFT [25, 124,
125], rotarod tests [125], and accelerated rotarod sys-
tems [124]. Moreover, forced swimming tests (FSTs)
[124, 168] and tail suspension tests (TSTs) [168] were
implemented to evaluate the level of depression induced
by microwave radiation.

2) Electrophysiological activities

In studies on brain physiological activity changes
caused by microwave radiation, the most commonly
used methods were electroencephalography (EEG) and
in vivo hippocampal long-term potentiation (LTP) re-
cording. EEG could be used to reflect changes in brain
function, including sleep quality [70, 166, 175–186]. LTP
recording is a well-recognized electrophysiological
method used to study synaptic plasticity induced by
microwave radiation with respect to learning and mem-
ory [13].

3) BBB permeability

Evans blue (EB) staining was the most popular method
used to study the changes in BBB permeability induced
by microwave radiation.
Serum albumin is the main serum protein that can-

not cross the BBB under physiological conditions. EB
dye can bind to serum albumin tightly. Therefore,
serum albumin can be traced by EB dye when using
fluorescence microscopy. When BBB permeability in-
creases, EB-dye-bound albumin may extravasate
through the BBB into extracellular brain tissue [187].
It was reported that more EB dye was observed in
brain tissue after microwave exposure [72, 90, 91,
188, 189].
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In addition, several methods, such as albumin immu-
nohistochemistry staining [89, 114–116, 190], transen-
dothelial electrical resistance (TEER) measurement [38],
horseradish peroxidase (HRP) staining method [38], and
14C-sucrose-tracing methods [148], could also be used
to study the effects on BBB permeability induced by
microwave radiation. TEER indicates the impedance to
pass through the BBB, which is recognized as one of the
most accurate and sensitive indicators of BBB integrity
[38].

Reproductive function injuries
It was reported that microwave radiation might cause
damage to reproductive functions, such as changes in
sex hormone (such as testosterone and estradiol) levels
and sperm parameters [7, 19, 191–193]. Enzyme immu-
noassays [122] and enzyme-linked immunosorbent as-
says (ELISAs) [19, 193–195] were widely used in studies
of sex hormone levels after exposure to microwave radi-
ation. A hemocytometer was implemented to assess
spermatozoa motility and count [122, 191, 196]. Eosin-
nigrosin staining and supra-vital staining could also be
used to study sperm viability [122, 191, 192].

Cardiac function injuries
Many studies showed that microwave radiation might
cause cardiac physiological (heart rate, blood pressure,
etc.), biochemical (myocardial enzyme, ion concentra-
tion, etc.) and endocrine dysfunctions.
The most widely used method for evaluating the effect

on cardiac physiological function following microwave
radiation was electrocardiography (ECG) [197–199].
Furthermore, photoplethysmography (PPG) sensors and
sphygmomanometers could also be used to investigate
the effect of microwave radiation on heart rate and
blood pressure [106, 200, 201]. Fluorescence was used to
measure the changes in cardiac biochemical functioning
induced by microwave radiation [79, 147]. Radio-
immunoassay was the method of choice to evaluate car-
diac endocrine function after exposure to microwave
radiation [202].

Endocrine organ function injuries
There was evidence that microwave exposure might
have negative impacts on endocrine organ function,
mainly hormone level disorder. Many studies reported
that ELISA was the most commonly used method for
evaluating the effects of microwave radiation on endo-
crine organ function [2, 6, 193, 195, 203, 204].

Methods for the evaluation of structural injuries
Microstructural injuries
With light microscopy, the morphological changes in
the microstructure of either animal or cell models after

exposure to microwave radiation could be observed
using hematoxylin and eosin (HE) staining or special
dyeing methods. HE staining is one of the most wide-
spread methods for observing the microstructure of vari-
ous organs, such as the brain, heart, reproductive
organs, and endocrine organs [3, 4, 6, 12, 13, 15, 19, 67,
73, 79, 89, 92, 104, 107, 121, 205, 206]. The function of
special dyeing methods is to demonstrate specific cellu-
lar components. Special dyeing methods were used to
observe changes in specific cellular structures of nerve
and testicular tissues in studies of microwave radiation
effects [17, 40, 65, 92, 116, 207, 208].
Special dyeing methods used to analyze nerve tissue

injury induced by microwave radiation included cresyl
violet, toluidine blue, Fluoro-Jade B, Golgi, and Luxol
fast blue staining. Cresyl violet and toluidine blue stain-
ing were designed to observe Nissl bodies in neurons
[17, 116, 207]. De Gannes et al. [116] reported that both
cresyl violet staining and Fluoro-Jade B methods indi-
cated the occurrence of dark neurons and neuronal de-
generation by observing the states of the Nissl bodies.
This study suggested that the latter was a more reliable
method of neuronal degeneration evaluation induced by
microwave radiation. Golgi staining was used in den-
dritic spine density examination [40]. Luxol fast blue
staining was implemented to observe nerve myelin [92].
The special dyeing method for examining the changes

in testicular structure induced by microwave radiation
was toluidine blue staining [208]. Toluidine blue staining
was used for seminiferous tubule observation, which
might be a simple method to observe spermatozoa [208].

Ultramicrostructural injuries
Electron microscopy, including transmission electron
microscopy (TEM) [3, 4, 12, 13, 36, 65, 67, 79, 81, 104,
107, 209, 210] and scanning electron microscopy (SEM)
[38], was used to observe ultrastructural changes in neu-
rons, germ cells, and cardiomyocytes after microwave
radiation.

Methods for the investigation of the biological
mechanisms of microwave exposure injuries
Apoptosis and abnormal proliferation
On the one hand, methods for mechanistic studies of
microwave-radiation-induced apoptosis mainly included
flow cytometry (FCM) [14, 68, 84, 155, 211, 212], in situ
end labeling (TUNEL assay) [104, 107, 209, 213, 214],
acridine orange/ethidium bromide staining (AO/EB)
[14], and Muse cell analysis [79]. On the other hand, the
widely used methods to analyze cell proliferation in-
cluded MTT [155] and immunohistochemical assays [14,
25, 40, 191, 215, 216].
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Cell membrane damage
The most commonly used method for the examination
of ion channel activities after microwave radiation ex-
posure was the whole-cell patch clamp technique [80].
Moreover, the fluorescence method was one of the most
popular methods used to measure the changes in intra-
cellular calcium ion (Ca2+) concentration induced by
microwave exposure [67, 147, 160].

Changes in proteins
Various methods were used in mechanistic studies of
microwave-radiation-induced changes in proteins, such
as immunoassays, proteomic methods, and nondenatur-
ing polyacrylamide gel electrophoresis (native PAGE).

1) Immunoassays
Immunoassays based on antigen-antibody reactions
are helpful in either qualitative or quantitative ana-
lysis of biological samples. The immunoassay
methods implemented in the mechanistic studies of
microwave radiation mainly included ELISA, West-
ern blotting, immunohistochemistry, immunopre-
cipitation, and coimmunoprecipitation assays.
ELISA is a classic method for measuring
immunoreactions by binding soluble antigens or
capturing antibodies on solid carriers [217]. ELISA
was used to assess the changes in
neurotransmitters, cytokines and protein kinase A
(PKA) after microwave radiation exposure [74, 125,
203, 218].
Western blotting is a widely used method in
molecular biology, biochemistry, and
immunogenetic studies. Western blotting could be
used to measure the levels of protein expression,
including stress-related proteins, apoptosis-related
proteins, synapse-related proteins, signal transduc-
tion molecules, neurotransmitter receptors, etc. [37,
65, 73, 79, 219].
Immunohistochemistry methods, such as
radioimmunoassay, immunofluorescence, and
immune colloidal gold techniques, can provide
semiquantitative evaluation of proteins. They have
the advantage of pinpointing the given antigen in
the tissue. Immunohistochemistry technologies
were used to study the biological effects of
microwave radiation on neurotransmitter
regulation, the stress response, cell proliferation and
death regulation, cell membrane damage and signal
transduction [2, 125, 191, 220].
Diverse methods, including immunoprecipitation
and coimmunoprecipitation, could also be used to
evaluate the biological effects of microwave
radiation on signal transduction molecules [38].

2) Proteomics method

A proteome is an indication of a protein expression
profile. Proteomics analyses compare protein
expression levels and assess changes in protein
patterns [221]. Proteomics analyses were used to
examine the changes in proteins expressed in rat
testes after exposure to 900 MHz microwave
radiation, and two regulatory proteins, ATP
synthase beta subunit and precursor, were found to
be upregulated [222].

3) Native PAGE
Native PAGE is both a qualitative measurement
method and a protein separation and purification
technique. Native PAGE maintains the activities of
proteins without the addition of denaturants, such
as sodium dodecyl benzene sulfonate or
mercaptoethanol. Native PAGE combined with a
spectrophotometric method was used to determine
the activities of antioxidant enzymes after
microwave radiation [41].

Changes in genes and gene expression
Gene evaluation methods used in biological mechanism
studies of microwave radiation mainly include polymer-
ase chain reaction (PCR), in situ hybridization (ISH),
comet assays, electrophoretic mobility shift assays
(EMSAs), DNA sequencing and genotyping methods.
PCR methods, such as real-time PCR and reverse tran-

scription PCR (RT-PCR), have been widely used to in-
vestigate the effect of microwave radiation on the
expression of genes involved in the stress response, sig-
nal transduction pathways, apoptosis, neurotransmitter
receptors, cytokines, tight junction proteins, and restric-
tion fragment length polymorphism (RFLP) analysis [14,
17, 18, 38, 68, 223, 224].
ISH was used to determine the expression of stress-

related genes such as heat shock protein (HSP) 70 and
c-fos mRNAs [225]. The comet assay is widely used to
assess DNA damage [97, 191, 226]. EMSA was a tech-
nique used to investigate the interaction of DNA-
binding proteins and their sequences. EMSA was used
to examine the binding activities of a transcription factor
and DNA after microwave exposure [68]. DNA sequen-
cing was used to assess the variation in the promoter re-
gion of the 2B subunit of the N-methyl-D-aspartate
receptor (NR2B) gene and analyze the relationships be-
tween brain damage and NR2B gene polymorphisms
caused by microwave radiation [68].
Furthermore, both flow cytometry and confocal mi-

croscopy were used to assess the occurrence of micronu-
clei induced by microwave exposure [227].

Changes in oxidative stress parameters
The most popular methods for evaluating oxidative
stress-related indicators after microwave radiation
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included colorimetry and electron spin resonance (ESR)
technology.
Based on a reaction producing a colored substance,

the colorimetric method is designed to analyze the con-
tents of an unknown sample by measuring its color
depth. In previous studies on the biological mechanism
of microwave radiation, colorimetry was used to meas-
ure the level of malondialdehyde (MDA), total antioxi-
dant status (TAS), total antioxidative capacity (TAC),
and total oxidant status (TOS) [97, 216]. ESR is designed
to determine the interactions between unpaired elec-
trons and the environment. ESR was used to measure
the rates of superoxide and nitrogen oxide generation
caused by microwave radiation [23].

Changes in neurotransmitters
The most commonly used method in the measurement
of neurotransmitters is high-performance liquid chroma-
tography (HPLC). The development of HPLC is due to
the introduction of the gas chromatography theory on
the basis of classic liquid chromatography. In previous
studies on the biological effects of microwave radiation,
HPLC was widely used to measure the level of neuro-
transmitters such as aspartic acid (Asp), glutamate (Glu),
glycine (Gly), and gamma-aminobutyric acid (GABA) [3,
12, 36, 67, 68, 73, 92, 124, 228].

Indicators of microwave radiation-induced
biological injuries
Indicators of functional injuries
Indicators of brain function injuries

1) Behavior
Behavioral indicators are frequently used to
examine microwave radiation-induced abnormalities
in brain functions, including learning and memory,
anxiety, depression, and locomotor activity.
Learning and memory, one of the most important
cognitive functions, are hotspots in the field of
microwave-radiation-induced biological effects. The
most common behavioral indicators of learning and
memory were swimming speed, average escape la-
tency (AEL), the percentage of time spent in the
target quadrant and average crossing times of the
MWM, and the time to enter one of the closed
arms of the EPM [3, 4, 12, 13, 15, 16, 37, 40, 65, 68,
71, 73, 94, 110–112, 168, 169]. Moreover, the be-
havioral indicators for the evaluation of anxiety and
depression included the total distance traveled, the
frequency of entries into and the duration of time
spent in the center zone, the number of entries into
all zones, the time spent in the periphery of the
open field of the OFT, the percent frequency of en-
tering the open arms, the percentage of time spent

in the open arms of the EPM, and the immobility
time on the TST and FST [71, 168]. The common
behavioral indicators of locomotor activity mainly
included the scores for the moving distance, moving
duration and rearing frequency of the OFT [125].
Previous studies showed that microwave radiation
might negatively affect the learning and memory [2,
3, 65], anxiety, depression [168], and locomotor
activity [125] of experimental animals. However,
some studies reported that microwave radiation had
no significant effect on learning and memory,
anxiety, or depression [124].

2) EEG
EEG can be used to depict the electrical activity of
neurons in the brain. An encephalogram
macroscopically indicates changes in brain function.
In previous studies on the biological effects of
microwave radiation, the indicators provided by an
EEG mainly included spectral bands, gravity
frequency, and power spectra [3, 4]. Hao et al. [3]
reported that the power of α and δ waves of Wistar
rats decreased and the power of θ waves increased
after exposure to microwave radiation at an average
power density of 30 mW/cm2 and a SAR value of
10.5 W/kg for 15 min per day, once every other day
three times, which implied a perturbation in
encephalogram activity.

3) LTP
As a classic model designed for studies on learning
and memory, LTP indicates the state of synaptic
plasticity. The most popular indicator of LTP used
in microwave radiation effect studies was the
amplitude of population spikes (PSs) [13]. Wang
et al. [13] reported a decrease in the amplitude of
PSs in rats after microwave radiation exposure,
which suggested defects in LTP induction and
impairments in learning and memory.

4) BBB permeability
Indicators used to depict BBB permeability in
studies on microwave radiation biological effects
included the presence of endogenous albumin in
the brain [89, 114–116]; the expression of zonula
occludens-1 (ZO-1) [38, 148], occludin [38], and
glial fibrillary acidic protein (GFAP) [96, 148, 225];
TEER values [38], and the permeability coefficient
of HRP [38]. The presence of endogenous albumin
in the brain was the primary indicator used. ZO-1
and occludin are endothelial tight junction (TJ) pro-
teins. The reduced expression of ZO-1 can disrupt
TJ proteins and cause BBB breakdown. Tyrosine
phosphorylation of occludin triggers BBB dysfunc-
tion [229]. GFAP, a marker of mature astrocytes,
has been indicated to be responsible for maintaining
astrocytic structure and shape [230]. The increased
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expression of GFAP indicates reactive astrocytes
and brain injury [231]. A series of studies reported
that microwave radiation might induce decreased
expression of ZO-1 and occludin, enhanced tyrosine
phosphorylation of occludin, and increased expres-
sion of GFAP in the brain [38, 96].
In previous studies, it was found that BBB
permeability increased after microwave radiation
exposure [38, 114]. However, one study using head-
only exposure of rats to the GSM-900 signal for 2 h
showed no effect on BBB permeability [116].

Indicators of reproductive function injuries
The common indicators used in evaluations of repro-
ductive function after microwave radiation included the
level of testosterone, the level of estradiol, and sperm pa-
rameters (such as epididymal sperm motility, sperm con-
centration, vitality, sperm count, and the percentage of
morphologically abnormal spermatozoa) [19, 191–193].
Recently, the available evidence was presented suggest-
ing that microwave radiation exposure might have dele-
terious effects on the reproductive function of rats, e.g.,
decreased levels of serum testosterone; increased levels
of estradiol; decreased sperm count, viability and motil-
ity; and increased sperm deformities [19, 191].

Indicators of cardiac function injuries
Previous studies showed that cardiac physiology, bio-
chemistry and endocrine function can be adversely af-
fected after microwave radiation.
The major indicators of cardiac physiological function

implemented in studies of biological injuries induced by
microwave radiation included heart rate, blood pressure
and ECG [166, 198, 199, 232, 233]. It is well known that
compensatory changes in blood pressure and heart rate
occur in pathological processes. ECG indicators such as
arrhythmia, heart block and myocardial infarction could
be used in the diagnosis of heart diseases. Common
blood pressure indicators used in studies on microwave
biological effects included systolic blood pressure (SBP)
and diastolic blood pressure (DBP) [232]. ECG indicators
used in the studies on the biological effects of microwave
radiation mainly included the time intervals between
consecutive R waves and autonomic indices in both the
time and the frequency domains, which depicted the
measurement of the heart rate variability (HRV) [5, 166,
197, 198, 234–238].
Cardiac biochemical function indicators used in the

studies of microwave-radiation-induced biological injur-
ies mainly included myocardial enzyme spectrum levels
and ion concentrations. It is well known that the activ-
ities of myocardial enzymes and intracellular or extracel-
lular ion concentrations change when cardiomyocytes
are injured and the integrity of the cell membrane is

broken. The indicators of the myocardial enzyme
spectrum used in previous studies of microwave-
radiation-induced cardiac injuries mainly included the
levels of lactate dehydrogenase (LDH), creatine kinase
(CK), creatine kinase-MB (CK-MB) and hydroxybutyrate
dehydrogenase (HBDH) [79, 205, 239]. The most com-
monly used indicator of ion concentration was the Ca2+

level of ventricular myocytes [80].
The heart can secrete various peptide hormones to

regulate its own function. Therefore, the expression of
these hormones could also be used to evaluate the state
of cardiac endocrine function. The most popular indica-
tor used in studies of microwave-radiation-induced car-
diac injury is atrial natriuretic peptide (ANP) [8].

Indicators of endocrine organ function injuries
The indicators of endocrine organ function used in stud-
ies of injuries induced by microwave radiation mainly in-
cluded the levels of plasma adrenocorticotropin
hormone (ACTH), growth hormone (GH), cortisol (CS),
corticosterone (CORT) and thyroid hormone (TH) [2, 6,
145, 172, 195, 204, 240]. ACTH and GH produced in
the pars distalis of the adenohypophysis are involved in
various pathophysiological processes, which are closely
connected with the stress response. CS secreted by the
zona fasciculata cells of the adrenal gland is a gluco-
corticoid with anti-inflammatory properties. The
changes in TH induced by microwave radiation included
changes in thyroxine (T4) and triiodothyronine (T3),
which are synthesized by thyroid follicular epithelial cells
and help to promote the development of the central ner-
vous system (CNS) and metabolic function.

Indicators of structural injuries
Indicators of brain structural injuries after microwave
radiation mainly included cytological changes in neur-
onal components, such as the morphology of neurons,
nuclei, cytoplasm (mitochondria, endoplasmic reticulum,
etc.) and synapses. Increased numbers of degenerating
neurons and stained nuclei and cytoplasm in the hippo-
campus were observed by light microscopy after expos-
ure to microwave radiation [3, 12, 13, 15, 67, 71, 73,
121]. Changes in the cytoplasm in hippocampal neurons
(mitochondria swelling and endoplasmic reticulum dila-
tion) and synaptic structure (decreased density of synap-
tic vesicles, blurred synaptic gaps, and decreased
postsynaptic density (PSD) length) were observed by
electron microscopy [3, 65, 125].
The indicators used in the studies of structural damage

of reproductive tissue induced by microwave radiation
included the number of spermatogenic cells, the morph-
ologies and diameter of seminiferous tubules, the thick-
ness of the seminiferous epithelium and Leydig cells in
testes, the diameter of the epididymis, and the height of
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the epithelium, the number of ovarian follicles [7, 19, 88,
191]. Azadi Oskouyi et al. [7] reported decreased epithe-
lial height and diameter of the epididymis in New Zea-
land rabbits exposed to 950 MHz microwave radiation
for 2 h/d for 2 weeks at an output power of 3 or 6 watts.
The indicators used in the studies on cardiac tissue

structural effects induced by microwave radiation mainly
included the morphology of cell nuclei and cytoplasm
(mitochondria, glycogen granules and lipid droplets), the
area fraction percentage of nonfibrotic myocardium, and
the arrangement of myocardial fibers [8, 79, 107, 205].
Numerous histological results have indicated that micro-
wave radiation might cause structural impairment in the
heart, showing disordered muscle fibers, nuclear pykno-
sis, cytoplasmic vacuolization, myofilament impairment
and reduction, decreased mitochondrion numbers, etc.
[79, 107].
The indicators used in the studies of structural damage

of endocrine tissue induced by microwave radiation in-
cluded the thickness of the zona fasciculata (ZF), the cell
size and perimeter of the ZF, and the columnar
organization of ZF cells in the adrenal glands [6]. Sha-
habi et al. [6] reported that the fasciculata layer of the
adrenal cortex thickened, the number of ZF cells was
constant, and the ZF cell size and perimeter increased
when Wistar rats were exposed to mobile radiofre-
quency (900 MHz) for 6 h/d for 4 ~ 8 weeks at a SAR of
1.010 W/kg.

Indicators for investigations of the mechanism of
biological injury
Neurotransmitters
The indicators involved in the studies of changes in neu-
rotransmitters after microwave exposure mainly in-
cluded amino acid neurotransmitters, choline
neurotransmitters, catecholamine neurotransmitters, and
their markers.
Amino acid neurotransmitters used in biological injury

studies of microwave radiation mainly included inhibi-
tory transmitters (GABA, Gly) and excitatory transmit-
ters (Glu, Asp) [3, 12, 36, 37, 67, 68, 73, 124]. Choline
neurotransmitters and their markers, such as acetylcho-
line (Ach), cholinesterase (ChE), and choline acetyl
transferase (ChAT), were implemented in previous stud-
ies [239, 241]. Catecholamine neurotransmitters and
their markers included dopamine (DA), noradrenaline
(NA), serotonin (5-HT), tyrosine hydroxylase (TH), tryp-
tophan hydroxylase (TPH), monoamine oxidase (MAO),
and 3,4-dihydroxyphenylacetic acid (DOPAC), which
were used in studies on the mechanism of brain injury
induced by microwave radiation [18, 73, 92, 124, 125,
203, 204, 228]. However, there are still some controver-
sies regarding the effects of microwave radiation on neu-
rotransmitters. Some scientists argued that microwave

radiation might irregularly alter the level of neurotrans-
mitters in the brain [3, 68, 125, 241], whereas others did
not find any changes [124].

Metabolic indicators
The metabolic indicators used in the studies of
microwave-radiation-induced injuries mainly included
ATP metabolism indicators (adenosine triphosphate
(ATP), and CK) and mitochondrial function damage in-
dicators (mitochondrial respiratory chain complexes I -
IV, cytochrome oxidase (CO), etc.) [40, 79, 206, 242–
244]. A series of studies demonstrated that energy me-
tabolism disorders might be a cause of the adverse bio-
logical effect of microwave radiation, i.e., a significant
decrease in the activities of CO, mitochondrial respira-
tory chain complexes I - IV and CK and the level of
ATP [40, 79, 242].

Stress-related indicators
Stress-related indicators used in the studies of micro-
wave radiation-induced injury mainly included all oxida-
tive stress indicators, HSP70 levels, immediate early
genes (such as c-fos and c-jun) and their protein levels,
and endoplasmic reticulum stress indicators.
Oxidative stress, one of the most important mecha-

nisms of microwave radiation-induced biological injur-
ies, has been considered a result of the imbalance
between pro-oxidant and antioxidant systems [19]. The
common indicators implemented to examine oxidative
stress included 1) free radicals (such as reactive oxygen
species [ROS], nitric oxide [NO], and superoxide) [23,
40, 41, 156, 211, 226, 227, 245], 2) antioxidant indicators
(enzymes such as superoxide dismutase [SOD], catalase
[CAT], glutathione peroxidase [GSH-px], and non-
enzymes [such as glutathione [246], TAC, TAS, and
TOS]) [17, 19, 97, 191, 209, 247], and 3) oxidation prod-
ucts (such as MDA, conjugated dienes, protein carbonyl
[PCO] and 8-hydroxydeoxyguanosine [8-OHdG]) [17,
45, 97, 191, 247]. A few reports indicated that free radi-
cals might have adverse effects on cells and increase the
oxidation of DNA bases, lipids, and proteins after micro-
wave exposure [17, 45, 97, 191].
HSP70, a molecular chaperone, protects cells from

various environmental stresses. The level of HSP70 was
used to indicate the change in intracellular stress [110].
A series of studies demonstrated that microwave radi-
ation with frequencies ranging from 900 MHz to 2450
MHz and power densities ranging from 50 mW/cm2 to
200 mW/cm2 could cause an increase in HSP70 levels in
rat brain tissue, cardiomyocytes and chick embryos [110,
111, 206, 248].
The c-fos gene related to cell damage and even cell

death can be induced to be expressed under nonpatho-
genic environmental conditions [225]. The morphological

Lai et al. Military Medical Research            (2021) 8:12 Page 9 of 18



expression of c-fos is a biomarker of neuronal activation
[220, 225]. Additionally, c-jun can be easily induced to be
expressed under pathological conditions [225]. Several
studies have reported increased expression of c-fos and
decreased expression of c-jun in rat brains after exposure
to microwave radiation [220, 225].
The indicators of endoplasmic reticulum stress used in

studies of microwave radiation bioeffects mainly in-
cluded the transcription factors XBP1, ATF4 and CHOP
[224, 249]. A recent study showed that microwave radi-
ation at frequencies between 900 MHz and 2450 MHz
could decrease the expression of XBP1 splicing mRNA
and increase the expression of ATF4 and CHOP mRNA
in rat brains, suggesting the activation of endoplasmic
reticulum stress [224].

Cell proliferation- and cell death-related indicators
The most popular indicators used in the studies of cell
proliferation and cell death induced by microwave radi-
ation were those involved in autophagy, apoptosis, in-
flammatory response and cell proliferation.
The commonly used autophagy indicators to evaluate

the injuries of microwave radiation included
microtubule-associated protein light chain 3 (LC3), the
protein expression of autophagy-related gene (ATG) and
lysosomal associated membrane protein 1 (LAMP1), and
the ratio of LC3-II to LC3-I [3, 250, 251]. Although a
series of studies were conducted focusing on autophagy
and the biological effects of microwave radiation, the
role of autophagy remains unclear.
The apoptosis-related indicators used in the studies of

injuries of microwave radiation included Bcl-2 family
proteins (such as the anti-apoptotic factor Bcl-2 and the
pro-apoptotic factor Bax), apoptosis initiation factors
(such as cytochrome C [Cyto C]), caspase family pro-
teins (such as the apoptotic initiator caspase-9 and the
apoptotic executor caspase-3), apoptosis rate, and pro-
apoptotic gene p53 [14, 17, 40, 79, 191, 206, 215, 216,
227, 245].
The inflammatory-response-related indicators used in

studies of injuries caused by microwave radiation in-
cluded inflammatory cytokines, such as interleukin (IL)-
1, IL-2, IL-6, IL-10, IL-12, tumor necrosis factor-α
(TNF-α) and interferon-γ (IFN-γ) [45, 218, 223], and in-
flammatory genes, such as nuclear factor-kappa B (NF-
κB) [191, 223]. The weight of evidence from studies on
the inflammatory response supports the conclusion that
inflammatory effects, including the increased expression
of proinflammatory cytokines and the activated inflam-
matory pathway, might be a potential mechanism of in-
juries induced by microwave radiation [45, 218, 223].
The cell proliferation-related indicators commonly

used in previous studies of microwave radiation injury
effects included nucleoprotein Ki-67 and histone kinase

[25, 211, 252]. Ki-67, as an endogenous marker of prolif-
eration, was used to label proliferating cells [25]. The ac-
tivity of histone kinase related to the G2/M phase
transition in the cell cycle is increased in exponentially
growing cells [211]. A few studies reported that the
number of Ki-67-positive cells and the activity of histone
kinase were decreased significantly after microwave ex-
posure [25, 211, 252].

Indicators-related to cell membrane damage
The major indicators related to cell membrane damage
that were implemented in the studies of injuries induced
by microwave radiation included intracellular and extra-
cellular ion concentrations, ion channel activity, and
membrane receptor expression levels.
Changes in intracellular and extracellular ion concen-

trations can be used to depict the impairment of ion
channels of the cell membrane and changes in cell mem-
brane permeability. Intracellular Ca2+ is one of the most
important ions for biological studies of microwave radi-
ation and executes many biological processes [147]. A
recent study reported that the levels of total calcium,
endoplasmic reticulum calcium and mitochondrial cal-
cium decreased after primary hippocampal neurons were
exposed to 2.856 GHz pulsed microwave radiation, sug-
gesting calcium efflux during microwave radiation ex-
posure [147].
The activity of voltage-gated calcium channels

(VGCCs) was used in previous studies as an indicator of
microwave-radiation-induced changes in ion channels
[80, 253]. Olgar et al. [80] found that although the L-
type Ca2+ current (ICaL) values in cardiomyocytes were
not altered after exposure to 2.1 GHz microwave radi-
ation, the isoproterenol-induced ICaL response was strik-
ingly reduced.
The expression levels of N-methyl-D-aspartate recep-

tor (NMDAR), β1-adrenergic receptor (β1-AR) and mus-
carinic type 2 acetylcholine receptor (M2-AChR) in the
heart [12, 67, 254] have been used to evaluate the
changes in cell membrane receptors induced by micro-
wave radiation. It has shown that the expression levels
of NMDARs at the postsynaptic membranes were re-
lated to excitatory synaptic transmission and synaptic
plasticity [67]. The expression levels of β1-AR and M2-
AChR were used to assess heart function [254].
Other membrane properties, such as the function of

the synaptic vesicular membrane, can be indicated by
the expression level of synaptic vesicular-associated pro-
teins and the level of neurotransmitters [37, 69].

Signal transduction-related indicators
The signal-transduction-related indicators implemented
in the studies on biological effects induced by microwave
radiation mainly included 1) NMDAR-related signaling
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pathway molecules (such as the key NMDAR subunits,
calmodulin-dependent protein kinase II [CaMKII], cyclic
adenosine monophosphate [cAMP] responsive element-
binding [CREB], postsynaptic density protein-95 [PSD-
95], PKA and the p44/42 mitogen activated protein kin-
ase [p44/42 MAPK]) [4, 12, 36, 67, 68, 74], 2) proteins of
the protein kinase C (PKC) signaling pathway [84, 245,
255], 3) proteins of the signaling pathways associated
with the activation of MAPK signaling cascades (such as
extracellular signal-regulated kinases [ERK], c-jun
amino-terminal kinases [JNK] and p38MAPK) [79, 227],
and 4) proteins of the NO signaling pathway [80].
NMDAR-related signaling pathways are mainly in-

volved in studies on the impairment of learning and
memory function induced by microwave radiation [4, 12,
36, 67]. The activation of molecules in NMDAR-related
signaling pathways has been suggested to be closely re-
lated to synaptic plasticity [12].
PKC is commonly used in biological studies of the ef-

fects of microwave radiation on the brain and male in-
fertility [84, 245, 255]. PKC plays a critical role in cell
signaling pathways to regulate cell proliferation, death,
and stress. Studies have revealed that the decreased level
of PKC in the brain and sperm cells might trigger an
overproduction of ROS and subsequently cause injury
after exposure [84, 245, 255].
It has been well established that MAPK cascades are

responsible for regulating oxidative stress [79, 227]. Sev-
eral studies found that microwave radiation might exert
detrimental effects on the heart and brain through oxi-
dative stress, which activates MAPK cascades [79, 227].
A study suggested that an upregulated NO signaling

pathway might trigger a reduction in the β-adrenergic
(β-AR) response of ventricular myocytes after microwave
radiation exposure [80]. This was induced by modulating
a second messenger, i.e., cyclic guanosine monopho-
sphate (cGMP) [80].

Genotoxicity-related indicators
There are controversies regarding the genotoxic effects
induced by microwave radiation exposure. Most studies
have suggested that microwave radiation causes geno-
toxic effects [23, 97, 227, 256], while others have drawn
different conclusions [257]. The genotoxicity-related in-
dicators used in the studies of microwave radiation in-
jury mainly included DNA single- or double-stranded
breaks and micronuclei [23, 97, 227, 256].

Discussion
In this review, we combined previous studies on micro-
wave radiation biological effects to summarize the main
factors that are essential for the establishment of a
microwave radiation injury model: microwave exposure
conditions, subjects used to establish injury models, and

methods and indicators used to assess the establishment
of injury models. The establishment of an injury model
is the premise of studies on the biological effects of
microwave radiation. The establishment of an injury
model is important to both the reliability and the repro-
ducibility of these studies, although the reproducibility
may also be influenced by the funding sources of specific
studies [54, 258]. Although fruitful results have been
achieved, further research on the biological injuries in-
duced by microwave radiation is an inevitable develop-
ment trend.
First, 1) to establish a certain microwave radiation in-

jury model (e.g., for the purpose of investigating the
mechanisms of MW-induced bioeffects), a specified
standardized microwave exposure procedure should be
performed, which will be beneficial to comparative ana-
lyses of the results from different laboratories, although
replication does not fail if the methodology is exactly the
same as in previous studies. 2), to investigate the bioef-
fects induced by real-world microwave radiation, the ex-
posure procedures should capture the complexity and
diversity of real-world exposure conditions.
Second, although various kinds of subjects have been

used to establish biological injury models of microwave
radiation, hardly any uniform animal species and cell
types are widely used in studies of the biological effects
after microwave exposure. In addition, based on the sen-
sitive biological indicators from previous studies, it is
important to cultivate novel animal species and cell
types sensitive to microwave radiation by transgenic
technology.
Third, the choice of methods contributes to screen-

ing biological indicators with high sensitivity and spe-
cificity for microwave radiation-induced injuries. The
methods used in studying the biological effects of
microwave radiation rely on the development of sci-
ence and technology. Appropriate techniques can fa-
cilitate studies on the biological effects caused by
microwave radiation. In fact, to the best of our know-
ledge, most of the methods used in present studies
cannot demonstrate the real-time biological changes
induced by microwave radiation. In the future, the
development of more in vivo methods will help us to
screen more reliable and sensitive indicators.
Finally, there is a lack of recognized sensitive indi-

cators of biological injuries caused by microwave ra-
diation. Therefore, it is helpful to screen and verify
the sensitive indicators provided by previous studies.
This may create a new opportunity for diagnosis and
therapeutic intervention. In the future, quantitative
biomarkers should be further explored, which will
lay a foundation for building a reliable dose-effect
relationship of biological effects induced by micro-
wave radiation.
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Conclusion
In summary, we reviewed the microwave exposure con-
ditions, subjects used to establish injury models, and
common methods and indicators used to establish injury
models of microwave radiation. This work may be help-
ful for further studies of biological effects induced by
microwave radiation.
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