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Role of the IL-33-ST2 axis in sepsis
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Abstract

Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are
characterized, it is important to understand their roles in sepsis. Interleukin 33 (IL-33) is a recently described
member of the IL-1 family that is widely expressed in cells of barrier tissues. Upon tissue damage, IL-33 is released
as an alarmin and activates various types of cells of both the innate and adaptive immune system through binding
to the ST2/IL-1 receptor accessory protein complex. IL-33 has apparent pleiotropic functions in many disease
models, with its actions strongly shaped by the local microenvironment. Recent studies have established a role for
the IL-33-ST2 axis in the initiation and perpetuation of inflammation during endotoxemia, but its roles in sepsis
appear to be organism and model dependent. In this review, we focus on the recent advances in understanding
the role of the IL-33/ST2 axis in sepsis.
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Background
Sepsis remains a leading cause of mortality in the Intensive
Care Unit (ICU) [1]. Accumulating evidence indicates that
the IL-33-ST2 axis is involved in the initiation and progres-
sion of inflammatory diseases, including sepsis [2–5]. In this
review, we provide an update on recent advances on IL-33-
mediated immunoregulation in sepsis.

Definition and epidemiology of sepsis
Sepsis is generally viewed as a condition of overwhelm-
ing systemic inflammation in response to an infection
that can lead to multiple organ dysfunction [1]. Sepsis is
now defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection [6], which
replaces the term “severe sepsis” [7]. Septic shock occurs
when sepsis is complicated by profound circulatory, cel-
lular, and metabolic abnormalities, with a greater risk of
mortality than with sepsis alone [6]. The number of
cases of severe sepsis is on the rise and now comprises
approximately 10–14% of admissions in intensive care
units [8–10]. In the United States, the average annual
age-adjusted incidence of sepsis is estimated to range
between 300 and 1000 cases per 100,000 persons [11].
Sepsis is a leading cause of mortality in the ICU world-

wide [1, 12]. Although significant advances in intensive

care treatment and organ support have improved out-
comes [13, 14], severe sepsis (previous definition) remains
associated with mortality rates of 25–30% that increase to
40–50% when septic shock is present [15]. Mortality rates
are directly related to the number of organs failing and
contributory factors include disseminated intravascular
coagulation, derangements of endocrine systems and/or
energy metabolism [16]. The prognosis is worse in the eld-
erly, immunocompromised, and critically ill patients [16].

Pathophysiology of sepsis
Sepsis develops when the host inflammatory response to
an infection is exaggerated and subsequently dysregulated
[16, 17]. Proinflammatory and anti-inflammatory re-
sponses comprise two parallel and overlapping responses
during sepsis progression. Excessive inflammation, or
sustained immune suppression, is highly correlated to
sepsis outcomes [8, 16].
The host response to pathogens is mediated through both

innate and adaptive immune systems [7]. The innate im-
mune response functions as the “first line of defense” by
immediately responding to invading pathogens in the initi-
ation of sepsis, while the adaptive immune system is com-
prised of highly specialized cells that respond in a more
focused fashion to foreign antigens and are able to develop
immunological memory to microbial antigens [7, 16, 18].
Engagement of pattern recognition receptors (PRRs) on
both immune and non-immune cells is recognized as the
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fundamental molecular mechanism of sepsis pathophysi-
ology [8, 16]. Upon pathogen invasion, Toll-like receptors
(TLRs) and other PRRs initiate the immune response after
the recognition of conserved motifs expressed by patho-
gens, named pathogen-associated molecular patterns
(PAMPs), such as lipopolysaccharide (LPS), lipopeptides,
lipoteichoic acid, flagellin, and bacterial DNA [16, 19–21].
TLRs also are triggered by endogenous danger signals,
termed danger-associated molecular patterns (DAMPs),
which are released from the damaged host tissue after
trauma or stress. Identified DAMPs include high mobility
group box 1 (HMGB-1), mitochondrial DNA, and S100a
proteins [8, 19, 22]. LPS, also known as endotoxin, is
among the most potent of all the PAMP molecules [19].
The LPS-dependent TLR4 and caspase-11 (caspase-4/5 in
humans) cascades leads to the upregulation of pro-
inflammatory/anti-inflammatory mediator production, pyr-
optotic cell death, and immune dysfunction [16, 23–25].
It has been proposed that the initial hyperactivation of

the immune response is followed or overlapped by a
prolonged state of immunosuppression, which renders
the host susceptible to nosocomial infections [7, 16].
These infections often involve multidrug-resistant bacter-
ial, viral and fungal pathogens [16, 19] and are thought to
play a dominant role in the pathogenesis of sepsis-induced
multiple organ failure and death [7, 16, 19]. Sepsis-
associated immune suppression is thought to result from
immune effector cell apoptosis, endotoxin reprogram-
ming, suppressed antigen presentation, increased
expression of negative costimulatory molecules and the
production of anti-inflammatory cytokines, including type
2 cytokines [16, 19].
A variety of immune cells function differently as sepsis

progresses. Macrophages and other cells of the innate
immune system release proinflammatory mediators such
as IL-1β, IL-6, IL-8, TNF-α, IFN-γ and monocyte
chemoattractant protein (MCP)-1 [7, 26–28]. Neutro-
phils become activated and release the proinflammatory
mediators myeloperoxidase (MPO) and proteases [29].
Host cells can also undergo pyroptosis and release large
quantities of IL-1α, HMGB-1, and eicosanoids [30–32].
Neutrophil extracellular traps (NETs) released by poly-
morphonuclear neutrophils (PMNs) are important for
anti-microbial defenses but may also propagate
inflammatory responses [33]. Th17 cells augment the
proinflammatory responses by producing IL-17A, which
promotes the production of IL-1β, TNF-α and IL-6 [34].
Macrophages and neutrophils also play immuno-
regulatory roles by producing IL-10 and TGF-β [35].
The early upregulation of Th1 responses (characterized
by TNF-α, IFN-γ and IL-12 production) gives way to a
Th2-dominated response (characterized by IL-4, IL-5,
IL-10 and IL-13 production). A shift in the balance from
Th1 to Th2 cytokines can cause immune suppression as

sepsis progresses [7, 36]. A small subset of CD4+ CD25+

Foxp3+ T cells, referred to as regulatory T cells (Tregs),
are upregulated and release IL-10 and TGF-β, favoring
Th2 cell proliferation, activation, and differentiation
[37]. These cells, along with the upregulation of
myeloid-derived suppressor cells and massive immune
cell death, are also thought to contribute to the im-
munosuppressed state [38, 39].
However, our understanding of how inflammatory

pathways are modulated to culminate in immune dys-
function during sepsis is far from complete. Likewise,
the roles of more recently described immune mediators
need to be incorporated into this evolving paradigm.
One such mediator is interleukin-33 (IL-33) and its re-
ceptor ST2. In this review, we will discuss the current
understanding of the role of IL-33 and its regulatory tar-
gets in the host response during sepsis.

Immunobiology of IL-33 and ST2
IL-33 was first discovered in 2003 as a nuclear factor
from high endothelial venules [40]. In 2005, Schmitz
et al. [41] identified IL-33 as a member of the IL-1
family and a ligand for the orphan receptor ST2 (also
known as IL-1RL1). IL-33 is mainly produced by struc-
tural and lining cells, such as endothelial cells, epithelial
cells and fibroblasts, that constitute the first line of host
defense against pathogens (Fig. 1) [2, 42–44]. Rodent
immune cells, such as macrophages and dendritic cells
have been shown to produce IL-33 during allergic in-
flammation and infection [45–47]. Under homeostatic
conditions, endogenous IL-33 is constitutively expressed
in the nucleus of cells and can associate with chromatin
by binding histones H2A/H2B, though its nuclear roles
remain obscure [47, 48]. Full length IL-33 is bioactive,
although it can also be processed by proteases (cathepsin
G, elastase) into shorter hyperactive forms [47]. Upon
tissue damage (necrotic cell death, cell stress) and/or
mechanical injury, IL-33 expression increases and it is
released into the extracellular space [47]. After release,
IL-33 “sounds the alarm” in the immune system by
targeting various immune cell types, including T cells,
basophils, eosinophils, mast cells, innate lymphoid cells,
dendritic cells and macrophages (Fig. 1) [2, 3, 49, 50].
IL-33 was thus proposed to act as an alarmin to sense
damage and alert neighboring cells and tissues following
infection or trauma and therefore has the potential to
influence a broad range of diseases [3–5, 51].
The IL-33 receptor ST2, first identified in 1989, is a

member of the IL-1 receptor (IL-1R) family [52].
Through alternative splicing, the ST2 gene encodes two
major protein isoforms, a transmembrane full-length
form ST2 (ST2 or ST2L) and a soluble, secreted form
ST2 (sST2) [3, 50]. sST2 lacks transmembrane and intra-
cellular domains and acts as a decoy receptor for IL-33
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[3, 53]. With a nearly undetectable level in normal con-
ditions, the serum concentration of sST2 is increased in
patients with pathogenic inflammation, such as asthma
[54], autoimmune diseases [55], idiopathic pulmonary fi-
brosis [56], heart failure [57], and transplant rejection
[58]. Membrane-bound ST2 is the functional component
for IL-33 signaling [3, 50]. It can be expressed on human
and mice CD4+ and CD8+ T cells, group 2 innate lymph-
oid cells (ILC2s), mast cells, basophilic and eosinophilic
granulocytes, monocytes, dendritic cells, NKT cells and
mice NK cells [3, 59]. Recently, it was also reported to
be expressed by endothelial cells [60, 61], epithelial cells
[62] and fibroblasts [63], thus pointing to the potential
importance of IL-33/ST2 signaling in various types of
tissues during the pathophysiology of numerous diseases
(Fig. 1).

IL-33/ST2 signaling
IL-33 binds a heterodimeric receptor complex consisting of
ST2 and IL-1R accessory protein (IL-1RAP) and induces the
recruitment of myeloid differentiation primary response
protein 88 (MyD88), IL-1R-associated kinase (IRAK)-1 and
IRAK-4 to the receptor domain in the cytoplasmic region of
ST2 (Fig. 2), leading to the activation of downstream signal-
ing, including nuclear factor-kappaB (NF-κB) and MAP ki-
nases (ERK, p38 and JNK) [3, 50]. This subsequently
induces the production of various pro- or anti-inflammatory

Fig. 1 Cellular sources and cellular targets of IL-33. IL-33 is released from endothelial cells, epithelial cells and fibroblasts in response to tissue
damage and/or mechanical stress (indicated as dotted arrow). After release, IL-33 functions as an alarmin and activates various types of cells
(indicated as solid arrow), including Th2 cells, Tregs, basophils, mast cells, eosinophils, macrophages, dendritic cells, innate lymphoid cells (ILC2s),
NK cells and NKT cells. These cells respond to IL-33/ST2 signaling by producing both pro-inflammatory and anti-inflammatory mediators depending on
the immune context in different tissues and diseases

Fig. 2 IL-33/ST2 signaling. The binding of IL-33 to ST2 results in the
activation of IL-33 bioactivities via intracellular pathways, while sST2
acts as a decoy receptor for IL-33
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mediators such as IL-6, TNF-α, IL-1β, IL-5 and IL-13 (see
below in detail) [3, 50]. IL-33 was proposed to be a multi-
functional protein, with reported roles in driving both Th1
and Th2 immune responses depending on type of cells acti-
vated, the specific microenvironment and the immune con-
text in different diseases [3, 4].

Cellular targets of IL-33
Th1 and Th2 CD4+ T cells
The role of IL-33 was first reported in T cells [41]. Naive
T cells respond to IL-33 by producing Th2-associated
cytokines IL-4, IL-5 and IL-13 in vivo, leading to histo-
pathological changes in the lungs and gastrointestinal tract
[41]. IL-33 polarizes murine and human naive CD4+ T
cells to produce IL-5, and promotes airway inflammation
independent of IL-4 [64]. Recently, Villarreal et al. [65, 66]
challenged the prevailing opinion that IL-33 strictly tar-
gets Th2 CD4+ T cells, as they show that IL-33 also has
the potential to effect Th1 cell-mediated T cells. Both iso-
forms of IL-33 (proIL-33 and mtrIL-33) can function as
immunoadjuvants to induce profound Th1 CD4+ and
CD8+ T cell responses [65, 66].

Tregs
Tregs express ST2 and respond to IL-33 by the profound
expansion in a ST2-dependent manner [67–69]. IL-33
mediates the Treg-dependent promotion of cardiac allo-
graft survival [69]. IL-33-expanded Tregs protect recipi-
ents from acute graft-versus-host disease by controlling
macrophage activation and preventing effector T cell ac-
cumulation [70]. The protective effects of IL-33-mediated
Treg responses were also reported in muscle regeneration
[71], hepatitis [72] and colitis [73, 74].

Mast cells, basophils and eosinophils
IL-33 is a potent inducer of pro-inflammatory mediators
by mast cells [75–77]. IL-33 stimulates the production
of pro-inflammatory cytokines and chemokines (IL-6,
IL-1β, TNF-α, IL-8, IL-13, CCL1 and CXCL8) from
human mast cells [78], and synergizes with IgE to pro-
mote cytokine production [79, 80]. IL-2 production by IL-
33-stimulated mast cells promotes Treg expansion, thus
suppressing papain-induced airway eosinophilia [81].
Human basophils express high levels of ST2 receptor

and respond to IL-33 with increased production of IL-
1β, IL-4, IL-5, IL-6, IL-8, IL-13 and granulocyte macro-
phage colony-stimulating factor (GMC-SF) [82]. IL-33
synergistically enhances IgE-mediated basophil degranu-
lation [83, 84]. IL-33 potently induces eosinophil
degranulation and production of IL-8 and superoxide
anion [85], and also enhances eosinophil adhesion and
increases eosinophil survival [85, 86].

Macrophages and dendritic cells
IL-33 enhances the LPS-induced secretion of TNF-α, IL-
6, and IL-1β by mouse macrophages [87]. In the setting
of allergic airway inflammation, IL-33 amplifies the IL-
13-mediated polarization of alternatively activated mac-
rophages and enhances their production of CCL17 and
CCL24 [88]. Dendritic cells (DCs) are activated by IL-33
and drive a Th2-type response in allergic lung inflamma-
tion [89]. IL-33-activated DCs promote IL-5 and IL-13
production from naive lymphocytes [89, 90]. IL-33 can
also activate DCs to produce IL-6, IL-1β, TNF, CCL17
[89] and to express increased levels of CD40, CD80,
OX40L, CCR7, MHC-II and CD86 [90]. DCs secrete IL-
2 in response to IL-33 stimulation and are required for
IL-33-mediated in vitro and in vivo Treg expansion [91].

Group 2 innate lymphoid cells
Group 2 innate lymphoid cells (ILC2s, previously named
natural helper cells, nuocytes, or Ih2 cells) were recently
described as members of the ILC family, characterized by
the expression of lymphoid markers and type 2 cytokines
production, linking the innate and adaptive responses in
type 2 immunity in various diseases [92, 93]. ILC2s consti-
tutively express ST2 and respond rapidly to IL-33 with in-
creased proliferation and cytokine production after an
allergen challenge or helminth infection [94–97]. IL-33/
ST2 signaling is required for IL-5 and IL-13 production
from lung ILC2s and airway eosinophilia independent of
adaptive immunity [98]. IL-33-dependent IL-5 and IL-13
production from ILC2s can also promote cutaneous
wound healing, acting as an important link between the
cutaneous epithelium and the immune system [99]. IL-33
protects against experimental cerebral malaria by driving
the expansion of ILC2s and their production of IL-4, IL-5
and IL-13 [100] and is required for ILC2-derived IL-13-
but not IL-4-driven Type 2 responses during hookworm
infection [101]. It also mediates influenza-induced airway
hyper-reactivity via an IL-33-ILC2-IL-13 axis [97].

CD8+ T cells, NK and NKT cells
Cytotoxic CD8+ T cells can also express ST2 and respond
to IL-33. IL-33 synergizes with TCR and IL-12 to augment
IFN-γ production from effecter CD8+ T cells [102]. IL-33
enhances the production of IFN-γ by both iNKT and NK
cells via cooperation with IL-12 [103].

Endothelial cells, epithelial cells and fibroblasts
IL-33 regulates the activity of many nonimmune cells.
Both epithelial cells and endothelial cells produce IL-6
and IL-8 in response to IL-33 [62]. IL-33 promotes nitric
oxide production from endothelial cells via the ST2/
TNF receptor-associated factor 6 (TRAF6)-Akt-eNOS
signaling pathway, leading to enhanced angiogenesis and
vascular permeability [61]. Murine fibroblasts respond to
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IL-33 by producing MCP-1, MCP-3 and IL-6 in a
TRAF6-dependent manner [63].

The role of IL-33/ST2 in sepsis
Clinical data — serum sST2 levels in sepsis patients
Several studies have shown that IL-33 or sST2 levels are
elevated in the circulation of patients with sepsis.
Children have significantly higher serum levels of IL-33
and sST2 on the first day of sepsis, raising the possibility
that sST2 levels may be useful in the diagnosis of child-
hood sepsis [104]. On admission [105] and within 24-48
hours of the diagnosis of sepsis [106], adults have signifi-
cantly higher serum sST2 levels than healthy controls
and demonstrate sustained increases in serum sST2
levels during the clinical course of sepsis [106]. Serum
sST2 levels correlate with cardiac dysfunction [107],
sepsis severity and mortality [106, 107]. In-hospital mor-
tality was higher among patients with elevated serum
concentrations of sST2 (above 35 ng/ml) [107]. Parenica
et al. [108] concluded that sST2 levels are not a suitable
prognostic marker for patients with sepsis shock because
ST2 levels failed to predict three-month mortality follow-
ing sepsis. However, serum concentrations of sST2 are sig-
nificantly higher in patients with septic shock compared
with cardiogenic shock at admission, suggesting the sST2
levels may be useful in identifying patients with sepsis as
the etiology of shock in the early phases [108].

Experimental studies — role of IL-33/ST2 in endotoxemia
The role of the IL-33-ST2 axis has been extensively studied
in experimental endotoxemia. Even before the identification
of IL-33, it was demonstrated that the ST2 receptor func-
tions as a negative regulator of TLR4 signaling and main-
tains LPS tolerance [109]. In these studies, ST2-deficient
mice did not develop endotoxin tolerance [109]. Specifically,
Liu et al. [110] found that ST2 also negatively regulates
TLR2 signaling but is not required for bacterial lipoprotein-
induced tolerance. A plausible explanation for these differ-
ences may lie in the unique signaling transduction and mo-
lecular mechanisms of TLR4-mediated tolerance (LPS
tolerance) vs TLR2-mediated tolerance (BLP tolerance).
Despite the implicated roles of ST2 in endotoxin tolerance,
IL-33 triggering of ST2 failed to induce LPS desensitization
but instead enhanced the LPS-induced proinflammatory
cytokine production (IL-6, TNF-α and IL-1β) in mouse mac-
rophages [111]. This effect is ST2 dependent, as it was not
observed in ST2 knockout mice [111]. IL-33 treatment in-
creases macrophage expression of the MD2/TLR-4 compo-
nents of the LPS receptor as well as levels of the soluble
form of CD14, and preferentially affects the MyD88-
dependent pathway downstream of TLR-4 and TLR-2,
which may explain the enhanced LPS responses of macro-
phages [111]. These conflicting results indicate distinct roles
for IL-33 and ST2 in the pathogenesis of LPS responses.

Oboki et al. [112] also found different immune responses
between ST2-deficient mice and soluble ST2-Fc fusion
protein-treated mice. Taken together, these studies show
that the IL-33/ST2 pathway is activated during endotoxemia
and plays regulatory roles at the level of endotoxin sensing
and signaling. However, more work is required to under-
stand the full range of IL-33 and ST2 actions as regulators
or effectors during PAMP exposure.
Apart from the enhanced macrophage responses to LPS

as mentioned above, other researchers also reported im-
portant roles for IL-33 in macrophage activation for host
defenses and proinflammatory responses [113, 114]. IL-33
directly activated bone marrow-derived macrophages
(BMDMs) by increasing their expression of MHC class I,
MHC class II, CD80/CD86, and inducible NO synthase
(iNOS) in a dose-dependent manner and augmented the
LPS-induced expression of proinflammatory mediators
(e.g., iNOS, IL-6 and TNF-α) in macrophages [113]. Ohno
et al. [114] produced results in support of this concept by
reporting that exogenous IL-33 potentiated LPS-induced
IL-6 production by macrophages and that this effect was
suppressed by the blockade of endogenous IL-33 by anti-
IL-33 neutralizing antibodies.
In light of the role of IL-33 in LPS-induced proinflamma-

tory responses, researchers have also explored the immuno-
modulatory functions of sST2, the decoy receptor of IL-33,
in LPS-mediated inflammation [115–117]. sST2 treatment
inhibited the production of LPS-induced proinflammatory
cytokines (IL-6, IL-12 and TNF-α) from BMMs and nega-
tively regulated the expression of TLR-4 and TLR-1 [115].
Consistent results were obtained in vivo after LPS challenge;
sST2 administration significantly reduced LPS-mediated
mortality and serum levels of IL-6, IL-12, and TNF-α [115].
sST2 down-regulates LPS-induced IL-6 production from a
human monocytic leukemia cell line via the suppression of
NF-κB binding to the IL-6 promoter [116], and sST2 can be
internalized into dendritic cells and suppresses LPS signaling
and cytokine production in human monocyte-derived den-
dritic cells without attenuating the LPS-induced dendritic
cell maturation [117]. Conversely, the inhibition of endogen-
ous ST2 through the administration of anti-ST2 antibody
aggravated the toxic effects of LPS [115], suggesting distinct
roles for IL-33 and ST2 signaling in LPS-induced responses.
The production of IL-33 in the lung was reported in

airway inflammation [118] and virus infection [119]. In a
mouse model of LPS-induced acute lung injury, the ad-
ministration of engineered human adipose tissue-derived
mesenchymal stem cells (hASCs) overexpressing murine
sST2 led to the local suppression of IL-33 signaling and
the reduced expression of IL-1β and IFN-γ in the lungs.
This was associated with a substantial decrease in lung air-
space inflammation, inflammatory cell infiltration and vas-
cular leakage [120]. Yin et al. [121] found that sST2
reduces inflammatory cell infiltration and alveolar
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hemorrhage in the alveolar airspace and remarkably
suppresses proinflammatory cytokine production (TNF-α,
IL-6) and TLR-4 gene expression in lung tissues. Taken
together, these in vivo studies show that IL-33 signaling
can be proinflammatory in the lung during endotoxemia.

Experimental research — the role of IL-33/ST2 in infection
models
Our understanding of the contributions of IL-33 and
ST2 during infections is advancing; however, the roles
appear to be time, tissue, and model dependent. For
example, the effects of ST2 in sepsis were different de-
pending on the model and study design. It was proposed
that ST2 contributes to immune suppression during
sepsis [122]. In a murine model of cecal ligation and
puncture (CLP)-induced sepsis, ST2 deletion leads to
improved survival and more efficient bacterial clearance
in mice challenged with secondary pneumonia [122]. In
contrast, ST2-deficient mice showed increased suscepti-
bility to CLP-induced polymicrobial sepsis with in-
creased mortality, impaired bacterial clearance and
increased production of proinflammatory cytokines
(TNF-α, IL-6), when compared with their wild-type lit-
termates [123]. This was associated with impaired bac-
terial uptake, phagocytosis, and killing by ST2-deficient
phagocytes, which displayed defects in phagosome mat-
uration, NADPH oxidase 2 (NOX2) activity and super-
oxide anion production in response to bacterial
challenge [123]. When exposed to Streptococcus
pneumoniae or Klebsiella pneumoniae, ST2-deficient
blood leukocytes and splenocytes produced lower levels
of cytokines and chemokines than wild-type cells [124].
ST2-deficient mice challenged with Streptococcus pneu-
moniae have lower bacterial loads in their spleens com-
pared with their wide-type littermates [124].
Exogenous IL-33 was shown to be protective in mur-

ine models of CLP-induced sepsis. IL-33 treatment en-
hanced the neutrophil influx to the site of infection and
thus led to more efficient bacterial clearance and re-
duced mortality in CLP-induced septic mice [125]. This
effect was mediated by preserving CXCR2 expression on
neutrophils. The chemokine receptor, CXCR2 has a cen-
tral role in the recruitment of neutrophils and was
down-regulated by TLR4 activation during sepsis. IL-33
reversed the down-regulation of CXCR2 and promoted
neutrophil recruitment by repressing G protein-coupled
receptor kinase-2 (GRK2) expression [125]. The admin-
istration of recombinant IL-33 1 h and 6 h after CLP en-
hanced bacterial clearance and improved the survival of
septic mice [126]. At 24 h after CLP, IL-33 attenuated
the severity of organ damage and decreased the serum
levels of IL-6, IL-10, TNF-α and IFN-γ, the effect of
which was likely to be the consequence of improved bac-
terial clearance [126]. In an acute Staphylococcus aureus

peritoneal infection model, IL-33 administration facili-
tated neutrophil recruitment and bacterial clearance,
with higher CXCL2 levels in the peritoneum than un-
treated mice [127]. Thus, one role for IL-33 appears to
be supporting PMN-mediated bacterial clearance in the
early phases of bacterial sepsis. There is also some sugges-
tion that IL-33/ST2 may drive the delayed immunosup-
pression of sepsis. However, more studies are needed to
draw this conclusion. We have recently shown that IL-33
can drive ILC2 activation and early IL-5-mediated PMN
recruitment in the lung in the CLP model (manuscript
submitted). This leads to enhanced early lung injury.
Therefore, the cost of enhanced PMN infiltration medi-
ated by IL-33 appears to be secondary, remote lung injury.

Conclusion
Similar to many immuno-regulatory pathways, the IL-
33-ST2 axis plays diverse and context specific roles in
sepsis (Table 1). These diverse roles arise, at least in part,
through the variety of immune cells that can express

Table 1 Roles of IL-33/ST2 in sepsis models

Disease Role of IL-33/ST2 Referenced

Sepsis Sepsis patients have higher
levels of serum IL-33 and sST2

[104–108]

Endotoxemia ST2 negatively regulates TLR4
signaling and maintains LPS tolerance

[109]

Endotoxemia ST2 negatively regulates TLR2 signaling,
but is not required for BLP tolerance

[110]

Endotoxemia IL-33 enhances LPS-induced
proinflammatory mediators in
mouse macrophages in a
ST2-dependent manner

[111, 113, 114]

Endotoxemia sST2 reduces LPS-mediated
mortality and inhibits LPS-induced
proinflammatory cytokines

[115–117]

Endotoxemia sST2 reduces inflammatory cell
infiltration and vascular leakage,
and suppresses proinflammatory
cytokine production in lung tissues

[120, 121]

Abdominal
sepsis

ST2 deletion protects mice challenged
with secondary pneumonia

[122]

Abdominal
sepsis

ST2 deficiency increases the
susceptibility to sepsis

[123]

Streptococcus
pneumoniae
infection

ST2 deficiency protects mice
challenged with S. pneumonia

[124]

Abdominal
sepsis

IL-33 enhances neutrophil
recruitment and protects mice
with more efficient bacterial
clearance and improved survival

[125, 126]

Abdominal
sepsis

IL-33 administration attenuates
organ damage in the late phase
of sepsis

[126]

Staphylococcus
aureus infection

IL-33 administration facilitates
neutrophil recruitment and
bacterial clearance

[127]
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ST2 and respond to IL-33. Much remains to be eluci-
dated regarding the precise functions and underlying
mechanism of the IL-33-ST2 signaling pathway in sepsis.
As our understanding advances, it may be possible to
target this pathway to promote antimicrobial defenses or
to reduce secondary organ damage.
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