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Abstract

Autoimmune disease management presents a significant challenge to medical science. Environmental factors
potentially increase the risk of developing inflammatory and autoimmune diseases, such as multiple sclerosis,
rheumatoid arthritis, and lupus. Among various environmental stresses, cigarette smoke and hypoxia have both been
reported to lead to an enhanced risk of inflammatory and autoimmune diseases.

In this review, we shed light on all reported mechanisms whereby cigarette smoke and a hypoxic environment can
induce inflammatory and autoimmune diseases and discuss how hypoxic conditions influence the cigarette smoke-
induced threat of inflammatory and autoimmune disease development.

Cigarette smoke and hypoxia both lead to increased oxidative stress and production of reactive oxygen species and
other free radicals, which have various effects including the generation of autoreactive pro-inflammatory T cells and
autoantibodies, reductions in T regulatory (T,eq) cell activity, and enhanced expression of pro-inflammatory mediators
[e.g, interleukin-6 (IL-6), interleukin-4 (IL-4) and interleukin-8 (IL-8)]. Accordingly, smoking and hypoxic environments may
synergistically act as potent environmental risk factors for inflammatory and autoimmune diseases. To our knowledge,
no studies have reported the direct association of cigarette smoke and hypoxic environments with the risk of

developing inflammatory and autoimmune diseases.

Future studies exploring the risk of autoimmune disease development in smokers at high altitudes, particularly military
personnel and mountaineers who are not acclimatized to high-altitude regions, are required to obtain a better

understanding of disease risk as well as its management.
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Background

Autoimmune disease has been a hot topic in medical
science for the last decade. Autoimmunity is the state of
the immune system in which immune cells recognize
self-molecules as antigens and become hyperactive to
eliminate these molecules, resulting in chronic inflam-
mation, pain and various other severe conditions. Cur-
rently, a major portion of the world population [1]
suffers from various types of autoimmune diseases, in-
cluding rheumatoid arthritis (RA), systemic lupus ery-
thematosus (SLE), multiple sclerosis (MS), thyroid
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disease, inflammatory bowel disease (IBD), Graves™ dis-
ease (GD), and Behcet’s syndrome. The major challenges
of autoimmune diseases are to decipher their precise
causes and mechanisms to develop more effective and
efficient treatments.

Environmental factors play crucial roles in the devel-
opment and progression of inflammatory and auto-
immune diseases. Among such factors, cigarette smoke
(CS) and hypoxia are two potent environmental stresses
that can significantly cause imbalance in normal im-
mune homeostasis by modulating immune-regulatory
activities, which may lead to inflammatory and auto-
immune diseases.
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Despite widespread knowledge of the health risks
posed by tobacco consumption in the form of smoke
and other means, consumption of tobacco remains un-
acceptably prevalent [2]. Tobacco smoking killed almost
6 million people worldwide in 2011, which include about
600,000 people that never smoke and died due to indir-
ect second-hand smoke. If it follows the same way, the
death number will reach to 800,000 per year by 2030,
higher than the mortality resulting from human im-
munodeficiency virus and acquired immune deficiency
syndrome (HIV/AIDS), tuberculosis and malaria com-
bined. Indeed, the threat of tobacco smoking to public
health can be considered to be a worldwide epidemic
[3-7]. CS can lead to inflammatory and autoimmune
diseases through multiple mechanisms, including the
following: genetic/epigenetic modifications; increased
oxidative stress, reactive oxygen species (ROS), and free
radical production, and nicotine and heavy metal tox-
icity. These effects, in turn, may increase B and T cell
proliferation, reduce immune suppressive T regulatory
(Treg) cell proliferation and activity as well as autoanti-
body generation, and enhance expression of pro-
inflammatory mediators, such as IL-6, IL-8, tumor ne-
crosis factors (TNFs) and Interferon gamma (INF-y).
Hence, CS is a risk factor for developing inflammatory
and autoimmune diseases.

Decreased oxygen availability (hypobaric hypoxia at
high altitude or cellular hypoxia) can also alter the nor-
mal function of the immune system in multiple ways,
making it to be more susceptible to various inflamma-
tory and autoimmune diseases. Recent advancements in
our understanding of oxygen-dependent cell signaling
have revealed several mechanisms by which hypoxia im-
pacts the development of inflammation through the co-
ordinated expression of inflammatory, adaptive and
apoptotic genes. Hypoxia is a distinctive microenviron-
mental feature in a number of inflammatory conditions,
including IBD and arthritis [8—10]. Hypoxia induces in-
creased expression of hypoxia-inducible factor (HIF),
resulting in overexpression of pro-inflammatory media-
tors, and also causes enhanced oxidative stress, which
results in autoantibody generation and transformation of
CD4" T cells into auto-reactive pro-inflammatory cells.

In this review, we highlight the effects of smoking and
hypoxic conditions (hypobaric hypoxia and cellular hyp-
oxia) on the immune system and focus on different ways
by which these conditions increase the risk of developing
inflammatory and autoimmune diseases. To our know-
ledge, the combined effect of smoking and hypoxia on
the immune system and the subsequent risk of develop-
ing autoimmune diseases have not yet been reviewed.
Therefore, we summarize all available information con-
cerning the association of smoking and hypoxia with the
risk of developing various inflammatory autoimmune
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diseases. Based on the findings, we propose that the
combination of smoking and hypoxic conditions may act
as a potent environmental risk factor for inflammatory
and autoimmune disease development. Future studies
are needed to explore the risk of the development of
autoimmune diseases in smokers in high-altitude re-
gions, specifically military personnel and mountaineers
who are not acclimatized to high-altitude stresses. These
findings may also help to enhance our current under-
standing and management of human health in high-
altitude regions.

CS and autoimmune diseases: overview

Tobacco consumption, either in the form of CS or other
means, is theoretically an avoidable environmental factor
yet a major cause of various health issues and death
worldwide [5-7]. CS contains thousands of complex, dy-
namic, and reactive chemical constituents that possess
cytotoxic, mutagenic, immune-modulators and tumori-
genic properties [11-23]. Several toxic components of
CS have immunomodulatory effects that result from
genetic/epigenetic changes and lead to altered gene ex-
pression and function; some examples include changes
in pro-inflammatory cytokine expression and histone
deacetylase (HDAC) and histone acetylase (HAT) activ-
ities [2]. Several studies have demonstrated CS to be a
potent environmental risk factor for certain autoimmune
diseases, such as RA, MS, and SLE [24-26]. Since the
first evidence provided in 1987 by Vessey and colleagues
[27] that CS increases the risk of RA development (ap-
proximately 2.4 times elevated risk among women
smokers) until 2006, 11 case-control and 4 cohort stud-
ies have been reported, showing an increased risk of RA
development in cigarette smokers (Table 1) [24, 26—40].
In fact, a twofold increased risk of developing seroposi-
tive RA for individuals who smoked for more than 20
years and a threefold increased risk for RA in male
smokers have been reported [2, 41-43]. In addition,
Freemer and coworkers conducted a case-control study
showing a link between CS and SLE; these authors re-
ported the presence of an increased level of anti-dsDNA
antibodies in current smokers compared to former-and
non-smokers with SLE (Table 1) [42]. Furthermore, the
association of CS with an increased risk of MS is also
evident based on the results of various epidemiological
studies [44—48] (Table 1, [24—68]).

CS and associated genetic changes

Somatic mutations are reported to be crucial factors in
the pathogenesis of autoimmunity. To induce auto-
immunity, coherent type-a somatic mutations are re-
quired, which occur in multiple cells to such an extent
that somatically mutated proteins lose their normal
functions and/or are interpreted by the immune system
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Table 1 Reported epidemiological studies of the relationship between CS and the risk of selected autoimmune diseases

Autoimmune Case-control studies

Cohort studies

Range of observed OR (RR) of developing diseases

disease (No. of studies showing (No. of studies showing
increased risk/total no. increased risk/total no.
of studies) of studies)
RA 11/12 [24, 26-28, 31-34, 36-39] 4/4 29, 30, 35, 40] 06-34
-Risk increases with increases in the duration
and intensity of smoking
-Males are more prone
MS 1/3 [44-46] 2/2 [47, 48] 1.6-19
-Risk increases with increases in the intensity
of smoking
SLE 3/8 [49-56] 0/2 [57, 58] 05-6.7
-Current smokers are mainly at risk
GD 8/8 [42, 59-65] 1/1 [66] 1.3-82
-Current smokers are at higher risk than former
smokers
-Risk increases with increases in the intensity of
smoking
-Females might be more prone
Primary biliary cirrhosis 2/2 [67, 68] - 16-3.5

RA Rheumatoid arthritis, MS Multiple sclerosis, SLE Systemic lupus erythematosus, GD Graves’ disease, - No data

to be non-self, i.e., autoantigens [69]. Simple tandem re-
peats (STRs) within protein coding genes, including
microsatellites and mini-satellites are highly vulnerable
regions that are susceptible to mutations in somatic and
germ-line cells, and somatic mutations in these STRs
generate novel, highly immunogenic proteins [70, 71]
that may induce autoimmunity. Moreover, repetitive se-
quences play a crucial role in methylating nearby se-
quences [72]. Indeed, mutations in repeat sequences
often result in significant changes in methylation pat-
terns [73], which in turn alter normal splicing [74], and
altered methylation has been associated with several
autoimmune diseases [75]. Overall, the mutability of tan-
dem repeats intensifies with increasing repeat length, re-
peat count, and high repeat identity [76]. Long STRs
within 20 genes have been associated with 16 common
autoimmune diseases; these genes include the following:
thyroid peroxidase (TPO), which encodes a primary
autoantigen in Hashimoto’s thyroiditis (HT) and Grave’s
disease (GD); filaggrin (FLG), which encodes a primary
autoantigen in RA; and protein-tyrosine phosphatase,
receptor-type, n, polypeptide 2 (PTPRN2), which en-
codes a primary autoantigen in type-1 diabetes (T1D)
(see Table 7 of reference [76]). Single-nucleotide polymor-
phisms (SNPs) are also associated with the pathogenesis
of autoimmune diseases. The functional SNP rs2476601
in the PTPN22 gene has been linked to many auto-
immune diseases, though no association has been found
for MS, pernicious anemia (PA), and Sjogren’s syndrome
(S)) (see Table 1 of reference [76]). This SNP specifically
affects T cell signaling [77, 78], B cell signaling [79, 80];
causes autoreactive B cell generation [79], and T cell and
dendritic cell hyper-responsiveness [81].

Exposure to CS, directly (mainstream tobacco smoke;
MTYS) or indirectly (second-hand smoking), is mutagenic,
and MTS is considered to be the most extreme example
of a human systemic mutagen [82]. CS contains more
than 4,000 chemical constituents [83], many of which are
genotoxic and interact with DNA to induce mutations
and gene activation, leading to the development of auto-
immune diseases [82, 84]. Somatic mutations result in
autoimmunity, and CS induces both somatic and germ-
line mutations [82, 85]. Evidence of CS-induced somatic
mutations is well reported [82, 86, 87]. For example, the
frequency of somatic hypoxanthine-guanine phosphoribo-
syl transferase (HPRT) gene mutations is significantly ele-
vated in both adult smokers [88] and newborns of
smoking mothers [89]. CS has also been specifically asso-
ciated with the production of autoantibodies against pri-
mary autoantigens encoded by mutated enolase [90],
vimentin [91], and fibrinogen beta [91] genes in RA. Al-
though elevated levels of DNA adducts, strand breaks and
oxidative damage have been reported in the sperm of male
smokers [82, 92], evidence for MTS-induced heritable
germ-line mutations is lacking. In 2007, Yauk et al. [93] re-
ported that MTS induces a significantly elevated fre-
quency of germline mutations at the expanded simple
tandem repeat (ESTR) locus Ms6-hm in mouse sperm,
which could, at least theoretically, be inherited in subse-
quent generations.

Epigenetic modifications induced by CS

All known epigenetic pathways are altered by both active
and passive (including in utero) CS and such epigenetic
changes can be transmitted to the next generation
through the male germ line [94]. Such epigenetic
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alterations caused by CS include post-translational mod-
ifications through HAT, HDAC, and DNA methyl trans-
ferase (DNMT), leading to chromatin remodeling and
changes in gene expression [95].

Histone acetylation/deacetylation

Reversible acetylation/deacetylation of conserved ly-
sine residues (at a-amino groups) in the histone tails
of chromatin has an important function in regulating
gene transcription [96]. Acetylation of histones pro-
motes gene expression by facilitating the recruitment
of transcription factors, such as NF-kB, and enabling
access of the transcriptional machinery to DNA. Con-
versely, deacetylation of histones negatively regulates
transcription by decondensing the chromosome and
decreasing the accessibility of transcription factors, in-
cluding NF-kB and AP-1, to their respective DNA
binding motifs [95, 97-99].

HAT and HDAC are responsible for acetylating and dea-
cetylating, respectively, lysine residues on histone and non-
histone proteins. To date, 18 isoforms of HDAC have been
identified in humans named as HDAC-1 to HDAC-11 and
SIRT-1 to SIRT-7 which are further classified into four
major groups namely class 1 to class 4 [100-103]. The
addition of acetyl groups to histone lysine residues by HATs
cause unwinding of chromatin and hence transcriptional
activation of genes. In contrast, HDACs function as tran-
scriptional co-repressors by removing acetyl groups, which
results in chromosomal condensation, exclusion of tran-
scription factors and, eventually, inhibition of gene tran-
scription. In addition to histones, HDACs also deacetylate
non-histone proteins, such as NF-kB, and regulate NF-kB-
dependent pro-inflammatory gene transcription [95, 102].
Indeed, HATs and HDAC:s play significant roles in the im-
munological balance, and alterations in the functions of
these proteins lead to immunological disorders. Further-
more, HDAC-1, -3, -6, -9 and SIRT-1 also act as inhibitors
of T,g cell development and inhibit their immune-
suppressive function by deacetylating FOXP3 (a bona fide
marker of active T, cells), whereas HATs [p300, TIP60,
and PCAF (p300/CREB binding protein-associated factor)]
acetylate FOXP3 and positively regulate T, cell develop-
ment and function [104, 105]. As T, cells negatively regu-
late autoimmune processes, inhibition of T, cell function
and development as a result of enhanced HDAC function
and/or HAT inhibition potentially lead to inflammatory
and autoimmune diseases.

CS causes imbalance in the normal histone acetyl-
ation/deacetylation process, leading to sustained tran-
scription of pro-inflammatory protein genes by
inhibiting HDAC activity and activating NF-kB and AP-
1, which in turn results in chronic inflammation (Fig. 1a)
[106]. Moreover, CS stimulates oxidative stress by indu-
cing generation of ROS, H,0O, and free radicals. HDAC2
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activity is significantly reduced in response to smoking-
induced oxidative stress, and alteration of HDACs by CS
exposure leads to histone acetylation and SIRT1 post-
transcriptional modifications and subsequent degrad-
ation; this disrupts the co-repressor complex (SIRT1-
RelA/p65 complex) and leads to activation of redox-
sensitive transcription factors such as NF-«B, increasing
transcription of pro-inflammatory genes encoding IL-8,
IL-6, and TNFs [2, 96, 106—-114].

HDAC inhibition and HAT activation through
cigarette smoke constituents (CSCs) and the increased
oxidative stress induced by CS result in higher Nrf2
acetylation, which destabilizes the protein. These effects
reduce anti-oxidant gene expression and increase sensi-
tivity to oxidative stress, making individuals more prone
to chronic obstructive pulmonary disease (COPD)-like
inflammatory and autoimmune diseases [96, 115].

DNA methylation/demethylation

DNA methylation, an important heritable epigenetic
change that occurs at cytosine residues in CpG motifs,
stabilizes chromatin in a tightly packed conformation,
thereby suppressing gene expression [108]. DNA methy-
lation and demethylation are catalyzed by a specific
group of enzymes, DNMTs and DNA methylases, re-
spectively. These enzymes are sensitive to environmental
factors; for example, oxidative stress due to cigarette
smoking can result in reduced DNMT-1 activity and
thus increased DNA demethylation [116].

Studies have shown that CSCs and ROS/reactive ni-
trogen species (RNS), e.g., H,O,/NOj3, inhibit the extra-
cellular  signal-regulated kinase (ERK) signaling
pathway in T cells, leading to a reduction in DNMT-1
expression and thus reduced DNA methylation. This ef-
fect, in turn, results in chromatin remodeling, leading
to increased expression of methylation-regulated genes
(Fig. 1b) that contribute to lupus flare-like autoimmune
disease. DNMT-1 inhibition due to CS-induced oxida-
tive stress increases expression of lymphocyte function-
associated antigen-a heterodimer composed of CDI1la
and CDI8 [LFA (CD11a/CD18)] and CD70 in T cells
and changes antigen-specific CD4" T helper cells into
auto-reactive pro-inflammatory cells, which respond to
self-class 2 MHC molecules without added antigens
and kill autologous macrophages, resulting in lupus-
like autoimmunity [108, 116].

Histone phosphorylation

Although information regarding phosphorylation of his-
tones is limited, it is clear that these molecules play sig-
nificant roles in chromatin conformation and thereby
regulate gene transcription. Studies have shown that
phosphorylation of histone H3 facilitates its acetylation,
which involves cAMP-response element-binding protein
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(CREB-binding protein) [117]. Cigarette smoke results in
increased levels of phosphorylated (Ser10) and acetylated
(Lys 9) histone H3, which leads to increased pro-
inflammatory cytokine release by macrophages and
mouse lungs [118]; these events indicate a potential risk
of inflammatory and autoimmune diseases.

CS and autoantibody production

Many studies have reported an association between CS
and the production of autoantibodies, such as anti-
citrullinated peptide antibodies and autoantibodies
against elastin [2]. Increased sero-positivity for dsDNA
(i.e., anti-dsDNA antibodies) has been found in current
smokers relative to former smokers and serves as a diag-
nostic marker for SLE [42, 119]. A lack of methylation
or demethylation leads to anti-dsDNA antibody produc-
tion, which sufficiently induces lupus-like autoimmunity
in genetically predisposed mice and, likely, humans
[108]. Oxidative stress caused by CS is a potential risk

factor for autoantibody production. For example, ele-
vated ROS in red blood cells (RBCs) results in the pro-
duction of autoantibodies against RBCs and causes
autoimmune hemolytic anemia (AIHA) [117].

CS and heavy metals
The filler tobacco used in cigarettes of different
brands contains Cd (Cadmium), Ni (Nickel) and Pb
(Lead) at concentrations that range 1.73-2.02, 0.715-
1.52, and 0.378-1.16 pg per cigarette, respectively, and
this increased exposure of toxic metals due to CS
may increase RA risk [43]. For instance, oral exposure
to Cd at environmental levels has been associated
with the increased production of autoantibodies,
which may be due to dose-sensitivity and polyclonal
B cell activation (PBA) [120], and Pb exposure via CS
increases the risk of MS [121].

Ni and Cd strongly activate NF-kB and induce the re-
lease of IL-8 in the THP-1 human monocytic leukemia
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cell line. Cadmium also induces TNF-a and IL-6 release
in THP-1 monocytic cells. Hence, sustained activation of
transcription factors (e.g., NF-kB) by metal-activated sig-
naling may lead to chronic inflammatory processes and
related diseases, such as autoimmune disorders [122].
Moreover, nicotine has been associated with auto-
immune arthritis and may also differentially affect the
severity of rodent autoimmune arthritis [2].

CS and altered function of immune system

The reported potential mechanisms by which CS pro-
motes RA include augmentation of autoreactive B
cells functions [38], altered antigen presentation by
the CS-impaired antigen presentasome (APS) [123,
124], changes in T, cell functions (also promoting
COPD) [125] and activation and proliferation of T
cells by antigens present in CS. Furthermore, CS sig-
nificantly reduces the cytotoxic activity of natural
killer (NK) cells [126], which destroy auto-reactive T
cells that promote autoimmune disease [127], and re-
duces the production of IFN-y and TNF-a by acti-
vated NK cells [126]. Another study reported that CS
also induces polyclonal activation of both B and T
cells, enhances the production of several cytokines
(e.g., IL-2, IL-4, and soluble ICAM-1) while reducing
that of IFN-y, increases serum IgE levels, and en-
hances antigen presentation by damaging cells. This
evidence suggests a potential link between CS and the
development and an increased risk for inflammatory
and autoimmune diseases, including RA, Good pas-
ture syndrome, Grave’s ophthalmopathy and auto-
immune hypothyroidism [128].

T cells may be induced to proliferate into different
types of inflammatory cells, categorized as Thl, Th2,
and Thl7 type inflammation-inducing and respective
pro-inflammatory cytokine-producing T cells [129].
Compared to non-smokers, smokers have enhanced IL-
13 (Th2 cytokine) levels and reduced levels of Th-1 cy-
tokines; hence, CS may be considered to be an environ-
mental agent that induces Th2 type inflammation or acts
as an adjuvant of adaptive Th2 immunity [124, 130-134].
Available evidence also suggests that in certain individuals,
chronic CS exposure causes Thl7 inflammation-
associated inflammatory diseases and may also promote
adaptive Th17 immunity to self-antigens [24, 135, 136].
Moreover, CS-induced oxidative stress increases ex-
pression of LFA (CD11a/CD18) and CD70 in T cells
and changes antigen-specific CD4" T helper cells into
autoreactive pro-inflammatory cells, which respond to
self-class 2 major histocompatibility complex (MHC)
molecules without added antigens and kill autologous
macrophages, potentially causing lupus-like auto-
immunity [108, 116].
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Hypoxic conditions and inflammatory disorders
Environmental conditions potentially challenge the cap-
acity of the human body’s defense network. Hypoxia as-
sociated with high altitude, which is typically regarded as
an elevation over 2,400 m, is an important environmen-
tal assault. For example, if the O, concentration at sea
level is accepted to be 100%, this percentage gradually
decreases with increasing elevation. Thus, the decreased
O, availability at high altitude, i.e., hypobaric hypoxia,
due to reduced O, pressure results in increased forma-
tion of ROS and RNS (RONS), a process that is linearly
related to the elevation, degree of hypoxia and duration
of exposure. In these cases, the ROS levels exceed the
defense response of the body, which in turn enhances
oxidative damage to macromolecules such as lipids, pro-
teins, and DNA as well as the entire cell (Fig. 2). Expos-
ure to hypobaric hypoxia also significantly reduces the
activity and effectiveness of both enzymatic and non-
enzymatic antioxidant systems. Moreover, during high-
altitude exposure, different RONS-producing sources,
including the mitochondrial electron transport chain,
xanthine oxidase, and nitric oxide synthase (NOS), gets
activated; UV radiation is also strongly increased, leading
to overproduction of ROS [137-140]. Elevated ROS
levels may lead to or increase the risk for inflammatory
and autoimmune diseases through heightened autoanti-
body production, including anti-dsDNA antibodies, and
pro-inflammatory gene expression, and the generation of
auto-reactive T cells.

Among the various transcription factors that facilitate
cellular adaptation to hypoxic environments (e.g., hypo-
baric hypoxia or cellular hypoxia), HIF-1 is one of the
most important. HIF-1 was first reported in a nuclear
extract of the Hep3B human hepatoma cell line [141]
and subsequently described as a heterodimeric protein
comprising HIF-1a and -1p subunits. The B subunit is
constitutively expressed, whereas a subunit is stabilized
in the absence of oxygen. There are three isoforms of «
subunit, HIF-1a, HIF-2a and HIF-3«, which are distin-
guished by the presence of basic helix-loop-helix
(bHLH), Per-ARNT-Sim (PAS) and oxygen-dependent
degradation (ODD) domains. Despite the many struc-
tural and functional similarities, HIF-1a is ubiquitously
expressed, whereas HIF-2a is tissue specific and, in cer-
tain cases mediates different biological functions [142].
HIF-2a isoforms have also been implicated in cartilage
destruction: in an arthritis mouse model, HIF-2a in-
duced chemokine expression in chondrocytes, which
stimulated the migration and invasion of synovial fibro-
blasts, leading to cartilage erosion [143]. Recent studies
have shown that HIF-2a plays a fundamental role in RA,
independent of HIF-1a. Under hypoxic conditions, HIF-
la expression is enhanced via inactivation or reduced
activity of prolyl hydroxylase (PHD) enzymes, which
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degrade and destabilize HIF-1a under normoxic condi-
tions through oxidation of the ferrous ion at the active
site [144, 145]. Under normoxic conditions, PHD cata-
lyzes hydroxylation of proline residues in the ODD do-
mains of HIF-la. The tumor suppressor von Hippel
Lindau (vHL) protein subsequently recognizes these hy-
droxylated residues and recruits the ubiquitin ligase
complex, leading to poly-ubiquitination and eventual
proteasomal degradation of HIF-la [146]. Asparagyl -
hydoxylases, also called factor-inhibiting HIF-1 (FIH-1),
can also suppress HIF-la activity by hydroxylating as-
paragine residues in the C-terminal trans-activation do-
main, thereby preventing HIF-1a interaction with its co-
activator [147-149]. As these oxygen-dependent modifi-
cations do not occur under hypoxia, HIF-1a does not
bind to VHL, resulting in stabilization and accumulation
of HIF-1a in the cytoplasm, followed by its translocation
to the nucleus. Inside the nucleus, HIF-1la dimerizes
with the HIF-1f subunit, forming the HIF-1af heterodi-
mer that binds to the promoter region of HIF-regulated
genes [150]. Cramer et al. [8] reported the first evidence
of the involvement of HIF-la in the inflammatory
process, showing that HIF-1a deletion in macrophages
reduces the severity of disease in different models of
acute and chronic inflammation, including a passively
induced arthritis disease model. HIF-1a also promotes
signaling pathway activation and regulates IL-33

production by fibroblasts, which in turn induces expres-
sion of HIF-1a and forms a regulatory mechanism that
perpetuates inflammation in RA [151]. Loss or inhibition
of HIF-1a function enhances T, cell differentiation and
function [150, 152]. Thus, hypoxic conditions that in-
crease the synthesis of the HIF-la protein, a negative
regulator of FOXP3 (a bona fide marker of T,, cell) ex-
pression, significantly reduce the development and activ-
ity of T, cells, thereby increasing the risk of
inflammatory and autoimmune diseases.

HIF-1« is inhibited by HDAC [153], and smoking, as
noted above, is an inhibitor of HDAC [2]. Thus, smok-
ing under hypoxic conditions leads to increased HIF-1a
activity, which in turn reduces the proliferation and
activity of T,eg cells. Hence, smoking in a hypoxic state
is a potent risk factor for various inflammatory and
autoimmune diseases. Hypoxia-induced HIF-1la expres-
sion increases the maturation of dendritic cells, which
results in inflammatory immune responses, e.g., renal
injury [154].

Furthermore, HIF-1 regulates the Th17/ T, balance,
and studies have shown that the imbalance between the
number and function of Th17 and T, cells may lead to
inflammatory and autoimmune diseases, such as IBD
and RA, and impact their severity. During hypoxia, HIF-
1 promotes Th17 differentiation, prevents apoptosis and
inhibits T\, cell differentiation; down-regulation and/or
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dysfunction of T, cells promote autoimmune diseases
and inflammation [155].

In addition to HIF, the key cellular response to hyp-
oxia, nearly 20 different transcriptional factors that dir-
ectly or indirectly sense hypoxic microenvironments
have been identified [156]. The principle factors are
members of the NF-kB family, the activation of which
has been extensively reported in many cell types in re-
sponse to hypoxia [156, 157], which are also the main
pro-inflammatory transcription factors. Individuals ex-
posed to hypobaric hypoxia show increased activation of
NE-kB. Under normoxic conditions, PHDs hydroxylate
and inhibit IKK activity, which does not occur under
hypoxic conditions, enabling IKK-mediated phosphoryl-
ation and promoting degradation of IkB and thus acti-
vating NF-kB. NF-kB further activates expression of
various pro-inflammatory cytokines, chemokines, TNE-
a, IL-6, IL-8, vascular endothelial growth factor (VEGF),
matrix metalloproteinase (MMP) 1, -3, and -13, and
many other proteins that lead to the activation of a posi-
tive feedback loop, which enhances activation of more
pro-inflammatory signals and eventually results in
chronic and persistent inflammation, tissue destruction
[158—161] and autoimmune diseases. Abnormal activa-
tion of NF-kB has been associated with inflammation-
related diseases, particularly RA and IBD [162]. More-
over, hypoxia is a characteristic of RA synovial tissue
[163-166], and NF-kB is overexpressed in this tissue
[159]. In RA, hypoxia might play a role in sustaining and
inducing inflammation, consistent with the study of Jeon
and colleagues [167], who used a murine model of
collagen-induced arthritis (CIA). Synovial fibroblasts in
RA patients express an endogenous TLR ligand called
high-mobility group box 1 (HMGB-1), which up-
regulates expression of VEGE, thereby exacerbating RA
[168], though inhibition of HIF-la leads to attenuation
of the HMGB-1 protein. Hypoxia and IL-17 increase ex-
pression of MMP2 and MMP9 via the NF-kB-HIF-1«
pathway and thus synergistically promote the migration
and invasion of synovial fibroblasts in RA [169]. RA syn-
ovial fibroblasts exposed to hypoxia have increased levels
of MMPs (MMP1 and MMP3) and decreased levels of
tissue inhibitors of MMP1 (TIMP-1) at both the mRNA
and protein levels, promoting the destruction of articular
cartilage in these patients [170, 171]. The hypoxia-
inducible transcription factor Ets-1 [172] has also been
implicated in the invasion and destruction of cartilage
and bone in RA [173].

In addition to acting independently in the regulation of
gene expression in hypoxic inflammation, HIF and NF-kB
also exhibit a significant level of crosstalk. NF-«kB plays an
important role in the up-regulation of HIF-1la mRNA ex-
pression [174—176], and HIF-1a can also modulate NF-kB
signaling. A previous study showed that mice overexpressing
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HIF-1a in keratinocytes had increased activity and expres-
sion of NF-kB, which regulates pro-inflammatory and anti-
apoptotic genes, resulting in hyper-responsiveness to inflam-
matory stimuli [177].

However, it remains unclear whether HIF-1a acts as an
inflammatory or anti-inflammatory factor. As HIF-1a pro-
motes the survival of inflammatory cells [8], it can be con-
sidered to be pro-inflammatory. In contrast, expression of
HIF-1a in intestinal epithelial cells contributes to an intes-
tinal epithelial barrier function in cases of inflammation,
and the intestinal epithelial barrier prevents non-specific
movement of luminal antigenic substances into the sub-
epithelial lamina propria. Thus, in this context, the HIF
pathway can be considered anti-inflammatory [178]. A
previous study reported that overexpression of HIF-2a in-
creased inflammation and RA, whereas overexpression of
HIF-1a did not [145]. NF-kB activation under hypoxic
conditions stabilizes HIF-1a, thereby activating the HIF-1
transcription factor. Another study showed that prolonged
HIF activation in healthy individuals living at high alti-
tudes might reduce NF-kB activity, effectively dampening
immune responses [145]. Thus, the role of NF-«kB in
hypoxia-induced inflammatory and autoimmune diseases
requires further investigation.

A glycolytic shift is another mechanism by which hyp-
oxia promotes inflammatory and autoimmune diseases.
Glycolysis serves as a key metabolic checkpoint to regulate
cell fate determination between Th-17 and T, cells. Hyp-
oxic conditions induce a metabolic shift toward glycolysis
[179], enhancing expression of HIF-la and activation,
growth and proliferation of Th-1, Th-2, and Th-17 cells
and also inhibit T, cells. Conversely, blocking glycolysis
inhibits Th-17 development while promoting T, cell
generation [152]. Under hypoxic conditions, HIF-1la up-
regulates expression of the glucose transporters GLUT1
and GLUT3 to enhance glucose uptake and controls ex-
pression of hexokinase I, glyceraldehyde 3-phosphate de-
hydrogenase, lactate dehydrogenase, and mitochondrial
cytochrome oxidase to increase the glycolysis rate in RA
synovial tissue as well as expression of glucose phosphate
isomerase; along with enolase, aldolase, and triose phos-
phate isomerase, glucose phosphate isomerase acts as an
autoantigen [180]. Hence, in an attempt to increase energy
production for cell survival, HIF-1a also produces anti-
genic targets, thereby promoting autoimmunity. More-
over, HIF-1la also invokes the differentiation of ThO
lymphocytes into Th17 cells, which are important for
autoimmune disease development, including RA [181].
CD-25 expression is markedly reduced under hypoxia
compared to normoxia [150], suggesting that under hyp-
oxia, T,eg cell activity is significantly diminished. Consider-
ing these findings, it is reasonable to hypothesize that
hypoxic conditions ultimately enhance the risk for inflam-
matory and autoimmune diseases.
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Conclusions

In this review, we discussed all of the information re-
ported to date on the association of smoking and hyp-
oxic conditions with inflammatory and autoimmune
diseases. The different mechanisms by which smoking
and hypoxia may act as potent environmental risk fac-
tors for developing and enhancing the severity of inflam-
matory and autoimmune diseases were related with
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by which smoking and hypoxic conditions induce in-
flammatory and autoimmune diseases, including genetic
changes (somatic and germline mutations), epigenetic
modifications (acetylation/deacetylation, methylation/de-
methylation and phosphorylation), oxidative stress, auto-
antibody formation, CSC heavy metal toxicity and al-
tered immune cell proliferation and pro-inflammatory
cytokine production, were analyzed separately. Studies

have shown that either of these two environmental
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factors alone can significantly increase the risk for in-
flammatory and autoimmune disorders. Although stud-
ies showing a direct association of the hypoxic
environment (at high altitude) with autoimmune dis-
eases have not yet been reported, there is significant evi-
dence to support that hypoxic conditions result in
altered immune system activity, such as increased B and
T cell proliferation, reduced T, cell proliferation/activ-
ity, and increased ROS production, resulting in overex-
pression of pro-inflammatory mediators, such as NF-kB,
IL-6, and IL-8. These data suggest that both CS and hyp-
oxia lead to increased oxidative stress and ROS/free rad-
ical production, which in turn induces auto-reactive pro-
inflammatory T cell production, autoantibody generation
(e.g., anti-dsDNA, anti-elastin and anti-RBC autoanti-
bodies), enhanced transcriptional activation/expression
of pro-inflammatory mediators (e.g., IL-6, IL-4, IL-8),
and reduced expression of IFN-y by promoting overacti-
vation of NF-kB/APS and various epigenetic modifica-
tions. Both CS and hypoxia can also up-regulate
expression of auto-immunogenic glycolytic enzymes, re-
duce T, cell (immune-suppressive cells) activity and
proliferation, and increase B and T cell activation/prolif-
eration via a glycolytic shift (Warberg’s effect), thereby
increasing the release of pro-inflammatory mediators.
Moreover, these effects are shared by both CS and hyp-
oxia. CS also reduces NK cell cytotoxicity and enhances
NEF-kB activation due to the heavy metals present in CS,
including Cd, Ni and Pb. Furthermore, smoking lever-
ages the hypoxia induced risk of autoimmunity by inhi-
biting the HIF-1a inhibitor- HDAC. Thus, despite some
conflicting data, it is reasonable to hypothesize that
smoking and hypoxia (i.e., hypobaric and cellular hyp-
oxia) together may act as a potent environmental risk
factor for inflammatory and autoimmune diseases
(Fig. 3). Nonetheless, this hypothesis requires further
precise studies to explore the association of high-
altitude hypoxia with inflammatory and autoimmune
diseases. Future studies elucidating the risk of auto-
immune disease development in smokers in high-
altitude regions, particularly military personnel and
mountaineers not acclimatized to high-altitude stresses,
may also provide a better understanding for the manage-
ment of human health in high-altitude regions.
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