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Abstract 

Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms 
of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their poten-
tial as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease 
progression. Consequently, these pharmacological agents hold promise for the treatment and management of vari-
ous diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) 
in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, 
particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin 
(mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin 
signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The 
internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influenc-
ing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense 
mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regula-
tion in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory 
conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host 
and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-mod-
ulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights 
into future perspectives. This review also presents existing evidence on the role of exosomes and their components 
in the emergence of therapeutic resistance.
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Background
Chronic diseases represent enduring non-communica-
ble conditions that persist for over an year, significantly 
impacting daily life functions and necessitates medical 
care [1, 2]. Despite recent advancements in medicine 
contributing to increased life expectancy among affected 
individuals, chronic disease remains a predominant 
global challenge [3, 4]. The World Health Organization’s 
independent high-level commission on non-communica-
ble diseases stated that cardiovascular diseases (CVDs), 
cancer, chronic respiratory diseases, and diabetes are the 
top 4 chronic diseases, collectively responsible for a sub-
stantial number of fatalities across all age demographics 
globally [5]. Importantly, the etiology and progression 
of these diseases are rooted in modifiable risk factors, 
including insufficient physical activity, suboptimal die-
tary practices, use of tobacco, alcohol consumption, 
stress, and radiation exposure [6, 7]. Moreover, cellu-
lar cross-talk plays a pivotal role in the pathogenesis of 
chronic diseases facilitated by proteins such as receptors, 
ligands, and transcription factors which actively engage 
in cellular communication processes [8–10]. Nuclear 
receptors (NRs) constitute one such family of ligand-
activated transcription factors that are crucial in various 
biological processes such as development, reproduction, 
metabolism, and defense [11–15]. The human NR super-
family comprises 48 members characterized by con-
served structures, including an α-helical globular region 
in the C-terminal for ligand binding and dimerization, 
a hinge region connecting the C-terminal to the deoxy-
ribonucleic acid (DNA) binding region, and a variable 
N-terminal aiding in transcriptional regulation [16–19]. 
Recent studies have focused on targeting NRs to develop 
innovative treatment approaches for chronic diseases 
[20–25]. Specifically, the modulation of NRs through 
agonists, antagonists, or miRNAs induces transcriptional 
regulation of downstream genes that govern metabolic 
processes [26–28]. Importantly, exosomal contents such 
as miRNAs and long non-coding RNAs (lncRNAs) inter-
act and modulate NRs resulting in perturbations in asso-
ciated immune cells, inflammatory cytokines, reactive 
oxygen species (ROS), and cell cycle regulators [29–31]. 
Studies have also revealed that treatment with NR ago-
nists induces the secretion of exosomes, thereby modu-
lating cellular functions [32, 33].

Recently, extracellular vesicles (EVs) have garnered 
substantial attention as pivotal mediators of cellular 
signaling, emerging as both diagnostic and prognos-
tic biomarkers in the context of chronic diseases, thus 
constituting a prominent subject of scientific inquiry 
[34–37]. EVs are membrane-bound microparticles that 
facilitate the transfer of molecular cargo from donor 
cells to recipient cells [38, 39]. Based on their size and 

origin, EVs are classified as apoptotic bodies, ectosomes, 
endosomes, exosomes, microparticles, microvesi-
cles, nanoparticles, and oncosomes [40]. Exosomes 
are defined as EV falling within a defined size range of 
30–150  nm [41, 42]. They originate from the inward 
budding of the early endosomal membrane, can be iso-
lated through particular methodologies and contain 
specific cargo [43–45]. The role of exosomes in trans-
porting biological contents, including lipids, proteins, 
and nucleic acids is noteworthy because they influence 
both physiological and pathological processes [43, 46–
49]. These cargos are effectively delivered to recipient 
cells through the communication via surface proteins of 
exosomes, internalization through endocytosis, or direct 
fusion with recipient cells [41, 42]. A substantial body 
of research suggests the role of exosomes in the conver-
sion of acute diseases into chronic conditions [50–54]. 
However, recent investigations have emphasized the 
therapeutic potential of exosomes, primarily attributed 
to their low immunogenicity, nanoscale size, targeted 
delivery of cargo, biocompatibility, and minimal toxicity 
[35, 55, 56].

Interestingly, recent studies highlight the significance 
of the intricate communication between exosomes and 
NRs in disease development and treatment [32, 33]. This 
has been summarized in Fig.  1. This review provides 
a comprehensive overview of the cross-talk between 
exosomes and NRs, elucidating the mechanisms involved 
in the development and prophylaxis of chronic diseases. 
Further, the review delves into the exosomal content, 
alterations in gene expression, and underlying pathways 
influencing the progression or regression of chronic dis-
eases. Current limitations and future goals for developing 
treatment regimens against persistent chronic ailments 
that target exosomes and NR-mediated cross-talk were 
also discussed.

NRs and signaling
NRs constitute a substantial group of ligand-dependent 
transcription factors that play a crucial role in cellular 
signaling and metabolism. As mentioned previously, 
this superfamily comprises 48 members, including 
steroid, thyroid, and vitamin receptors [13, 14, 57–63]. 
Further, they can be classified into three groups based 
on their ligands and modes of action. Class I includes 
the endocrine receptors, such as androgen recep-
tor (AR), estrogen receptor alpha (ERα), ERβ, pro-
gesterone receptor (PR), retinoic acid receptor alpha 
(RARα), RARβ, RARγ, thyroid hormone receptor alpha 
(THRα), THRβ, vitamin D receptor (VDR), glucocor-
ticoid receptor (GR), and mineralocorticoid receptor 
(MR); class II comprises the orphan receptors with no 
known ligands including chicken ovalbumin upstream 
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promoter transcription factors, dosage-sensitive sex-
reversal adrenal hypoplasia congenital critical region 
on the X chromosome gene 1 (DAX1), germ cell 
nuclear factor, liver receptor homologue 1 (LRH1), 
tailless, photoreceptor-specific nuclear receptor, small 
heterodimer partner, and testicular receptor (TR); and 
the class III encompasses adopted NRs which were pre-
viously considered orphans, whose ligands have been 
subsequently discovered including constitutive andros-
tane receptor (CAR), estrogen-related receptor alpha 
(ERRα), ERRβ, ERRγ, hepatocyte nuclear factor 4 alpha 
(HNF4α), HNF4γ, farnesoid X receptor (FXR), liver X 
receptor alpha (LXRα), LXRβ, neuron-derived orphan 
receptor 1, nerve growth factor-induced clone B, Nur-
related factor 1, peroxisome proliferator-activated 
receptor alpha (PPARα), PPARγ, PPARδ, pregnane X 
receptor (PXR), Rev-ErbAα, Rev-ErbAβ, RAR-related 

orphan receptor alpha (RORα), RORβ, RORγ, retinoid 
X receptor alpha (RXRα), RXRβ, RXRγ, steroidogenic 
factor-1, and TR4 [13, 60, 64–66].

NRs exhibit a variety of structural forms, including 
monomers, homodimers, and heterodimers, each of 
which binds to specific DNA sequences known as “hor-
mone-response elements” with the consensus sequence 
RGG​TCA​ (where R denotes a purine base) [67]. NRs 
are classified into 4 subtypes according to their down-
stream signaling mechanisms. Type I receptors (e.g., 
ARs, ERs, and PRs) are primarily located in the cyto-
plasm and are bound by chaperone proteins [67]. Upon 
binding to a ligand, they dissociate from chaperones, 
facilitating homodimerization, nuclear translocation, 
and subsequent DNA binding with coactivators. Con-
versely, type II receptors (e.g., THRs, RARs) mainly 
reside in the nucleus and are pre-associated with specific 

Fig. 1  The interaction between exosomes and nuclear receptors (NRs) plays a crucial role in the development and progression of various chronic 
diseases. Exosomes can influence NRs by modulating their expression through the transfer of their contents, such as microRNAs (miRNAs). This 
alteration in NR expression affects downstream targets, contributing to the onset and progression of chronic diseases. Conversely, NRs can 
also regulate exosomes by modifying their secretion or altering their contents that are involved in patho-physiological conditions. AIDS acquired 
immune deficiency syndrome, CVDs cardiovascular diseases, HIV human immunodeficiency virus, NASH non-alcoholic steatohepatitis
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DNA response elements. They may also form heterodi-
mers with RXRs [67]. Binding of ligand to the specific 
domain prompts corepressor dissociation and coactiva-
tor recruitment [67]. Type III receptors share similari-
ties with type I receptors but differ in hormone response 
element organization, while type IV receptors preferen-
tially bind as monomers to half-site hormone-response 
elements [67].

It is increasingly acknowledged that NRs not only regu-
late the expression of target genes but also interact with 
other signaling pathways and their downstream effec-
tors, thereby influencing each other’s activities [68]. This 
interplay reflects the integration of NR function within 
the cellular context. For example, NRs can reciprocally 
repress activator protein 1 (AP1) (c-Fos/c-Jun) activi-
ties, cross-talk with NF-κB pathway, and   be modulated 
through phosphorylation by the mitogen activated pro-
tein kinase (MAPK) pathway [19, 68, 69].

NRs act as substrates for various kinases that are acti-
vated by diverse signaling pathways. Phosphorylation 
of the N-terminal A/B region of NRs such as ERα, ERβ, 
PPARα, and AR by extracellular signal-regulated kinase 
(ERK), p38 MAPK, c-Jun NH2-terminal kinase (JNKs), 
and Akt promotes coactivator recruitment. This phos-
phorylation enhances chromatin remodeling, thereby 
increasing transcriptional efficiency and target gene 
expression [70–74]. Additionally, phosphorylation aug-
ments the growth-stimulating effects of certain NRs, 
including ERα and AR [72]. Src kinases phosphorylate ER 
at tyrosine 537 and protein kinase A (PKA) phosphoryl-
ates RARα at serine 369, positively modulating their tran-
scriptional activities [75–77]. Cross-talk between NRs 
and signaling pathways also induces phosphorylation of 
NR coregulators, such as steroid receptor coactivator 1, 
PPARγ coactivator-1 alpha (PGC-1α), nuclear receptor 
coactivator 2 (NCOA2/TIF2), p300/CREB binding pro-
tein (CBP), and nuclear receptor coactivator 3 (NCOA3/
pCIP), enhancing ligand binding efficacy and histone 
acetyltransferase recruitment [78–83]. Conversely, phos-
phorylation can deactivate NRs; for instance, protein 
kinase C (PKC) induced phosphorylation of VDR amino 
acid residues involved in response elements leads to sup-
pression of gene expression [72, 84]. Phosphorylation-
mediated inhibition of ERα and RARα activities occurs 
through the phosphorylation of residues within the DNA 
binding domain dimerization surface by PKA or PKC, 
respectively [72, 85, 86].

Aberrant phosphorylation of NRs is a crucial factor 
in the development and progression of various cancers, 
including breast, ovarian, and prostate cancers. The 
activation of MAPK and Akt kinases in tumors con-
tributes to ligand-independent transactivation of ERs 
and ARs, leading to hormone-independent growth and 

resistance to hormone-based therapies such as andro-
gen ablation or tamoxifen treatment in cancer cells [77, 
87, 88].

NRs and chronic diseases
Numerous investigations have consistently reported a 
correlation between metabolic reprogramming and the 
onset and progression of chronic diseases [89–91]. At 
cellular level, transcription factors exhibit the capacity 
to discern changes in metabolite levels and then modu-
late genes involved in diverse metabolic pathways such 
as glucose metabolism, lipid metabolism, insulin signal-
ing cascade, and amino acid metabolism [92–100]. Con-
sequently, disruption in genetics and alterations in their 
expression patterns result in metabolic dysregulation and 
pathological conditions [101–105]. Enhanced activity of 
certain cytoplasmic transcription factors, including sig-
nal transducers and activators of transcription (STAT), 
NF-κB, β-catenin, notch intracellular domain (NICD), 
AP1, hypoxia-inducible factors (HIF), myelocytomatosis 
oncogene (Myc), retinoblastoma binding protein (E2F), 
E26 transformation-specific (ETS) transcription fac-
tor and NRs has been observed in human cancers [106, 
107]. The adaptability of NRs to promptly and dynami-
cally respond to environmental stimuli makes them ver-
satile integral components of cells. A multitude of NR 
types are expressed in different tissues throughout the 
body, exhibiting responsiveness to a wide range of ster-
oids, non-steroidal hormones, metabolites, and molecu-
lar signals including phosphorylation and acetylation 
[108]. Consequently, the orchestrated activities of NRs 
hold significance in both physiological processes and 
pathological conditions. Within this context, NRs have 
undergone exquisite evolutionary refinement to regulate 
diverse fuel sources, including dietary and endogenous 
fat (PPAR), cholesterol (LXR; FXR), sugar mobilization 
(GR), salt (MR), and calcium (VDR) [109]. The THR 
evolved to maintain basal metabolic rate, while reproduc-
tive processes are controlled by gonadal steroid receptors 
(PR, ER, AR). Additionally, the NR superfamily manages 
inflammation during infection by defending the body 
while suppressing appetite and promoting sleep [109]. 
An ill body can defend itself by mobilizing fuel reserves, 
transiently suppressing inflammation, and releasing adre-
nal steroids. Clinically, glucocorticoids are mainly used 
as anti-inflammatory agents. Receptors like RARs, LXRs, 
PPARγ, PPARδ, and VDR protect against inflammation, 
revealing the dual role of the NR superfamily in govern-
ing energy homeostasis and the inflammatory response 
[109]. Moreover, the xenobiotic receptors such as PXR 
and CAR have evolved to counteract myriads of envi-
ronmental toxins [109]. In summary, nature has sculpted 
within this superfamily of receptors a cohesive ability to 
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govern both energy homeostasis and the inflammatory 
response, highlighting the inherent duality between these 
physiological systems. Therefore, dysfunction in NR sign-
aling   can  leads to proliferative, metabolic and repro-
ductive-related chronic diseases such as cancer, obesity, 
diabetes, and infertility. This has been summarized in 
Fig. 2 [110–113].

Pioneering Nobel Prize-winning research initially 
established a connection between steroid hormones and 
prostate cancer, and later expanded this association to 
breast cancer [114, 115]. Subsequent investigations have 
firmly established the significant contribution of NR 
signaling to the development and progression of cancer. 
This is supported by the frequent dependence of onco-
genic events leading to cell transformation on cascades 
of NR-mediated transcriptional signaling, as well as the 
reported aberrant expression of NRs in several types of 
cancer [66]. For instance, overexpression of ER occurs 
in more than 70% of breast cancers, making it as a key 
therapeutic target [116]. PR has been shown to enhance 
motility and invasiveness in breast cancer, while AR acti-
vation by androgens is crucial for the initiation and pro-
gression of prostate cancers [117, 118]. RAR activated by 
retinoic acid, exerts antiproliferative effects in tumor cells 
and translocation or fusion involving promyelocytic leu-
kemia with RARα leads to acute promyelocytic leukemia 
(APL) in hematopoietic myeloid cells [119]. Early studies 
have highlighted the crucial role of NR status in cancer, 
particularly in terms of patient survival and treatment 
outcomes. For example, tumors lacking expression of 
both ER and PR (ER−PR−) exhibit resistance to hormone 
therapies and present the least favorable prognosis for 
patient survival. Subsequently, tumors characterized by 
the absence of ER but the presence of PR (ER−PR+) have 
an intermediate prognosis. In contrast, tumors express-
ing both ER and PR (ER+PR+) generally demonstrate 
more favorable prognoses [120–122]. Additionally, the 
status of ER and PR along with HER2 has established a 
straightforward stratification for breast cancer which 
correlates with both survival outcomes and the selection 
of targeted therapeutic approaches [120, 121]. Another 
study has demonstrated the overexpression of LRH1 in 
breast cancer cells playing pivotal role in inducing pro-
liferation, invasion and migration in both ER+ and ER− 
breast cancer cells [123]. Additionally, recent studies 
have also clarified that HNF4α plays a central role in the 
oncogenesis of colorectal cancers through the regulation 
of ROS generation [124, 125]. To date, the most success-
ful therapeutic targeting transcription factors in cancer 
has predominantly stemmed from the utilization of small 
molecules designed to selectively bind to nuclear hor-
mone receptors [126]. Notably, pharmaceutical agents 
modulating the activity of ER, AR, RAR, and GR are 

presently employed in the treatment regimens for breast 
cancer, prostate cancer, APL, and acute lymphoblastic 
leukemia, respectively [18, 126].

A multitude of studies have elucidated the essential 
role played by various NRs in the initiation and pro-
gression of other chronic diseases. Wang et  al. [111] 
investigated the therapeutic potential of the FXR and 
G protein-coupled receptor 5 (TGR5) axis in the treat-
ment of non-alcoholic steatohepatitis (NASH) [111]. 
Administration of FXR-TGR5 dual agonist, INT-
767, effectively impeded the advancement of hepatic 
inflammation, steatosis, and fibrosis in C57BL/6J mice 
subjected to a Western diet. Notably, INT-767 also 
exhibited inhibitory effects on fatty acid synthesis and 
uptake, cholesterol uptake, and bile acid hydrophobic-
ity. Mechanistic investigations revealed that INT-767 
upregulated the expression of pAMP-activated pro-
tein kinase, sirtuin (SIRT)-1, SIRT-3, and PGC1α in 
the liver, further elucidating its molecular mechanisms 
[111]. Another study showed the importance of the 
FXR in the pathogenesis of non-alcoholic fatty liver dis-
ease (NAFLD) in murine models. When subjected to a 
methionine-choline deficient (MCD) diet, FXR-defi-
cient mice exhibited increased hepatic fibrosis and liver 
damage but reduced steatosis compared to wild-type 
counterparts fed with MCD [112]. Additionally, the 
FXR-deficient mice inhibited the expression of genes 
involved in fatty acid uptake and triglyceride accumu-
lation [112]. Furthermore, an in vitro study highlighted 
the beneficial effects of all-trans-retinoic acid (ATRA), a 
ligand for RAR, in ameliorating podocyte injury [127]. 
ATRA treatment activated podocin and nephrin while 
inhibited transforming growth factor beta (TGF-β)1 
in murine podocytes, emphasizing the involvement 
of RAR pathway in ATRA-induced differentiation of 
injured podocytes [127]. Moreover, treatment with Juni-
perus communis berries showed activation of PPARα, 
PPARγ, and LXR, while this treatment led to reduced 
body weight and fasting glucose levels in high-fat diet 
(HFD) fed mice [110]. This study demonstrated the cru-
cial role of NRs in cellular metabolism and their poten-
tial as targets for addressing obesity and diabetes [110]. 
Lastly, the study by Jiang et  al. [113] highlighted the 
synergistic effect of RAR and LXR agonists, ATRA or 
TO-901317, in the context of human immunodeficiency 
virus (HIV) infection. Treatment with these agonists in 
CD4+ T cells was shown to enhance cholesterol efflux, 
thereby reducing intracellular cholesterol levels and 
preventing HIV entry into the cell [113]. These findings 
collectively indicate the diverse and crucial roles of NRs 
in various physiological and pathological processes, 
thereby substantiating their potential as targets for ther-
apeutic interventions.
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Fig. 2  (See legend on next page.)
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The chemistry of NRs, their ligand binding properties, 
and wide range of physiological functions have made 
them successful therapeutic targets [126]. Pharmaceu-
tical agents that act as agonists or antagonists for NRs, 
such as tamoxifen for ER (used in breast cancer treat-
ment), glitazones and thiazolidinediones for PPARγ (uti-
lized in type II diabetes management), or dexamethasone 
for GR (applied in the treatment of inflammatory dis-
eases), represent prevalent and widely employed thera-
peutic modalities [126, 128].

The combination of these investigations collectively 
suggests that NRs play a pivotal role in processes such as 
sugar mobilization, salt balance, calcium balance, fatty 
acid uptake, metabolism, cholesterol influx/efflux, and fat 
distribution. Experimental models with genetic deficien-
cies in NRs have exhibited disruptions in lipid metabo-
lism, causing harm to host tissues. Therefore, NRs emerge 
as crucial mediators in the regulation of lipid metabolism, 
and any modulation thereof is anticipated to give rise to 
pathological conditions. Numerous studies have meticu-
lously delineated the involvement of NRs in lipid metabo-
lism throughout the onset and advancement of chronic 
diseases, thereby establishing NRs as compelling diagnos-
tic tools and druggable targets [129–131].

Exosomes and chronic diseases
Exosomes play a crucial role in both intra- and inter-
cellular communication, first discovered in the 1980s as 
vesicles involved in reticulocyte maturation [35, 132–
134]. The field of exosome research has experienced 
rapid expansion in recent years, marked by groundbreak-
ing discoveries [135, 136]. Notably, studies revealed the 
predominant presence of cholesterol, sphingomyelin, 
ceramide, and phosphatidylserine in exosomes [137–
139]. This lipid framework significantly influences vari-
ous aspects of exosome dynamics such as secretion, 
structural integrity, cargo loading, endocytosis, and 
signaling processes [42, 43]. The formation of exosomes 
begins with their initial synthesis as intraluminal vesicles 

through inward budding of multivesicular bodies. Sub-
sequently, during the maturation process from early to 
late endosomes, these multivesicular bodies fuse with 
the plasma membrane, resulting in the release of encap-
sulated intraluminal vesicles into the extracellular space, 
thereby acquiring the designation as exosomes [140]. 
Numerous studies have demonstrated the significant 
involvement of exosomes in biological processes such 
as cellular communication, reproduction, development, 
and immune response. The complex signaling pathways 
in cellular communication through exosomes include 
horizontal transfer of cargos [141]. Moreover, various 
signaling pathways essential for human reproduction, 
pregnancy and embryonic development are directly 
linked to exosomes [142]. Exosomes also play a vital role 
in sperm epididymal maturation, contributing to the 
production of male gametes with optimal motility [143]. 
Seminal exosomes from different donors exhibited   let7 
family members as the most abundant miRNA that regu-
late interleukin (IL)-10 and IL-13 expression, suggesting a 
potential role of exosomes in genitalia resident immunity 
[144]. Further, antigen presentation during an immune 
response is another important function of exosomes. 
For example, B cell-derived exosomes carrying major 
histocompatibility complex class II contribute to the 
maintenance of T cell memory and tolerance [46]. Apart 
from this, they also aid in preventing placental infection 
through the delivery of exosomal miRNA, and breast 
milk-derived exosomes serve as an immune booster [145, 
146].

The growing body of empirical evidence strongly 
supports the involvement of exosomes in the patho-
genesis of various diseases as well. For example, Wen 
et al. [136] demonstrated that serum exosomes sourced 
from individuals with unstable plaque atherosclerosis 
(UA) exhibited an upregulation of circRNA-0006896 in 
human umbilical vein endothelial cells (HUVECs), com-
pared to serum exosomes derived from patients with 
stable plaque atherosclerosis (SA). This upregulation of 

Fig. 2  The pivotal role of nuclear receptors (NRs) in the etiology of chronic diseases. Aberrations in NR function are implicated in the initiation 
and progression of pathological states. NRs are crucial participants in the genesis and advancement of obesity, a condition primarily arising 
from lifestyle factors and associated inflammatory processes. Targeting NRs represents a significant avenue for obesity management. Administration 
of a methanol extract derived from Juniperus communis berries led to a reduction in weight and blood sugar levels in obese mice by upregulating 
PPARα, PPARγ and LXR. Moreover, deregulated expression of NRs has been implicated in the manifestation of various cancer hallmarks, 
including immune evasion, inflammation, replicative immortality, cell death evasion, invasion and metastasis, angiogenesis, mitochondrial 
dysfunction, evading growth suppressors, uncontrolled proliferation, and deregulated cellular energetics. Of note, the dual agonist of FXR and TGR5, 
INT-767, has exhibited therapeutic efficacy in countering non-alcoholic steatohepatitis (NASH) and combinatorial treatment involving RAR and LXR 
agonists, namely all-trans retinoic acid (ATRA) and TO-901317, respectively, has resulted in diminished replication of the HIV. AIDS acquired immune 
deficiency syndrome, HIV human immunodeficiency virus, PPAR peroxisome proliferator-activated receptor, LXR liver X receptor, ALT alanine 
transaminase, AST aspartate aminotransferase, MCD methionine-choline deficient, ABCA1 ATP-binding cassette A1, RAR retinoic acid receptor, TG 
triglycerides, RT reverse transcriptase

(See figure on previous page.)
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circRNA-0006896 led to subsequent binding and down-
regulation of miR-1264 within the HUVECs, increasing 
phosphorylated STAT3 and DNA methyltransferase 1 
(DNMT1), ultimately inducing hypermethylation of 
suppressor of cytokine signaling 3 [136]. These events 
resulted in enhanced proliferation and migration of 
HUVECs, suggesting that serum exosomes from UA 
patients are pivotal factors in the initiation of pathologi-
cal plaque formation. The underlying circRNA-0006896/
STAT3/DNMT1 axis emerges as a potential novel thera-
peutic target for atherosclerosis [136]. In another study, 
Yang et al. [147] revealed that treatment with exosomes 
derived from mesenchymal stem cells (MSCs) contain-
ing miR-145 suppressed junction adhesion molecule 
A, thereby reducing the migration of HUVECs treated 
with oxidized low-density lipoprotein (LDL). Impor-
tantly, the study demonstrated that miR-145-enriched 
exosomes contributed to the reduction of plaque forma-
tion in atherosclerotic mouse models, highlighting the 
potential role of exosomes in preventing atherosclero-
sis [147]. Moreover, MSC-derived exosomes containing 
miR-let7 were found to promote M2 polarization and 
inhibit macrophage infiltration respectively through the 
miR-let7/high mobility group AT-hook 2/NF-κB path-
way and miR-let7/insulin-like growth factor 2 mRNA-
binding protein 1/phosphatase and tensin homolog 
(PTEN) pathways. This dual mechanism hindered 
the progression of atherosclerosis in both in  vitro and 
in vivo models [135]. Additional insights into the intri-
cate interplay between exosomes and endothelial cells 
were provided by Taverna et al. [148]. Exosomes derived 
from LAMA8A cells were observed to enhance cell-to-
cell adhesion, migration, and angiogenesis in HUVECs 
by upregulating intercellular adhesion molecule 1 
(ICAM1), vascular cell adhesion molecule 1 (VCAM1), 
as well as inducing phosphorylation of MAPK. These 
exosomes were also found to expedite the attachment 
of chronic myeloid leukemia cells to HUVECs, high-
lighting the importance of exosome-mediated com-
munication between cancer cells and endothelial cells 
in promoting tumor angiogenesis [148]. Furthermore, 
Fuchs et  al. [149] elucidated a crucial role for subcu-
taneous abdominal adipose tissue-derived exosomes 
and plasminogen activator inhibitor-1 (PAI-1) in the 
development of obesity. Elevated levels of both circu-
lating exosomes and PAI-1 were detected in patients 
with obese NAFLD compared to obese individuals with 
normal intrahepatic triglyceride levels as well as a lean 
control group [149]. Notably, exosomes derived from 
the obese NAFLD group induced insulin resistance in 
hepatocytes and myotubes, as evidenced by reduced 
Akt phosphorylation [149].

Accumulating evidence indicates an upregulation of 
exosome production in chronic kidney diseases, lead-
ing to target various kidney cell types such as intersti-
tial fibroblasts, tubular epithelial cells, macrophages, 
and endothelial cells. This subsequently modulates their 
behavior and function [150, 151]. For instance, Liu et al. 
[150] demonstrated that TGF-β-stimulated human kid-
ney tubular cells exhibit an increase in exosome release 
along with a protective effect on renal interstitial cells. 
Exosomes containing tumor necrosis factor alpha (TNF-
α) induced protein were also found to inhibit fibroblast 
apoptosis by degrading p53 via ubiquitination [150]. 
Additionally, ovariectomy results in decreased serum 
levels of estrogen and progesterone, accompanied by 
reduced urine output, increased urinary protein excre-
tion, elevated serum creatinine and blood urea nitrogen 
levels, ultimately leading to renal dysfunction and fibrotic 
alterations  that confirms chronic kidney disease. Never-
theless, therapy with exosomes derived from bone mar-
row mesenchymal stem cells (BMSCs) showed protective 
effect against these pathologies in ovariectomized rats 
[152]. Similarly, exosomes derived from MSCs enriched 
with miR-21a-5p improved unilateral ureter obstruction-
induced renal fibrosis by inhibiting glycolysis in tubular 
epithelial cells [153]. Conversely, another study illustrated 
that miR-21 present in exosomes derived from TGF-β1-
stimulated tubular epithelial cells accelerated fibrosis and 
unilateral ureter obstruction both in  vitro and in  vivo 
through PTEN/Akt signaling in obstructed kidney [51].

A recent  study examined the impact of exosomes 
derived from BMSCs on TGF-β-induced human renal 
proximal tubular epithelial cells and 5/6 subtotal 
nephrectomy rat models [154]. These exosomes exhib-
ited a protective effect by improving renal function, and 
reducing fibrotic regions, which was further enhanced 
when combined with si-Smurf-2 (SMAD specific E3 
ubiquitin protein ligase 2) [154]. In summary, the afore-
mentioned studies suggest the significant involvement 
of exosomes in modulating chronic kidney diseases, 
highlighting their potential to alleviate such conditions 
through diverse molecular targets. However, compre-
hensive research is necessary to validate these protective 
effects due to conflicting outcomes in certain studies.

The potential utility of exosomes as biomarkers in 
clinical settings has been demonstrated by several stud-
ies. For instance, Zhu et al. [155] reported an increase in 
tRNA-derived small RNAs in plasma exosomes isolated 
from liver cancer patients compared to healthy donors, 
suggesting their potential as diagnostic biomarkers for 
liver cancer. Additionally, Jiao et  al. [156] showed that 
exosomes derived from chronic hepatitis B and acute-
on-chronic liver failure patients exhibited enhanced 
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expression of CD63 and albumin compared to survival 
group, with a higher percentage of these exosomes in 
acute-on-chronic liver failure compared to chronic hep-
atitis B. Notably, the study indicated that albumin and 
vascular endothelial growth factor (VEGF) present in 
exosomes could serve as biomarkers for liver regenera-
tion and prognostic evaluation [156]. These collective 
findings contribute to the understanding of the diverse 
roles of exosomes in various disease pathologies, empha-
sizing their potential as both diagnostic biomarkers and 
therapeutic targets.

In conclusion, these investigations collectively shed 
light on the intricate functions of exosomes in modulat-
ing diverse cellular signaling pathways, including their 
regulatory influence on STAT3, the epigenetic regula-
tory mechanisms mediated by DNMT1, and the complex 
signaling cascades orchestrated by non-coding RNA. 
These delineated mechanisms play crucial roles in the 
development of chronic diseases. Furthermore, the iden-
tification of exosomes expressing modified surface mark-
ers emerges as a significant approach, proving beneficial 
not only for disease diagnosis but also for identifying 
novel therapeutic targets for treating chronic diseases.

Role of exosomes in modulating NRs
In recent years, the phenomenon of intercellular commu-
nication across distant cellular entities through paracrine 
signaling, particularly via exosome-mediated pathways, 
has attracted increased attention due to its crucial 
involvement in both physiological and pathological con-
texts [136]. Exosomes, in particular, play a regulatory 
role in manipulating various proteins within recipient 
cells, including NRs [29, 157]. The following discussion 
will outline the mechanism of the interaction between 
exosomes and NRs, with implications for pathophysio-
logical functions. The involvement of exosomes and their 
contents that target NRs in the pathogenesis of chronic 
diseases has been summarized in Table  1 [29–31, 157–
177], Figs. 3 and 4 [162, 163, 165, 166, 170].

Cancer
Cancer stands as a predominant global public health 
concern, despite notable advancements in current thera-
peutic modalities, the treatment of cancer remains a for-
midable challenge due to suboptimal therapeutic efficacy 
attributed to insufficient specificity and diminished bio-
availability [178]. Pharmaceutical agents targeting NRs 
have emerged as one of the most clinically efficacious 
inhibitors of cancer [126, 128]. Additionally, numer-
ous investigations have provided insights into the intri-
cacies of cancer cell signaling facilitated by exosomes, 
actively participating in processes such as angiogen-
esis, chemoresistance, extracellular matrix remodeling, 

immune evasion, metastasis, and related phenomena 
[179, 180]. This section focuses on elucidating the inter-
play between NRs and exosomes in various aspects of 
cancer biology. For instance, a study demonstrated that 
tumor cell-derived exosomes enriched with fatty acids 
induced immune dysfunction in dendritic cells (DCs), 
thereby promoting immune evasion [163]. These tumor-
derived exosomes (TDEs) were found to induce PPARα 
in DCs, leading to fatty acid accumulation and oxida-
tion, resulting in a shift towards mitochondrial oxidative 
phosphorylation [163]. Also, these TDEs upregulated sig-
nal regulatory protein alpha (SIRPα), programmed cell 
death-ligand 1 (PD-L1), and TGF-β, while downregulated 
interferon gamma (IFN-γ). Pharmacological inhibition or 
genetic deficiency of PPARα abrogated these effects and 
augmented the efficacy of immunotherapy [163]. Further-
more, exosomes originating from human papillomavirus 
(HPV)-infected head and neck squamous cell carcinoma 
(HNSCC) revealed elevated concentrations of miR-
9. These exosomes were transported to macrophages, 
inducing M1 polarization through the downregula-
tion of PPARδ and enhancing radiosensitivity in HPV+ 
HNSCC cells [166]. Moreover, The Cancer Genome Atlas 
data revealed upregulation in the expression of miR-9 
with concurrent downregulation of PPARδ in patients 
with HNSCC who exhibited a complete response [166]. 
Therefore, targeting miR-9/PPARδ axis plays a critical 
role in radiosensitizing HPV+ HNSCC cells and may 
offer a novel treatment strategy for this malignancy [166]. 
Male prevalence of hepatocellular carcinoma (HCC) 
may be associated with sex hormones such as andro-
gen and estrogen during its initiation, progression and 
metastasis [165]. Another study has demonstrated that 
exosomes derived from macrophages enhanced the inva-
sion of liver cancer cells. Exosomal miR-92a-5p can bind 
to the 3’UTR of AR, leading to transcriptional repression 
and modulation of the AR/PH domain and leucine rich 
repeat protein phosphatases (PHLPP)/p-Akt/β-catenin 
pathway in preclinical settings [165]. Besides, treat-
ment with antagomir reversed this effect and reduced 
invasion of HCC cells [165]. Guo et  al. [164] showed 
that exosomes derived from hypoxic glioma-derived 
exosomes (h-GDEs) containing miR-10a and miR-21 
highly induce the activation of myeloid-derived sup-
pressor cells (MDSCs) compared to exosomes derived 
from normoxic glioma cells. These h-GDEs were found 
to target RORα and PTEN by modulating the RORα or 
inhibitor of nuclear factor kappa B (IκBα)/NF-κB path-
way and PTEN/PI3K/Akt pathway respectively [164]. 
Besides, inhibition of RORα significantly upregulated 
p65 in nucleus while reduced IκBα, explaining intercel-
lular communication between tumor environment and 
immune system through exosomes by  involving hypoxia 
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Fig. 3  Intercellular communication mediated by nuclear receptors (NRs) and exosomes in the pathophysiology of chronic diseases. The intricate 
network of intercellular communication facilitated by NRs and exosomes, elucidating their pivotal role in the etiology and progression of chronic 
diseases such as cancer, cardiovascular diseases (CVDs), chronic rhinosinusitis, diabetes, HIV/AIDS, non-alcoholic steatohepatitis (NASH), neurological 
diseases, and obesity. In the context of these chronic maladies, the interplay between NRs and exosomes emerges as a critical determinant, 
influencing disease development and trajectory. This figure illustrates the sources of exosomes and their reported target NRs across the spectrum 
of chronic diseases under consideration. A comprehensive understanding of these underlying mechanisms holds promise for identifying 
novel therapeutic targets, thereby paving the way for innovative treatment modalities for a myriad of chronic diseases. AIDS acquired immune 
deficiency syndrome, AR androgen receptor, BMSC bone marrow mesenchymal stem cell, EPC endothelial progenitor cell, ER estrogen receptor, 
HIV human immunodeficiency virus, hUC-MSC human umbilical cord mesenchymal cell, MDSC myeloid derived suppressor cell, PPAR peroxisome 
proliferator-activated receptor, PVAT perivascular adipose tissue, RORα retinoic acid receptor related orphan receptors alpha
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[164]. Moreover, another study revealed that miR-765 in 
CD45RO−CD8+ T cell-derived exosomes downregulated 
proteolipid protein 2 (PLP2) in uterine corpus endome-
trial cancer (UCEC) cells, resulting in reduced prolif-
eration, survival, and epithelial-mesenchymal transition 
(EMT) [170]. Estrogen was identified as a regulator of 
miR-765/PLP2 through the ERβ receptor in UCEC cells 
[170]. Treatment with miR-765 enriched exosomes from 
CD45RO−CD8+ T cells alleviated estrogen-dependent 
tumor growth in UCEC cells bearing xenograft mouse 
models [170]. This indicates a mechanism of intercellu-
lar communication via exosomal RNA, whereby tumor 
cells affect the transcriptomes of immune cells. It pro-
vides new insights for exploring the connections between 
hypoxia and the cancer immune microenvironment.

The reciprocal communication between donor and 
recipient cells, facilitated by the transport of exosomes 
has been implicated in conferring chemoresistance. For 
example, Wei et  al. [161] demonstrated that exosomes 

derived from tamoxifen-resistant MCF-7 (MCF-7 TamR) 
cells exhibit distinct RNA and protein compositions com-
pared to exosomes from tamoxifen-sensitive wild-type 
MCF-7 (MCF-7wt) cells. Upon entry into MCF-7 sensi-
tive cells, exosomes from MCF-7 TamR cells release miR-
221/222, resulting in reduced expression of ERα and p27 
in wild-type cells, ultimately contributing to tamoxifen 
resistance [161]. Another study revealed that exosomes 
derived from adriamycin-resistant MCF-7 (MCF-7/ADR) 
cells promote a drug-resistant phenotype by transferring 
multidrug resistance protein 1 [181]. Treatment with pso-
ralen was shown to diminish the formation and secretion 
of these exosomes, thereby overcoming drug resistance 
in MCF-7 cells. Furthermore, the Kyoto Encyclopedia 
of Genes and Genomes pathway analysis implicated that 
PPAR and p53 pathways may be involved in exosomal 
formation, cargo packing, and secretion [181]. In another 
investigation, miRNA profiling of exosomes derived 
from MCF-7wt cells and MCF-7 TamR cells highlighted 

Fig. 4  Interplay between exosomes and nuclear receptors (NRs) in regulating tumor microenvironment dynamics. This figure illustrates the intricate 
cross-talk between exosomes and NRs in cancer pathogenesis. Tumor-derived exosomes (TDEs) convey genetic material, including genes 
and non-coding RNAs, to dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs). This molecular cargo targets specific NRs, influencing 
the functionality of these immune cells and contributing to immune evasion. TDEs from HPV+ HNSCC cells downregulate PPARδ, activating 
macrophages and enhancing radiosensitivity. Chemoresistant cancer cells use exosomes to transfer miRNAs targeting NRs to wild-type cancer 
cells, conferring therapeutic resistance. Macrophage-derived exosomes regulate the AR/PHLPP/Akt/β-catenin axis in liver cancer cells, promoting 
invasion. Conversely, T cell-derived exosomes deliver miR-765, suppressing PLP2 in ERβ+ uterine corpus endometrial carcinoma (UCEC) cells, 
reducing proliferation, EMT, and inducing apoptosis. These findings highlight the communication network between cancer cells and stromal cells 
within the tumor microenvironment via exosomal/NR interactions, suggesting that manipulating NR expression through targeted interventions 
presents a promising therapeutic strategy for diverse cancer types. Akt protein kinase B, CDs chronic diseases, EMT epithelial to mesenchymal 
transition, ERβ estrogen receptor β, IFN-γ interferon-γ, miR microRNA, NF-κB nuclear factor kappa-B, PD-L1 programmed death-ligand 1, PHLPP 
PH domain and leucine rich repeat protein phosphatases, PLP2 proteolipid protein 2, PPAR peroxisome proliferator-activated receptor, PTEN 
phosphatase and tensin homolog, RORα retinoic acid receptor related orphan receptor alpha, SIRPα signal regulatory protein alpha, TGF-β 
transforming growth factor-β, TME tumor microenvironment
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miR-181a-2 as one of the significantly overexpressed 
miRNAs present in MCF-7 TamR cells as well as cells 
derived exosomes associated with the ERα pathway [162]. 
Transfection of miR-181a-2 into MCF-7wt cells induced 
a transient transformation of these cells into tamoxifen-
resistant cells. Additionally, treatment of MCF-7 sensi-
tive cells with exosomes isolated from MCF-7 TamR cells 
led to the suppression of ERα and activation of Akt, ulti-
mately resulting in tamoxifen resistance [162]. Moreover, 
Zhang et al. [169] demonstrated that androgen-depend-
ent prostate cancer cells (ADPCs) can develop tolerance 
to androgen deprivation through exosome-mediated 
communication with androgen-independent prostate 
cancer cells (AIPCs) by upregulating heme oxygenase 
1 (HMOX1). Notably, in castrated non-obese diabetic 
mice having SCID mutation (NOD/SCID) mice models, 
ADPCs alone were incapable of forming tumors. How-
ever, when ADPCs treated with exosomes from AIPCs 
were injected into castrated SCID mice, increased tumo-
rigenicity was observed, indicating exosome-mediated 
androgen deprivation tolerance in ADPCs in vivo [169]. 
Furthermore, Li et  al. [182] revealed that approximately 
29 miRNAs were dysregulated in exosomes derived 
from paclitaxel-resistant prostate cancer cells compared 
with parental paclitaxel-sensitive prostate cancer cells. 
Analysis using DIANA-Tarbase v6.0 database for target 
prediction along with pathway analysis implicated these 
dysregulated miRNAs in targeting AR, PTEN, and T cell 
factors/lymphoid enhancer-binding factor 4 [182].

Numerous studies have documented the influence of 
exosomes on NRs in the context of cancer-related dis-
ruptions in the immune system and inflammation. Par-
ticularly, a paradigmatic example involving the interplay 
between sonic hedgehog subtype of medulloblastoma 
cells and tumor-associated macrophages (TAMs), eluci-
dated the role of exosomes in tumor progression [167]. 
Medulloblastoma-derived exosomes were found to have 
reduced levels of let-7i-5p and miR-221-3p, prompting 
the induction of M2 polarization in TAMs through the 
upregulation of PPARγ. Intriguingly, enhanced anti-can-
cer activities were observed upon the administration of 
a PPARγ antagonist in conjunction with an inhibitor tar-
geting sonic hedgehog signaling intermediate molecule, 
smoothened [167]. Additionally, another investigation 
unveiled the upregulation of miR-181a-5p in osteo-
sarcoma tissues and exosomes derived from SAOS-2 
osteosarcoma cells [168]. These exosomes were shown 
to downregulate ROR expression and induce M2 polari-
zation of macrophages [168]. Furthermore, inhibition 
of miR-181a-5p in SOAS-2 derived exosomes reduced 
the activation of M2 macrophages, while knockdown 
of ROR in macrophages reversed the biological effects 

attributed to exosomal miR-181a-5p in macrophage 
activation [168].

Collectively, these investigations elucidate the phenom-
enon in which cancer cells harness exosomes as carri-
ers to transmit cargo selectively targeting NRs, thereby 
entraining adjacent cells and immune entities. This 
orchestration ultimately leads to enhanced immune eva-
sion, increased invasive tendencies, augmented migra-
tory capacities, therapeutic resistance and facilitated 
metastasis. Indeed, studies have highlighted the recipro-
cal interaction, wherein immune cells deliver miRNAs 
targeting NRs to cancer cells via exosomal transport, 
inducing apoptosis and impeding the metastatic cascade. 
Consequently, there is an urgent need for meticulous and 
tailored explorations aimed at delineating specific inter-
actions between exosomes and NRs in order to foster the 
development of innovative therapeutic modalities tai-
lored to combat cancer cells.

CVDs
CVDs, particularly coronary artery disease (CAD), con-
tinue to be the leading global cause of mortality [183–
185]. Despite significant advancements in therapeutic 
strategies, including early revascularization after acute 
coronary syndromes, reduction of cholesterol level, and 
inhibition of the renin–angiotensin–aldosterone system, 
CVD remains a formidable health challenge [184]. As a 
result, concerted efforts have been made to investigate 
and identify novel risk factors for atherosclerosis that 
can be therapeutically targeted to improve primary and 
secondary prevention of CAD [184]. Importantly, recent 
studies have explored the potential involvement of NRs 
and the interplay of exosomal communication, suggest-
ing that understanding and manipulating this interac-
tion could yield therapeutic benefits for individuals with 
CVDs. For instance, Liu et  al. [159] demonstrated that 
exosomes derived from the perivascular adipose tis-
sue (PVAT) of atherosclerotic patients had lower lev-
els of miR-382-5p in comparison to individuals without 
atherosclerosis. Notably, the inhibition of miR-382-5p 
in PVAT-derived exosomes resulted in a reduction in 
the formation of macrophage foam cells and increased 
cholesterol efflux. Mechanistic insights have revealed 
the involvement of the PPARγ/bone morphogenic pro-
tein 4 (BMP4) axis in the upregulation of cholesterol 
efflux, mediated through the modulation of adenosine 
triphosphate (ATP)-binding cassette A1 (ABCA1) and 
ATP-binding cassette G1 (ABCG1) [159]. Pretreatment 
with BMP4 abrogated PVAT induced upregulation of 
PPARγ, ABCA1 and ABCG1, further confirming the role 
of BMP4 in atherosclerosis [159]. Besides, exposure of 
HUVECs to exosomes derived from visceral fat carrying 
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elevated levels of miR-27b-3p resulted in increased 
expression of proinflammatory genes, including VCAM1, 
ICAM1, and monocyte chemoattractant protein 1 
(MCP1) [160]. A positive correlation has been observed 
between plasma exosomal miR-27b-3p and body mass 
index (BMI) or waist size in CAD patients. Mechanis-
tically, miR-27b-3p was found to suppress PPARα by 
binding to the coding region of its mRNA and thereby 
activating NF-κB. Subsequent administration of a miR-
27b-3p mimic induced inflammation and atherosclerosis 
in apolipoprotein E deficient (ApoE−/−) mice, whereas 
PPARα overexpression counteracted these effects and 
provided protection against atherosclerosis [160]. Find-
ings from these studies suggest that exosomes exhibit the 
capacity to target recipient cells by exerting regulatory 
influence on NRs through the conveyance of miRNAs. 
This intricate interplay has a critical role in the pathologi-
cal processes underlying the development and progres-
sion of CVDs.

Chronic rhinosinusitis (CRS)
CRS is a persistent inflammatory condition affecting the 
paranasal sinuses, leading to a significant health burden 
due to its widespread occurrence and impact on patients’ 
quality of life [186, 187]. The primary therapeutic 
approach involves the administration of corticosteroids 
and anti-inflammatory agents delivered either nasally 
or orally. Nasal sprays are favored to mitigate poten-
tial systemic side effects [187]. Notably, a new class of 
medications called “biologic agents” has been approved 
for treating a specific subtype of chronic sinusitis char-
acterized by the presence of polyps-grape-like swellings 
in the sinus lining [187]. Despite these advancements, 
achieving a lasting cure remains challenging as inflam-
mation often recurs upon discontinuation of these 
medications [187]. Exosomes that modulate NRs have 
been shown to contribute to CRS-related inflammation, 
suggesting that druggable transcription factors such as 
NRs may have potential benefits in treating CRS. In a 
separate study, it was demonstrated that human nasal 
epithelial cells exposed to air particulate matter secrete 
and deliver exosomes enriched with miR-19a and miR-
614 to macrophages, thereby exacerbating inflamma-
tion through upregulation of proinflammatory cytokines 
such as IL-1α, IL-1β, IL-6, and TNF-α [29]. This study 
also revealed that these exosomal miRNAs bind to the 
3’UTR of RORα mRNA, suppressing the expression of 
RORα [29]. Moreover, increased expression of miR-19a 
and miR-614, coupled with decreased RORα levels, were 
observed in tissues from CRS patients compared to nor-
mal individuals. This indicates that exosome-mediated 
transport of miR-19a and miR-614 contributes to air-
borne allergic rhinosinusitis through the downregulation 

of RORα and may serve as potential therapeutic targets 
for treating CRS [29].

HIV/acquired immune deficiency syndrome (AIDS)
HIV infection, commonly known as AIDS, is considered 
as one of the most formidable diseases of the twenty-first 
century, with profound social, financial, and political 
implications in both developed and developing nations 
[188]. As an immunological disorder, HIV weakens the 
immune system, leading to increased susceptibility to 
mortality from opportunistic comorbidities, including 
tuberculosis, septicemia, and pneumonia [188]. The mor-
bidity and mortality associated with HIV type-1 (HIV-
1) related diseases have markedly declined due to the 
introduction of potent antiretroviral therapy [189]. This 
therapeutic approach achieves sustained suppression of 
HIV-1 replication and gradual restoration of CD4+ T cell 
counts. Nevertheless, approximately 10 – 40% of individ-
uals with HIV-1 infection do not attain normalization of 
CD4+ T cell counts despite sustained virological suppres-
sion [189]. Notably, immunological non-responders face 
an elevated risk of clinical progression to AIDS and non-
AIDS events, displaying higher mortality rates compared 
to HIV-1 infected individuals with effective immune 
reconstitution [189]. Therefore, there is an urgent need 
to identify novel druggable targets aimed at improving 
the prognosis of these patients. Importantly, exosomes 
involved in the modulation of NRs have emerged as cru-
cial contributors to AIDS progression. For example, Yuan 
et al. [172] demonstrated that macrophages infected with 
HIV-1 proteins Tat or gp-120 exhibit elevated expres-
sion levels of exosomal miR-23a and miR-27a. Exosomes 
enriched with miR-23a released from Tat-treated mac-
rophages were found to exert an impact on the mito-
chondrial bioenergetics of recipient lung epithelial cells 
through the downregulation of PPARγ [172]. Hence, 
obstructing intercellular communication within the pul-
monary microenvironment emerges as a prospective 
paradigm for pioneering interventional strategies aimed 
at immune modulation in the context of HIV.

NASH
NASH affects approximately 40% of the global adult 
population and stands as a prominent contributor to 
end-stage liver diseases, including HCC and liver fail-
ure [190]. Despite the substantial medical need for 
addressing, halting, or reversing NASH, no approved 
drugs have been licensed so far, and the develop-
ment of such therapeutics has proven to be challeng-
ing [191]. Research has unveiled the involvement of 
exosomes targeting NRs in the development and pro-
gression of NASH, potentially laying the foundation for 
future novel therapeutic development. Notably, a study 
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demonstrated that exosomes derived from human 
umbilical cord mesenchymal cells (hUC-MSCs) allevi-
ated NASH by modulating the expression of key factors 
such as sterol regulatory element-binding protein 1c, 
fatty acid binding protein 5, carnitine palmitoyl trans-
ferase 1α, acyl-CoA oxidase, fatty acid synthase, and 
PPARα [30]. Additionally, these exosomes exhibited 
anti-inflammatory effects by suppressing TNF-α and 
IL-6 associated with macrophages, while enhancing the 
phosphorylated-nuclear factor erythroid 2-related fac-
tor 2 (p-Nrf2)/Nrf2 ratio [30]. The involvement of this 
pathway may be crucial in developing new therapeutic 
protocols. Similarly, another study showed that intra-
venously administered hUC-MSC-derived exosomes 
in an MCD diet-induced NASH mouse model ame-
liorated liver inflammation, liver damage, and weight 
loss [174]. The administration of these exosomes was 
associated with the suppression of proinflammatory 
cytokines such as IL-1β, IL-6, and TNF-α, along with 
an increase in the anti-inflammatory cytokine IL-10, 
M2 macrophage markers such as arginase and CD206 
levels, indicating an enhanced anti-inflammatory mac-
rophage phenotype [174]. Furthermore, these exosomes 
reversed the downregulated levels of PPARα in oxi-
dized LDL-treated hepatocytes, providing protection to 
hepatocytes against NASH [174]. Therefore, exosomes 
modulating PPARα present a promising therapeutic 
approach for NASH treatment.

Neuronal inflammation and neurodegenerative diseases
The demographic shift towards an aging global popu-
lation has resulted in neurological disorders account-
ing for 6.3% of the overall global disease burden [192, 
193]. These disorders pose significant health chal-
lenges, leading to increased disability rates and demand 
for extended medical treatment [192]. Parkinson’s dis-
ease (PD), Huntington’s disease, and Alzheimer’s dis-
ease are the primary neurodegenerative diseases that 
exhibit symptoms, ranging from cognitive impairment 
to motor and respiratory difficulties [194]. Contribut-
ing factors include oxidative stress, neuroinflammation, 
mitochondrial dysfunction, protein misfolding, and 
aggregation, implicating these processes in the devel-
opment and pathogenesis of neurological disorders 
[194, 195]. Extensive research efforts aim to unravel 
these complexities and identify potential therapeutic 
targets in the ongoing battle against neurological dis-
orders. NRs and exosomes have shown significance in 
the pathology of these diseases. For instance, Ye et  al. 
[158] unveiled an overexpression of exosomes con-
taining miR-27-3p in individuals with acute cerebral 
injury (ACI). Upon administration of these exosomes 
into a rat model subjected to middle cerebral artery 

occlusion, inflammation worsened through targeting 
PPARγ. Therefore, the manipulation of the miR-27-3p/
PPARγ axis may emerge as a prospective and innova-
tive intervention for ameliorating ACI. Another study 
delved into the therapeutic potential of exosomes 
enriched with Wnt5 sourced from BMSCs in address-
ing sleep-related disorders in rat models of PD [176]. 
Treatment with these exosomes demonstrated a nota-
ble increase in dopamine and 5-hydroxytryptamine 
levels, accompanied by elevated PPARγ expression, 
enhanced sleeping time, reduced awaken time and res-
toration of mitochondrial membrane potential within 
the stratum of PD rats [176]. These results suggest that 
exosomes enriched with Wnt5 from BMSCs have the 
potential to rectify circadian rhythm-related abnor-
malities associated with PD, primarily by increasing the 
expression of PPARγ [176].

Obesity, hypertension, and diabetes
The global rise in obesity since 1975 poses a significant 
contemporary healthcare challenge. Individuals with 
a BMI of 30.0–34.9 kg/m2 face a hazard ratio for over-
all mortality elevated by over 40%, reaching 100% at a 
BMI > 40  kg/m2, contributing to 4–9% of cancer diag-
noses [196–198]. The development of effective anti-
obesity medications encounters technical and societal 
challenges, with historical failures linked to adverse car-
diovascular effects, elevated suicidal risk, and increased 
potential for drug dependence and abuse [196]. Hence, 
there exists a crucial imperative to establish enduring 
pharmacotherapy for achieving body weight normaliza-
tion, accompanied by necessary tolerability and safety 
measures which has proven to be a formidable task 
[196]. An abundance of investigations has elucidated 
that exosome play a pivotal role in the progression of 
obesity and associated diseases through their regula-
tion of NRs, implicating their involvement in molecular 
mechanisms of body weight regulation and potential as 
druggable agents. Notably, Castano et al. [175] demon-
strated an upregulation of 4 miRNAs associated with 
obesity, namely miR-192, miR-122, miR-27α-3p, and 
miR-27b-3p, in exosomes. Administration of exosomes 
from obese mice to lean mice resulted in increased glu-
cose intolerance and insulin resistance [175]. Similarly, 
lean mice treated with control exosomes transfected 
with obesity-associated miRNAs exhibited augmented 
central obesity and hepatic steatosis, indicating similar 
effects. Additionally, mice subjected to an HFD or those 
overexpressing miRNA mimics displayed increased tri-
glyceride activation, and free fatty acids, diminished 
PPARα levels in eWAT and enhanced PPARα levels in 
liver tissues [175]. This was accompanied by an increase 
in glucose intolerance and hepatic inflammation. 
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Notably, treatment with fenofibrate, a PPARα agonist, 
resulted in a reversal of these exosome induced effects 
[175]. Moreover, Zhang et  al. [177] observed an eleva-
tion in plasma exosome concentrations enriched with 
miR-211 in rats with pulmonary hypertension. Injec-
tion of rats with miR-211 enriched exosomes exac-
erbated pulmonary hypertension, whereas inhibition 
of miR-211 led to its attenuation. Mechanistically, 
the overexpression of miR-211 enhanced the prolif-
eration of pulmonary arterial smooth muscle cells by 
inhibiting calmodulin-dependent kinase 1 and PPARγ 
[177]. Further,  Liu et  al. [157] revealed that exosomes 
derived from macrophages in adipose tissue enriched 
with miR-29a induced insulin resistance in adipocytes, 
hepatocytes, and myocytes in preclinical settings. Fur-
thermore, PPARδ was identified as a downstream target 
of miR-29a, and treatment with GW501516, a PPARδ 
agonist, partially mitigated insulin resistance induced 
by miR-29a [157]. Another study by Li et al. [171] dem-
onstrated that exosomes derived from endothelial pro-
genitor cells promoted proliferation and migration, and 
inhibited apoptosis of HaCaT cells under high glucose 
conditions. These exosomes showed wound-healing 
benefits in diabetic mice with skin injury. Exosomal 
miRNA profiling identified miR-182-5p as highly upreg-
ulated, with mechanistic insights revealing PPARγ as its 
direct target [171]. Taken together, these studies high-
light the importance of exosomes derived from obese 
adipose tissues in modulating PPAR, contributing to 
the exacerbation of inflammation and complications 
associated with obesity. Therefore, targeting exosome-
mediated modulation of PPAR may hold therapeutic 
potential in the context of obesity.

To summarize, these investigations revealed that 
exosomes derived from host cells intricately regulate var-
ious signaling pathways, encompassing cholesterol efflux 
and metabolism, EMT pathway, cytokine signaling, and 
estrogen-mediated carcinogenesis signaling. This regula-
tory influence significantly impacts the pathogenesis of 
chronic diseases. Importantly, these exosomes demon-
strate a regulatory role in NRs such as PPARα, PPARγ, 
PPARδ, RORα, ERα, and ERβ, across a range of chronic 
diseases, including AIDS, atherosclerosis, cancer, CRS, 
diabetes, NASH, neurological diseases and obesity. The 
observed patterns suggest that manipulating exosomes 
targeting NRs represents an innovative and promising 
therapeutic strategy for the treatment of diverse chronic 
diseases.

NRs targeting exosomes
Recent studies have revealed the intricate involvement 
of NRs in targeting exosomes, thereby contributing to 
the initiation and progression of chronic diseases. The 

role of NRs in modulating exosomes and their contents 
during the development and progression of chronic dis-
eases has been summarized in Table  2 and Fig.  5 [32, 
33, 199, 200]. Notably, Wu et  al. [199] demonstrated 
an upregulation of exosomal miR-19a and integrin-
binding sialoprotein (IBSP) in ER+ breast cancer cells. 
Functionally, IBSP in these cells was shown to attract 
osteoclast cells, facilitating the transfer of exosomal 
miR-19a and creating a conducive tissue microenviron-
ment for the colonization of breast cancer cells in bone 
[199]. In another study, treatment with 6-OH-11-O-
hydroxyphenanthrene, an RXR agonist, potentiated 
the ability of pioglitazone, a PPARγ ligand, to impede 
mammosphere formation in MCF-7 breast cancer cells 
[32]. This effect was associated with a reduction in the 
expression of stem cell markers, including Notch1, Jag-
ged 1, snail family transcriptional repressor 2 (Slug/
SNAI2), HIF-1α, ApoE, IL-6, and carbonic anhydrase 
IX (CAIX) [32]. Intriguingly, these NR agonists coun-
teracted the capacity of exosomes enriched with ApoE, 
CAIX, miR-130b, and miR-27b derived from hypoxic 
MCF-7 cells to induce a proinflammatory phenotype on 
breast fibroblasts [32]. Furthermore, these agonists were 
shown to reduce IL-6, NF-κB, matrix metalloproteinase 
(MMP)2, and MMP9 on tumor-associated fibroblasts 
under hypoxic conditions. Thus, the study indicated 
that NRs are involved in the inflammatory communica-
tion between cancer cells and fibroblasts, and manipu-
lating this interaction may lead to the reprogramming 
of the tumor microenvironment [32]. Moreover, Record 
et al. [200] reported that treatment of SKMEL-28 mela-
noma cells with dendrogenin A (DDA), a ligand of LXR, 
resulted in the secretion of small extracellular vesicles 
(DDA-sEV) enriched in lipidated proteins and lipids. 
These DDA-sEVs induced DC maturation and Th1 
polarization, ultimately inhibiting the growth of tumors 
in xenograft mice model [200]. This suggests the poten-
tial of targeting LXR as a novel strategy to enhance 
immunity against cancer cells through exosomes [200]. 
Modulation of exosomes by NRs has been established 
in hepatic fibrosis as well. For instance, Liu et  al. [33] 
showed that exosomes derived from M2 macrophages 
can stimulate hepatic stellate cell activation; however, 
treatment of macrophages with calcipotriol, a VDR ago-
nist, resulted in reduced M2 polarization and hepato-
cyte activation by downregulating exosomal smooth 
muscle cell-associated protein-5 (SMAP-5). Combin-
ing calcipotriol with a macrophage-targeted exosomal 
secretion inhibitor, GW4869 encapsulated in liposome 
(GWLP) exhibited stronger suppression of SMAP-5, 
hepatocyte activation, and enhanced repair of the liver 
structure. This combination therapy presents a promis-
ing approach against hepatic fibrosis [33].
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Table 2  Molecular mechanism underlying nuclear receptors (NRs) that modulate exosomes secretion/contents in the pathogenesis of 
chronic diseases

Disease NR Exosomal content In vitro/
in vivo/
clinical

Cell line/model Intervention/
Treatment/
Expression 
modulation

Mechanism of 
action

References

Cancer

 Breast 
cancer

RXR/PPARγ ApoE, CAIX, miR-130b 
& miR-27b

In vitro MCF-MS PGZ + IIF ↓MS, Notch 3, Jagged, 
IL-6, Slug, CAIX, HIF-1α

[32]

TAF PGZ + IIF ↓IL-6, IL-8, NF-κB pro-
moter, MMP2, MMP9, 
tube formation, CD44

PGZ + IIF Exo ↓MS, Notch 3

ER miR-19a & IBSP In vitro mBMM MCF7BoM2-exo ↓PTEN
↑p-Akt, p-p65, OC 
proliferation & OC 
size

[199]

MCF-7 BoM – ↑miR-19a, IBSP

RAW264.7 miR19a ↑miR19a, size 
of osteoclast, p-p65, 
p-Akt
↓PTEN

mBMM MCF7BoM2-
miR19aKO-exo

↑PTEN
↓p-Akt, p-p65, OC 
proliferation, OC size

In vivo Athymic nude mice MCF7BoM2-IBSPKO-
exo

↑Wound healing, 
bone density
↓Metastasis, osteo-
clastogenesis

MCF7/IBSP/miR-19a ↑Bone metastasis, 
bone density, osteo-
clastogenesis

T47D/IBSP/miR-19a ↑Tumor burden, bone 
metastasis bone 
density, osteoclas-
togenesis

MCF7BoM2/miR-
19aKO

↓Bone metastasis 
osteoclastogenesis

Exo19aKO + IBSP ↑Bone density
↓Osteoclastogenesis

MCF7BoM2 + GW4869 ↑Bone density
↓Bone metastasis free 
survival, osteoclas-
togenesis

T47DBoM2 + CGA​ ↓Metastasis, osteo-
clast
↑Bone density

MCF7BoM2 + CGA​ ↓Tumor volume

Clinical ER+ breast cancer 
patients

– ↑Osteoclast number, 
osteoclast differen-
tiation
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In a concise summary, NRs intricately facilitate bidirec-
tional communication between host and recipient cells 
within the tissue microenvironment by regulating either 
the process of exosomal secretion or the composition of 
exosomal cargo. Research has revealed the capacity of NRs 
to modulate the lipid and lipidated protein components 

within exosomes derived from cancer cells. Disruption in 
these NR-mediated pathways is associated with the onset 
and/or progression of chronic diseases. Therefore, we 
believe that a comprehensive exploration of these intercel-
lular dialogues holds promise for the development of inno-
vative therapeutic approaches targeting chronic diseases.

α-SMA α-smooth muscle actin, ALT alanine aminotransferase, ApoE apolipoprotein E, AST aspartate aminotransferase, ATG​ autophagy related, BMP bone 
morphogenetic protein 2, CAIX carbonic anhydrase IX, CCl4 carbon tetrachloride, CGA​ chlorogenic acid, DDA dendrogenin A, ER estrogen receptor, HIF-1α hypoxia-
inducible factors-1α, HLA-DR Human Leukocyte Antigen-DR isotype, IBSP integrin-binding sialoprotein, IFN-γ interferon-γ, IIF 6-OH-11-O-hydroxyphenanthrene, IL 
interleukin, LXR liver X receptor, mBMM mouse bone marrow monocyte, miR microRNA, MMP matrix metalloproteinase, MS mammospheres, NF-κB nuclear factor-
kappa B, OC osteoclast, PGZ pioglitazone, PPAR peroxisome proliferator-activated receptor, PTEN phosphatase and tensin homolog, Rab27b member of RAS oncogene 
family, RXR retinoid X receptor, SMAP-5 smooth muscle cell-associated protein-5, Slug/SNAI2 snail family transcriptional repressor 2, TAF tumor associated fibroblast, 
TBA total bile acid, TNF-α tumor necrosis factor-α, Tyr tyrosinase, TRP2 tyrosinase-related protein 2, VDR vitamin D receptor

Table 2  (continued)

Disease NR Exosomal content In vitro/
in vivo/
clinical

Cell line/model Intervention/
Treatment/
Expression 
modulation

Mechanism of 
action

References

 Melanoma LXR  Lipidated proteins 
and lipids

In vitro Th1 (DDA-Sev + shC) 
SKMEL-28

↑HLA-DR, CD86, 
CD54, CD80, IL-6, 
IL-12, CD40, CD83, 
TNF-α, IFN-γ, IL-5, 
IL-13

[200]

B16F10 DDA ↑Exosome release, 
BMP, cholesterol 
protein & calreticulin 
in sEV

SKMEL-28 DDA-sEV ↓Cell viability
↑Cell cycle arrest

ShC + DDA ↑Tyr, TRP2, CD63, BMP
↓Rab27b

shLXR + DDA ↓Tyr, TRP2, CD63, BMP
↑Rab27b

In vivo C57BL/6 (B16F10 
xenografts)

DDA-sEV ↓Tumor volume

Hepatic fibrosis VDR SMAP-5 In vitro LX-2 M2-CM ↑Collagen-1, α-SMA, 
cell viability

[33]

(M2 + calcipotriol)-CM ↓Collagen-1, α-SMA, 
cell viability

M2VDR−KO-CM ↑Collagen-1, α-SMA, 
cell activation

(M2 + GW4869)-CM ↓Cell activation, col-
lagen-1, α-SMA

(M2 + calcipotriol) Exo ↓LC3A/B-II
↑p62

(M2 + siSMAP-5) exo ↓Collagen-1, α-SMA, 
SMAP-5, ATG5, ATG7, 
ATG12

(MO-SMAP-5-OE) exo ↑Collagen-1, α-SMA, 
SMAP-5, ATG5, ATG7, 
ATG12

In vivo CCl4 induced 
fibrotic C57BL/6 
mice

GWLP + calcipotriol ↓α-SMA, ALT, AST, 
TBA, collagen-1
↑Repair of liver tissue

AAV-shSMAP-5 ↓F4/80+ mac-
rophages, serum ALT, 
AST, and TBA, α-SMA
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Therapeutic application of targeting exosome‑NR 
axis
Exosomes, containing miRNAs, lncRNAs, and proteins, 
represent a novel reservoir of biomarkers for various 

diseases [201–204]. Through mechanisms such as clath-
rin-mediated endocytosis, lipid-raft-mediated endo-
cytosis, caveolin-mediated endocytosis, phagocytosis, 
and micropinocytosis, exosomes deliver their cargo into 

Fig. 5  Nuclear receptors (NRs) regulate exosome secretion or alter its contents to modulate signaling pathways associate with the development 
and progression of various chronic diseases. Upregulation of exosomal miR-19a and integrin-binding sialoprotein in the tumor microenvironment 
has been shown to foster osteoclast attraction leading to metastatic seeding. RXR agonist 6-OH-11-O-hydroxyphenanthrene (HP) treatment 
potentiated pioglitazone (PGZ)’s inhibition of mammosphere formation in breast cells, reducing stem cell markers. Moreover, LXR ligand (DDA) 
inducing DDA-sEVs, promoting DC maturation, Th1 polarization, and inhibiting melanoma growth in mice. Further, VDR agonist calcipotriol 
was shown to reduce M2 polarization in macrophages, downregulating exosomal SMAP-5, causing greater reduction in hepatic fibrosis. ApoE 
apolipoprotein E, CAIX carbonic anhydrase IX, DC dendritic cells, DDA dendrogenin A, ER estrogen receptor, HIF-1α hypoxia-inducible factors-1α, 
IL interleukin, LXR liver X receptor, miR microRNA, MMF mammosphere formation, MMP matrix metalloproteinase, NF-κB nuclear factor kappa-B, 
PPAR peroxisome proliferator-activated receptor, RXR retinoid X receptor, SMAP-5 smooth muscle cell-associated protein protein-5, SLUG snail family 
transcriptional repressor 2, VDR vitamin D receptor
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cells and binding to target sites [43]. This explains the 
diverse role of exosomes as a key regulator of cell-to-cell 
communication in both normal and pathological condi-
tions [205]. The exosome-NR axis emerges as a promis-
ing therapeutic target for chronic diseases based on the 
abundance of miRNAs in exosomes that can modulate 
the expression of NRs by directly binding to their 3’UTRs 
or indirectly regulating their downstream pathways, lead-
ing to immune cell activation, apoptosis, variation in sur-
vival, proliferation, metastasis, and inducing metabolic 
rewiring such as alterations in mitochondrial and glucose 
metabolism [163, 165]. Exosomes have a significant role 
in disease progression by modulating PPAR. For instance, 
exosomes released by macrophages upon HIV infection 
exosomes were enriched with miR-27a and miR-23a that 
subsequently bind to PPARγ and ZO-1 respectively, fur-
ther leading to altered mitochondrial function and com-
promised tight junction integrity in alveolar cells, thereby 
contributing to lung injury and infection  [172]. This find-
ing may help to improve immune dysfunction during HIV 
infection by targeting exosomal content or PPARγ  [172]. 
Exosomes from rats with pulmonary hypertension exhib-
ited increased expression of miR-211 and exacerbated the 
disease by downregulating calcium/calmodulin depend-
ent protein kinase I and PPARγ expression in lung tis-
sues [177]. Another study demonstrated that adipose 
MSCs aid in wound healing through lncRNA H19. H19 
present in exosomes can target and inhibit miR-130b-3p 
and lead to the activation of downstream PPARγ and 
STAT3, ultimately resulting in the polarization of M2 
macrophage, thereby enhancing cell proliferation, angi-
ogenesis and inhibited inflammatory response in pre-
clinical settings [31]. TAM-derived exosomes showed 
reduced levels of let-7i-5p and miR-221-3p, which are 
inversely correlated with PPARγ expression in medullo-
blastoma [167]. Enhanced expression of PPARγ promotes 
M2 macrophage polarization and tumor progression, but 
these effects were reversed by treatment with its antag-
onist [167]. Furthermore, a study has demonstrated the 
immunosuppressive role of PPARα in cancer, with TDEs 
containing long-chain fatty acids, increasing lipid con-
tent in DCs via PPARα activation, suggesting the poten-
tial for DC-based cancer therapy [163]. In another study, 
Liu et al. [173] elucidated the role of hepatocyte-derived 
exosomal miR-122-5p in mediating liver ischemia-reper-
fusion injury, particularly through the M1 polarization of 
Kupffer cells, involving the modulation of the PPARδ and 
NF-κB pathway in preclinical settings. Importantly, inhi-
bition of exosomal miR-122-5p was associated with the 
suppression of M1 polarization in Kupffer cells, leading 
to the amelioration of liver ischemia-reperfusion injury 
[173]. Additionally, in obesity-induced insulin resist-
ance, exosomes derived from adipose tissue macrophages 

exhibited significant upregulation of miR-29a, which can 
bind to PPARδ and cause insulin resistance [157]. Nota-
bly, treatment with a PPARδ agonist reversed this effect, 
demonstrating its potential as a therapeutic target against 
obesity-associated type II diabetes [157].

Previously study has also shown that ROR plays a vital 
role in the communication between exosomes and NRs 
[29]. Specifically, exposure to air pollution triggers the 
release of exosomes enriched with miR-19a and miR-614 
from human nasal epithelial cells. These miRNAs have 
the potential to target RORα and thereby inhibit the tran-
scriptional repression of proinflammatory gene expres-
sion  [29]. This subsequently led to the polarization of M1 
macrophages and activation of inflammatory responses 
in a mucosal microenvironment [29]. Moreover, in gli-
oma, hypoxia-induced upregulation of miR-10a and miR-
21 resulted in the activation of MDSCs through RORα 
and PTEN respectively. This finding also sheds light on 
how hypoxia modulates the immune microenvironment 
through exosomes-mediated NR interactions [164].

Exosomes play a crucial role in mediating the trans-
fer of chemoresistance, especially in cancers associated 
with steroid receptors, thereby contributing to increased 
tumor aggressiveness [161]. Exosomes from ER+ tamox-
ifen-resistant breast cancer cells exhibited smaller 
size and elevated levels of miR-221/-222 compared to 
exosomes from tamoxifen-sensitive cells. These miRNAs 
caused downregulation of ER and p27 in recipient cells, 
leading to increased survival and proliferation [161]. Sim-
ilarly, another study showed that ADPCs such as LNCaP 
exhibits increased survival and proliferation after treat-
ment with exosomes derived from AIPCs like PC3 [169]. 
Interestingly, after castration, LNCaP failed to form 
tumors, whereas treatment with PC3-derived exosomes 
resulted in tumor formation in prostate cancer along 
with increased expression of HMOX1. This upregulated 
expression might be associated with androgen resistance 
and activation of cancer-related pathways, leading to pro-
longed survival and proliferation of prostate cancer cells 
under androgen-deprived conditions [169]. This evidence 
suggests that the contents of exosomes are crucial for 
chemoresistance in steroid-related cancer cells. There-
fore, targeting this pathway will be beneficial for treating 
chemoresistance in cancer cells.

Furthermore, studies have provided evidence that treat-
ment with NR agonists induces the release of exosomes, 
thereby modulating metabolic pathways and resulting in 
reduced disease progression [32, 33]. For example, the 
combined administration of PPAR and RXR agonists 
inhibited the production of proinflammatory cytokines 
through exosome communication, leading to tumor 
suppression in breast cancer [32]. Similarly, the use of 
VDR agonists improved hepatic fibrosis by inhibiting 
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the release of exosomes derived from macrophages [33]. 
Therefore, the administration of NR agonists holds prom-
ise in impeding tumor progression by regulating exosome 
release. Overall, these findings highlight exosome-NR 
interactions as a promising strategy for developing safe 
and effective therapeutic treatments.

Safety and pharmacokinetics of exosomes
The initial concept of exosomes as cellular waste bins 
responsible for the disposal of surplus proteins, peptides, 
and nucleic acids has evolved with recent investigations 
revealing their potential as efficient drug delivery vehi-
cles [206]. Nevertheless, a comprehensive consideration 
of exosome biodistribution, pharmacokinetics, and safety 
profiles is imperative for their application as drug deliv-
ery agents. In sepsis induced  mice, systemically admin-
istered exosomes primarily distribute to major tissues 
including the liver, spleen, and  lung [207]. The distribu-
tion patterns are influenced by factors such as the cellu-
lar origin of exosomes, membrane composition, and the 
host’s pathophysiological status [207].

Presently, bioluminescence and fluorescence imag-
ing are the primary methods for characterizing exosome 
in  vivo [208]. Exosomes labeled with gLuc-lactadherin, 
derived from B16-BL6 cells, were intravenously injected 
into a mouse model, revealing rapid clearance by the 
liver from the bloodstream [209]. Importantly, this 
investigation demonstrated the persistence of the gLuc-
lactadherin label following intravenous administration, 
suggesting its potential utility in tracking exosome tis-
sue distribution [209]. Another study examined the bio-
distribution and pharmacokinetics of exosomes derived 
from HEK293T cells in both sepsis and healthy mice, 
revealing an 80% clearance rate in healthy mice 1  h 
post-intravenous injection [207]. Similarly, therapeutic 
exosomes labeled with zirconium-89 (89Zr) were admin-
istered intravenously to mice and rat models, with lower 
89Zr retention observed in rats compared to mice. Addi-
tionally, rapid exosome clearance from the bloodstream 
indicated prompt tissue absorption predominantly by the 
liver, with lesser uptake observed in the spleen and other 
organs [210].

Compelling evidence suggests that MSC-derived 
exosomes showed a superior safety profile compared 
to their host cells, as they are easily stored without los-
ing functionality [211]. Moreover, a safety study has 
been conducted using exosomes derived from human 
induced pluripotent stem cells in in  vivo models [212]. 
Tail vein injection and nasal administration of these   
exosomes showed mild immune cell activation with 
no obvious negative trend [212]. Similarly, administra-
tion of exosomes derived from human umbilical mes-
enchymal stromal cells to rat models showed positive 

effects on weight reduction, with no apparent adverse 
effects observed on liver and renal function [213]. Addi-
tionally, in an acute lung injury model, the administra-
tion of exosomes from adipose-derived MSCs showed a 
potent protective effect by compensating the damaged 
mitochondria of macrophages [214]. This further trans-
formed macrophages into an  anti-inflammatory pheno-
type and reduced the oxidative stress in the mice model 
[214]. Exosomes have the capability to deliver therapeutic 
agents in a site-specific manner. Parolini et al. [215] dem-
onstrated the tendency of exosomes to release their con-
tent at low pH value, which is a hallmark of cancer cells. 
Similarly, doxorubicin-entrapped exosomes administered 
to HER2+ TUBO cells exhibited increased binding affin-
ity compared to HER2− 4T1  cells [216]. Similar results 
were obtained from in vivo breast cancer mouse models 
as well [216]. These studies highlight the potential for uti-
lizing exosomes as a safe and promising tool for targeted 
drug delivery in cancer treatment.

Several clinical trials have confirmed the safety and 
efficacy of exosomes in humans. For instance, a phase I/
II clinical trial investigated the safety of allogenic human 
adipose MSC-exosomes in patients with mild to moder-
ate Alzheimer’s diseases. The study demonstrated that 
human adipose MSC-exosomes exhibited no adverse 
effects along with reduced Alzheimer’s  Disease Assess-
ment Scale-Cognitive section (ADAS-cog) scores and 
improved cognitive function [217]. Moreover, admin-
istration of gel based adipocyte tissue stem cell-derived 
exosomes as post-treatment to fractional CO2 laser 
for acne scar in 25 patients showed a protective effect 
compared to the control group [218]. Similarly, posi-
tive outcomes were observed in a cohort of 60 patients 
undergoing treatment for melasma, wherein hUC-
MSCs-exosomes were combined with microneedles, 
non-ablative fractional laser, or Peninsula Blue Aurora 
Shumin Master plasma. These results were attributed to 
the remarkable deep-penetrating capability, safety and 
efficacy  of hUC-MSCs-exosomes in melasma treatment 
[219]. Another pilot study involving 7 COVID-19 pneu-
monia patients, evaluated the safety of MSC-derived 
exosomes. Interestingly, the results demonstrated that 
the exosomes did not cause allergic symptoms in patients 
and led to reduced hospitalization duration in mild 
COVID-19 cases [220]. Likewise, an open-label phase-
IIa clinical trial involving severe COVID-19 patients 
reported no adverse effects following nubilization   with 
human adipose-derived mesenchyma stromal  exosomes 
[221]. The safety profile of placental  MSC-derived 
exosomes was established in a phase I clinical trial 
involving 11 patients with complex perianal fistulae, 
characterized by persistent fistulas for at least 1  year 
despite medical and surgical interventions [222]. Notably, 
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complete resolution of fistula tracts was observed in 5 
patients. None of the patients showed any acute or latent 
allergic reaction or injection related complications [222]. 
Similarly, in another investigation, treatment with MSC-
derived exosomes resulted in complete healing of refrac-
tory perianal fistula in 3 out of 5 inflammatory bowel 
disease patients  without   any  systemic or local adverse 
events [223].

In conclusion, these studies confirm the safety and 
pharmacokinetics of exosomes in both clinical and pre-
clinical settings. Further studies are imperative to elu-
cidate their role in precision medicine and therapeutic 
interventions.

Exosome engineering
Recently, cell-derived exosomes have gained increased 
attention as an advanced drug delivery system due to 
their low immunogenicity, high physicochemical stabil-
ity, capacity to penetrate tissues, and long-distance com-
munication abilities [224]. Accumulating evidence has 
elucidated various strategies for modifying exosomes 
to optimize their utility as drug delivery vehicles. These 
strategies include incubating drugs with exosomes 
and exosome-secreting donor cells, transfection, and 
employing physical methods such as extrusion, sonica-
tion, freeze–thaw cycles, and electroporation [225, 226]. 
For instance, Saari et  al. [227] investigated the efficacy 
of prostate cancer-derived EVs, including exosomes and 
microvesicles, when incubated with paclitaxel  in the 
treatment of prostate cancer. This study revealed that EVs 
conjugated with paclitaxel were endocytosed and exhib-
ited potent cytotoxic effects. Interestingly, removal of 
surface receptors from microvesicles resulted in reduced 
cytotoxic effects, whereas no changes were observed in 
exosomes with the drug [227].

Additionally, research has shown the potential of mac-
rophage-derived exosomes in treating central nervous 
system-associated disorders. Evidence suggests their abil-
ity to cross the blood–brain barrier, making them prom-
ising tools for delivering drugs to treat central nervous 
system diseases [228]. Kim et al. [229] studied the impact 
of macrophage-derived exosomes conjugated with pacli-
taxel on drug-resistant cancer cells. The incorporation 
of paclitaxel into exosomes using sonication methods 
resulted in high drug loading efficacy and enhanced cyto-
toxic effects on cancer cells. Furthermore, administering 
these exosomes through airway delivery demonstrated 
anti-cancer effects in a mouse model with pulmonary 
metastases of Lewis lung carcinoma [229].

Moreover, numerous studies have explored the poten-
tial of exosomes as a vehicle for drug delivery through 
exosome engineering. For example, the fusion of rabies 
virus glycoprotein with Lamp-2b protein expressed in the 

exosome membrane serves as a cell-penetrating peptide, 
facilitating the targeted delivery of exosomes contain-
ing siRNAs to the brain [230]. Rabies virus glycoprotein 
specifically binds to acetylcholine receptors present in 
neuro-endothelial and neuronal cells [230]. Additionally, 
new approaches are emerging in exosome therapy, such 
as exosomes for protein loading via optically reversible 
protein–protein interactions (EXPLORs) [231]. In this 
technique, cargo proteins are fused with cryptochrome 
circadian regulator 2 (CRY2) protein isolated from 
Arabidopsis thaliana, while truncated  CRY-interacting 
basic-helix-loop-helix 1 is conjugated with CD9 protein, 
an exosome marker [231]. Upon blue light irradiation, 
the cargo protein fused with CRY2 undergo reversible 
interactions with CRY-interacting basic-helix-loop-helix 
1, enabling entry into the inner surface of the cell mem-
brane and loaded into exosomes following induction 
of exosome biogenesis. Subsequently the cargo can be 
released into to the exosome from the protein conjugated 
through the removal of blue light illumination. Notably, 
EXPLORs have shown superior efficiency compared to 
other methods of isolating exosomes [231]. Similarly, 
another genetically engineered exosome device known 
as EXOsomal transfer into cells (EXOtic), which contains 
a mRNA packaging device and cytosolic delivery helper, 
has shown potential therapeutic efficacy in preclinical 
studies by facilitating cargo delivery into brain cells as a 
promising treatment option for PD [232]. Another study 
evaluated biomimetic exosomes encapsulating dexa-
methasone sodium phosphate nanoparticles (Exo/Dex), 
whose surface was engineered with a folic acid-polyeth-
ylene glycol-cholesterol compound as a targeted drug 
delivery system  for the treatment of rheumatoid arthri-
tis. Interestingly, these exosomes exhibited no apparent 
hepatotoxic effects while demonstrating favorable bio-
compatibility [233].

Accumulating evidence from preclinical studies has 
highlighted the potential of engineered exosomes to 
selectively target different pathways, notably including 
NRs, as a promising therapeutic strategy against chronic 
diseases. As previously discussed, NRs regulate myri-
ads of physiological and pathological conditions in the 
body through intricate downstream signaling pathways. 
Hence, utilizing engineered exosomes as delivery vehicles 
for NR modulators may represent a paradigm shift in the 
therapeutic approaches against various disorders.

Challenges of targeting exosomes for therapy
The aforementioned investigations highlight the poten-
tial of exosomes as effective drug delivery vehicles for 
treating chronic diseases. However, there are signifi-
cant obstacles that hinder their efficacy as drug deliv-
ery tools in both clinical and preclinical settings. These 
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challenges include issues related to isolation, characteri-
zation, insufficient targeting capabilities, quality control, 
and limited reproducibility in preclinical models [224, 
234]. The primary challenge associated with exosomes 
is their isolation. Exosomes are often found alongside 
other EVs, leading to heterogeneity that diminishes the 
therapeutic targeting efficacy. The traditional isolation 
method involving multistep ultracentrifugation is labo-
rious process with a high risk of impurities [235]. Addi-
tionally, characterization is another crucial aspect, where 
exosomes isolated from the same cells show inconsist-
ent properties that can affect the therapeutic efficacy 
[235]. Notably, exosomes can be considered as double-
edged sword because they have the potential to either 
support or weaken health depending on context [236]. 
The cell uses exosomes to eliminate unwanted toxic 
compounds, thereby manitain donor cells homeosta-
sis [237]. However, exosomes derived from cancer cells 
may contain oncogenic precursors and undesired cargo 
that can lead to harmful effects in the recipient system 
[234, 238]. Moreover, exosomes have a limited lifespan of 
approximately 2 h in the bloodstream and predominantly  
cleared by macrophages. Besides, their poor zeta poten-
tial reduces efficacy by promoting aggregates, which can 
trigger an immune response and hinder their delivery to 
the target site [239]. Clinically, challenges related to sta-
bility, preservation, transportation, and cost constrain 
the use of exosomes [239]. The preservation temperature 
for exosomes varies depending on the patient’s tissue and 
must be set at either 4 °C or −80 °C, impacting their pro-
tein content [240]. Factors such as storage pH, buffering 
conditions, and freeze–thaw cycles, also affect the exo-
somal protein content [240]. Determining the appropri-
ate dosage is a major challenge due to potential immune 
responses from incorrect dosing. Furthermore, the clini-
cal application of exosome as a personalized medicine is 
limited by cost constraints. Therefore, there is a neces-
sity for cost-effective and time-efficient nano techniques 
to develop exosome therapeutics that are both affordable 
and efficient [239].

Despite the challenges, research on exosomes is stead-
ily progressing and approaching a new frontier. Sev-
eral clinical trials are currently underway to explore the 
potential of exosomes as a therapeutic option. However, 
sustained research efforts in this field are crucial for 
addressing and overcoming the existing obstacles.

Conclusion and future perspective
Chronic diseases continue to be a significant factor 
contributing to widespread morbidity and economic 
burdens, resulting in millions of fatalities globally. The 
advancement of modern medical technologies has led 
to the discovery of innovative therapeutic approaches, 

significantly improving both the quality of life and sur-
vival rates for affected individuals. However, these treat-
ment methods often lead to adverse side effects and yield 
suboptimal clinical outcomes in the advanced stages of 
the diseases. The ongoing interest in cellular communi-
cation continually engages the scientific community with 
the overarching objective of discerning novel therapeu-
tic modalities for addressing chronic diseases through 
cellular communication. Exosomes have recently gained 
considerable attention due to their pivotal role in cellular 
communication via both paracrine and endocrine signal-
ing pathways. Additionally, NRs, as ligand-activated tran-
scription factors, play a central role in maintaining bodily 
homeostasis by regulating relevant genes. Numerous 
studies have highlighted the significance of exosome-NR 
communication in various physiological and pathologi-
cal contexts. This comprehensive review represents the 
first in-depth analysis integrating data on the interplay 
between NRs and exosomes, elucidating their implica-
tions in the initiation and progression of chronic diseases. 
The anticipated outcome of this novel cellular intercom-
munication is poised to offer a robust platform for the 
development of innovative therapeutic regimens. The 
emerging understanding of the interrelationship between 
NRs and exosomes highlights a contemporary avenue in 
cellular communication. Although the existing literature 
on this subject is limited, focused exploration of these 
interactions presents a prospective avenue for future 
scientific inquiry. Subsequent investigations are deemed 
essential to unravel the intricate molecular mechanism 
that underlies this phenomenon and discern its impli-
cations in both physiological and pathological contexts. 
This imperative seeks to expand our comprehension 
of the intricate interplay between NRs and exosomes, 
thereby fostering advancements in the field of cell biology 
and molecular signaling.

Interestingly, exosomes emerge as potential carriers for 
delivering biological molecules, such as miRNAs, with 
precise targeting capabilities based on their size, com-
position, and targeting precision to minimize adverse 
effects. The growing interest in utilizing exosomes as 
a therapeutic approach has attracted global research 
attention. Simultaneously, NRs have emerged as targets 
for developing novel therapeutic strategies. Metabolic 
activities of diseased cells undergo regulation through 
NRs, facilitated by exosomal miRNAs or siRNAs. Con-
sequently, modulating NRs, exosomal contents, or both 
presents a promising avenue for novel treatment of 
chronic disease. However, existing studies remain insuf-
ficient, necessitating further studies. Crucially, elucidat-
ing the intricate mechanisms governing the reciprocal 
regulation between exosomal contents and NRs requires 
in-depth exploration. Furthermore, the limited number 
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of clinical studies highlights the imperative for additional 
trials to deepen our understanding of the involvement of 
NRs in chronic diseases.
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