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Abstract

The global prevalence rate for congenital hydrocephalus (CH) is approximately one out of every five hundred births
with multifaceted predisposing factors at play. Genetic influences stand as a major contributor to CH pathogenesis,
and epidemiological evidence suggests their involvement in up to 40% of all cases observed globally. Knowledge
about an individual’s genetic susceptibility can significantly improve prognostic precision while aiding clinical deci-
sion-making processes. However, the precise genetic etiology has only been pinpointed in fewer than 5% of human
instances. More occurrences of CH cases are required for comprehensive gene sequencing aimed at uncovering
additional potential genetic loci. A deeper comprehension of its underlying genetics may offer invaluable insights
into the molecular and cellular basis of this brain disorder. This review provides a summary of pertinent genes identi-
fied through gene sequencing technologies in humans, in addition to the 4 genes currently associated with CH (two
X-linked genes L1CAM and AP152, two autosomal recessive MPDZ and CCDC88C). Others predominantly participate

in aqueduct abnormalities, ciliary movement, and nervous system development. The prospective CH-related genes
revealed through animal model gene-editing techniques are further outlined, focusing mainly on 4 pathways, namely
cilia synthesis and movement, ion channels and transportation, Reissner’s fiber (RF) synthesis, cell apoptosis, and neu-
rogenesis. Notably, the proper functioning of motile cilia provides significant impulsion for cerebrospinal fluid (CSF)
circulation within the brain ventricles while mutations in cilia-related genes constitute a primary cause underlying
this condition. So far, only a limited number of CH-associated genes have been identified in humans. The integration
of genotype and phenotype for disease diagnosis represents a new trend in the medical field. Animal models provide
insights into the pathogenesis of CH and contribute to our understanding of its association with related complica-
tions, such as renal cysts, scoliosis, and cardiomyopathy, as these genes may also play a role in the development

of these diseases. Genes discovered in animals present potential targets for new treatments but require further valida-
tion through future human studies.
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Background
Congenital hydrocephalus (CH) is characterized by the
excessive accumulation of cerebrospinal fluid (CSF) in
the brain at birth [1]. The incidence of CH is approxi-
mately 1/500 among young individuals and 2/500 among
the elderly. It is a complex brain disorder with multiple
etiological factors, including vitamin B or folic acid defi-
ciency, intraventricular hemorrhage, viral infections,
environmental influences, developmental anomalies,
and genetic predisposition, often accompanied by struc-
tural brain abnormalities and neural dysfunction [2].
Common symptoms of hydrocephalus include gait dis-
turbances, cognitive impairment, urinary dysfunction,
seizures, abnormal reflexes, bradycardia and hypoventi-
lation, headaches, vomiting, and visual impairments [3].
Among these factors contributing to CH development,
global epidemiological data suggests that genetic factors
account for more than 40% of cases [4, 5]. The annual
medical costs associated with hydrocephalus are esti-
mated at around $2 billion per year in the US alone, thus
posing a significant economic and societal burden [6].
Though genetic factors contribute to up to 40% of cases
of CH, precise genetic causes have only been identified in
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less than 5% of human cases [4]. There is a pressing need
for a deeper understanding of the genetic components
and mechanisms underlying CH, which has the potential
to yield invaluable insights into its molecular and cellular
etiology [7]. This review aims to consolidate existing evi-
dence on the pathologic genes implicated in both human
patients and animal models with respect to CH develop-
ment. The goal is to stimulate novel approaches towards
treating CH. Additionally, we discuss other developmen-
tal disorders and organ dysfunctions associated with
genes related to hydrocephalus.

The production and circulation of CSF
CSF plays a critical role not only in providing mechani-
cal support for the brain and spinal cord but also serves
as a carrier for transporting metabolic waste and nutri-
ents [8]. The healthy brain consists of three integrated
components that collectively regulate CSF dynamics:
CSF production, circulation, and absorption. These three
components typically maintain equilibrium.
Approximately 80-90% of CSF is produced by the
choroid plexus in the cerebral lateral ventricles [9, 10]
(Fig. 1). Ion transporters on the basolateral membrane
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Fig. 1 The production of CSF occurs through two distinct pathways: the choroid plexus and the brain parenchymal system. CSF can be absorbed
by the subarachnoid space or glymphatic circulation, ultimately entering the dcLNs. CSF cerebrospinal fluid, dcLNs deep cervical lymphatic nodes,

ISF interstitial fluid, mLVs meningeal lymphatic vessels
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facing the blood and the apical membrane facing the
ventricles are responsible for secreting and delivering
ions such as Na*, CI~ and HCO;™ from the blood to the
ventricles [11-13]. The remaining 10-20% of CSF pro-
duction is attributed to the brain parenchymal system
through exchange between CSF and interstitial fluid (ISF)
in the capillary-astrocyte complex.

Most researchers have hypothesized that the circula-
tion of CSF commences from the lateral ventricles, pro-
ceeds into the third ventricle, and then passes into the
fourth ventricle through the midbrain cerebral aqueduct.
The majority of CSF subsequently flows into the cisterna
magna and cerebellopontine cisterns via the apertures
of the fourth ventricle, namely, the median aperture and
two lateral apertures. Ultimately, it is reabsorbed into the
cerebral venous system through the arachnoid villi [14].
The extracranial lymphatic drainage pathway serves as a
crucial component of CSF circulation, playing a pivotal
role in maintaining homeostasis, buffering functions,
and protective mechanisms of the central nervous system
(CNS) [15]. As illustrated in Fig. 1, a significant volume of
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CSF drains into nasal lymph nodes and meningeal lym-
phatic vessels (mLVs), through which CSF is removed
from intracranial spaces to extracranial regions and sub-
sequently absorbed by the deep cervical lymphatic nodes
(dcLNs) [16]. This intricate physiological process involves
interactions among multiple molecules. Therefore, in
subsequent sections, we will focus on pathological mech-
anisms related to molecular dysfunctions causing hydro-
cephalus. Disruption in any of these processes could lead
to excessive accumulation of CSF and ventriculomegaly
due to factors such as CSF overproduction, inefficient
reabsorption into the systemic circulation, abnormal cil-
ium-dependent flow, or obstruction within the ventricu-
lar system.

The main genetic target of CH in humans

Genes associated with CH in human cases are pre-
sented in Fig. 2, most of which are involved in Sylvius
aqueduct (SA) defects, cilia growth and movement, and
nervous system development. The Human Phenotype
Ontology website predicts that 411 genes are related
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Fig. 2 The genetic targets of CH in humans involve genes related to cilia movement, Sylvius aqueduct development, and nervous system
growth in pathological cases of CH. CH congenital hydrocephalus, FOXJ1 forkhead box J1, CWH43 cell wall biogenesis 43 C-terminal homolog,
AK9 adenylate kinase 9, AP1S2 adaptor related protein complex 1 subunit sigma 2, CCDC88C coiled-coil domain containing 88C, L1CAM L1 cell
adhesion molecule, TR1IM71 tripartite motif containing 71, SMARCC1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin
subfamily C member 1, PTCH1 patched 1, SHH sonic hedgehog, MPDZ multiple PDZ domain crumbs cell polarity complex component, CRB2

crumbs cell polarity complex component 2
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to “hydrocephalus” (HP:0000238). Among them, only
4 genes have been confirmed to be linked to CH: two
X-linked genes [LICAM (L1 cell adhesion molecule) and
AP1S2 (adaptor-related protein complex 1 subunit sigma
2)] and two autosomal recessive genes [MPDZ (multiple
PDZ domain crumbs cell polarity complex component)
and CCDC88C (coiled-coil domain containing 88C)].

SA stenosis, which connects the third and fourth
ventricles, is responsible for the majority of cases of
non-syndromic CH. Approximately 5-15% of cases are
associated with X-linked variations of LICAM, known
as L1 syndrome. LICAM encodes a transmembrane gly-
coprotein belonging to the immunoglobulin superfamily
of cell adhesion molecules, and it plays important roles
in neuronal adhesion, migration, growth cone mor-
phology, neurite outgrowth, and myelination. Another
separate X-linked syndrome called Fried-Pettigrew syn-
drome [Online Mendelian Inheritance in Man (OMIM):
304,340], is characterized primarily by intellectual dis-
ability, basal ganglia iron or calcium deposition, and
hydrocephalus due to APIS2 variation [17-19]. Varia-
tions in MPDZ and CCDC88C share many neuropatho-
logical similarities including atresia of both SA and the
central canal of the medulla with recessive forms of CH
(OMIM: 615,219 and OMIM: 236,600 respectively). Both
genes colocalize at the apical cell junction in the neu-
ral plate, CCDC88C directly interacts with MPDZ and
cooperates to promote apical cell constriction during
neurulation [20, 21]. MPDZ is essential for maintaining
ependymal integrity, loss of MPDZ leads to ependymal
denudation accompanied by reactive astrogliosis and SA
stenosis [22]. Additionally, mutations in MPDZ can cause
abnormally high permeability in choroid plexus epithelial
cell monolayers [23].

Moreover, this section also provides a summary of the
mutation genes identified through gene sequencing tech-
nology in cases of hydrocephalus and related diseases,
which require further validation to establish their causal
involvement in hydrocephalus. Regarding SA develop-
ment-related genes, CRB2 encodes the crumbs cell polar-
ity complex component 2, originally primarily associated
with renal anomalies such as renal tubular or glomerular
microcysts. Recently, Tessier et al. [24] reported that bial-
lelic CRB2 variations are also strongly linked to hydro-
cephalus, resulting from atresia of the SA and central
canal aqueduct of the medulla.

For the genes related to cilia growth and motility,
CWH43 (cell wall biogenesis 43 C-terminal homolog)
is highly expressed in ciliated ependymal and choroid
plexus cells, where it regulates the membrane localiza-
tion of glucose-6-phosphate isomerase (GPI)-anchored
proteins in mammalian cells. Yang et al. [25] found that
approximately 15% of patients with idiopathic normal
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pressure hydrocephalus (iNPH) carry heterozygous
loss-of-function deletions in CWH43. Similarly, mice
with Cwh43 deletions could develop communicating
hydrocephalus, gait dysfunction, and abnormalities
in choroid plexus and ependymal cells. The mutation
of CWH43 affects the number of ependymal cilia and
the apical/basal targeting of GPI-anchored proteins
in ventricular multi-ciliated epithelial cells, which
may contribute to the development of iNPH. AK9,
encoding adenylate kinase 9, was also suggested to be
involved in iNPH. A damaging mutation in AK9 was
detected in 9.6% of iNPH patients [26]. Mice with Ak9
mutation exhibit decreased cilia motility and beat fre-
quency, as a result of communicating hydrocephalus
and balance impairment. Dysfunction of the FOX]I
(forkhead box J1) triggers autosomal dominant motile
ciliopathies affecting many organ systems, including
brain ventricles leading mainly to abnormal ventricu-
lar ciliary motility in CH [27]. CC2D2A (coiled-coil and
C2 domain containing 2A) mutations are a relatively
common cause of Joubert syndrome, a ciliopathy char-
acterized by distinctive brain malformation and devel-
opmental delay. Patients with CC2D2A mutations often
present with hydrocephalus or epilepsy [28]. Further-
more, Munch et al. [29] investigation revealed that 14
genes are involved in ciliogenesis, CELSR2 (cadherin
EGF LAG seven-pass G-type receptor 2), CENPF (cen-
tromere protein F), DNAII (dynein axonemal interme-
diate chain 1), DNAHS5 (dynein axonemal heavy chain
5), FLNA (filamin A), FUZ (fuzzy planar cell polarity
protein), IFT172 (intraflagellar transport 172), LRP6
(LDL receptor-related protein 6), MPDZ, NOTCH2
(Notch receptor 2), PIK3R2 (phosphoinositide-3-kinase
regulatory subunit 2), PTCHI (patched 1), TRIM71
(tripartite motif containing 71), and VANGL2 (VANGL
planar cell polarity protein 2).

In relation to the nervous system’s function, TRIM71,
SMARCCI1 (SWI/SNF related, matrix-associated, actin-
dependent regulator of chromatin subfamily C member
1), PTCHI, and SHH (sonic hedgehog) play crucial roles
in both neural tube development as well as neural stem
cell (NSC) growth. Furey et al. [30] identified mutations
within these aforementioned 4 genes among 125 CH
trios and 52 independent probands through whole exome
sequencing (WES). SMARCCI encodes for SWI/SNEF-
related, matrix-associated, actin-dependent regulator
of chromatin, subfamily C, member 1 (BAF155) which
is a chromatin remodeling protein, its mutation results
in CH phenotype associated with defects during neural
tube development [31-33]. Additionally, 6 other genes,
ASTN2 (astrotactin 2), B3SGALNT2 (beta-1,3-N-acetyl-
galactosaminyltransferase 2), DAGI (dystroglycan 1),
NF1 (neurofibromin 1), ROBOI! (roundabout guidance
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receptor 1), and SMARCCI participate in processes
related to neuronal formation [29].

In addition, several genes have been identified as being
related to hydrocephalus, but the reporting of this rela-
tionship has been incomplete. MMACHC (metabolism
of cobalamin associated C) mutation with ¢.609G > A is
most frequently observed in patients with cobalamin C
deficiency (cblC). Recent research has shown that the
homologous mutation MMACHC c.609G > A often leads
to irreversible brain disorders such as developmental
delay, seizures, and hydrocephalus [34]. Furthermore, a
study of 27 CH families revealed that the WDR81 (WD
repeat domain 81) and EMLI (EMAP like 1) genes are
associated with CH [35]. Another study involving 381
sporadic CH cases (232 trios) identified several new risk
genes of CH including PIK3CA (phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha), PTEN
(phosphatase and tensin homolog), mTOR (mechanis-
tic target of rapamycin kinase), FMN2 (formin 2), and
FXYD2 (FXYD domain-containing ion transport regula-
tor 2) [19]. Additionally, a study of 110 infantile hydro-
cephalus cases indicated that ZEBI (zinc finger E-box
binding homeobox 1), SBF2 (SET binding factor 2), and
GNAI2 (G protein subunit alpha i2) were over-repre-
sented and might affect the signaling pathways involved
in infantile hydrocephalus formation [36].

Overall, due to limited data and research, the current
findings can only account for less than 5% of primary CH
cases [37]. Further genome sequencing of large, well-phe-
notype cohorts is necessary to gain a deeper understand-
ing of the molecular and cellular etiology of CH.

The main genetic targets of CH in animal models
Animal models of CH exhibit numerous histopatho-
logical similarities to humans, making them valuable
for studying the genetics and pathogenesis of CH. Many
genetic loci associated with hydrocephalus have been
identified in animal models [38]. In this section, we pro-
vide a summary of CH-related genes discovered in ani-
mal models, most of which are related to cilia synthesis
and movement, ion transportation, RF synthesis, cell
apoptosis, and neurogenesis (Fig. 3).

Cilia-related genes

Ciliated structures composed of microtubules form elon-
gated protrusions on cellular membranes, they can be
found in various cell types including ependymal cells.
Cilia can be classified into two categories: primary cilium
which serves primarily as a sensor for signal transduc-
tion [39], and motile cilium is found predominantly on
specialized cells responsible for fluid movement or cell
propulsion through outer dynein arms (ODA) and inner
dynein arms (IDA) [40]. Malfunctioning ciliary activity
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may lead to genetic developmental disorders associated
with primary ciliary dyskinesia (PCD), leading to condi-
tions such as infertility, developmental anomalies, hydro-
cephalus, and auditory issues along with compromised
respiratory pathogens clearance leading susceptibility
towards infections causing persistent coughing and dysp-
nea [41]. Ependymal cells are located in the superficial
layer of the cerebral ventricle walls and the central canal
of the spinal cord. The cilia on these cells play a role in
producing and circulating CSF as well as contributing
to nerve regeneration. Both primary and motile cilia are
involved in hydrocephalus through distinct mechanisms
related to their physiological functions. Cilia distrib-
uted in various regions of the ventricles work together to
maintain the directional flow of CSE. Growing evidence
indicated that coordinated beating of motile cilia gener-
ates significant force, propelling CSF production and cir-
culation within brain ventricles [42, 43]. Impairment of
ciliary motor function can disrupt the balance between
CSF production and circulation, resulting in the accumu-
lation of CSF in the ventricles. Table 1 presents a list of
28 genes that regulate the structure and function of cilia
[44-74].

Wdri6 (cilia and flagella-associated protein 52) plays
a crucial role in cilia-related signal transduction. In
zebrafish, severe hydrocephalus was observed in the
Wdrl16 gene knockdown zebrafish. It is noteworthy that
hydrocephalus was the phenotype of Wdri6é disruption
in zebrafish, but ependymal disorganization or impaired
ciliary motility was not observed [44, 45]. It’s specu-
lated that Wdri6 regulates hydrocephalus through cilia-
mediated cell polarity effects such as water homeostasis
or osmoregulation. Wdr78 (dynein axonemal interme-
diate chain 4) encodes a motile cilium-specific protein
involved in the assembly of the axon dynein complex and
ciliary movement. Depletion of Wdr78 in mice caused
defects in ependymal cilia, while Wdr78 morphants
zebrafish exhibited ciliopathy-associated phenotypes
such as hydrocephalus, pronephric cysts, or abnormal
otoliths [46]. Therefore, studies have shown that deple-
tion of Wdr78 leads to abnormal ciliary beat function
of ectodermal cells by affecting the dynein-f assembly.
Nphp7 (nephrocystin 7) is a type of transcription factor
and has been found to physically interact with Bardet-
Biedl syndrome 1 (BBS1). A previous study indicated
that hydrocephalus and pronephric cysts were displayed
in the Nphp7 zebrafish morphants [47]. It is notewor-
thy that the deletion of Nphp?7 revealed an astonishingly
impaired ciliary motility.

lon channels and ion transporter-related genes
Ion transporters play important roles in the process of
CSF secretion. Due to the unidirectional nature of ion
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Fig. 3 Genes associated with CH identified in animal models. In zebrafish and mouse models, genes linked to the development of hydrocephalus
can be categorized into 4 distinct groups: cilia synthesis and movement-related, ion transporter-related, RF synthesis-related, cell apoptosis

and neurogenesis-related, etc. RF Reissner’s fiber, CH congenital hydrocephalus, CNS central nervous system, CaV1.2 calcium voltage-gated

channel subunit alphal C, Calb2 calbindin 2, Atp1a3 ATPase Na*/K™ transporting subunit a3, Slc41a1 solute carrier family 41 members 1, Pank2
pantothenate kinase 2, Ccdc85c¢ coiled-coil domain containing 85C, Lgi1b leucine-rich glioma inactivated 1b, Ecrg4 esophageal cancer related gene
4, Wdr16 cilia and flagella associated protein 52, Nphp7 nephrocystin 7, Ccp5 cytosolic carboxypeptidases 5, Exoc5 cxocyst complex component 5,
Msx1 Msh homeobox 1, Hrg1 solute carrier family 48 member 1, b-Pix Rho guanine nucleotide exchange factor (GEF) 7b

movement, transporters located on the basement mem-
brane side differ from those on the apical membrane side.
These transporters effectively maintain internal homeo-
stasis and balance of Na*, CI7, and HCO,~, which in
turn regulate CSF secretion. In this section, we examine
6 genes associated with ion transporter function, whose
dysfunction could impact CSF secretion and lead to
hydrocephalus (Table 1) [75-79].

Calb2 (calbindin 2) belongs to the troponin C super-
family of Ca®* binding protein and is involved in Ca*"
transportation. In zebrafish, Calb2a and Calb2b are
highly expressed in the CNS and peripheral nervous
system, where they play a crucial role in regulating syn-
aptic calcium concentration, thus contributing signifi-
cantly to nervous system development. The combined
loss of Calb2a and Calb2b leads to severe hydrocephalus,
axial curvature defect, and yolk sac edema in zebrafish
due to impaired neural tube folding and disorganized

midbrain-hindbrain boundary [76]. Atpla3 (ATPase
Na*/K" transporting subunit a3) encodes an essential
ion-transporting enzyme that regulates transmembrane
Na* and K' gradients, playing a vital role in electri-
cal excitation transmission of nerve and muscles. The
Atpla3 knockdown in zebrafish can result in hydro-
cephalus due to disrupted transmembrane ion transport
[78]. Slc41al (solute carrier family 41 member 1) encodes
Mg?* transporter proteins located at the base membrane
that participate in the transmembrane transport of Mg>™.
Knockdown of Sic41al with morpholino leads to body
curvature, hydrocephalus, and kidney cysts in zebrafish
as a result of disrupted intracellular Mg** homeostasis
caused by blocked transmembrane Mg?* transport [79].

CNS-related genes
CH is not only a disorder of CSF dynamics, but also
a brain disorder that leads to severe neurological
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impairment [80]. Most cells in the developing mamma-
lian brain derive from the ventricular (VZ) and subven-
tricular (SVZ) zones. The VZ consists of multipotent
radial glia/NSCs, while the SVZ is composed of rapidly
proliferating neural precursor cells (NPCs) [81]. These
zones are crucial for neurodevelopment and any disrup-
tion, particularly within the VZ, can lead to stenosis or
obliteration of the cerebral aqueduct of Sylvius, ultimately
resulting in hydrocephalus [82—84]. This disturbance not
only affects CSF flow but also simultaneously impairs
the function of NSCs and ependymal cells, thereby link-
ing hydrocephalus with abnormal neurogenesis [85-87].
Moreover, defects in membrane protein transporter-
related genes could disrupt NSCs, leading to CH and
associated cerebral malformations [1, 88—90]. Rodriguez
et al. [82] proposed that gene mutations associated with
cell junction proteins’ transport in NSCs could lead to the
disruption of VZ, thereby resulting in aqueduct stenosis
and hydrocephalus. NSCs play an important role in the
growth of neurons and glial cells in the CNS [91, 92]. The
dysfunction of NSC function hinders the polarity, prolif-
eration, and differentiation of neurons. It is worth noting
that NSC injury can also induce neurological disorders,
such as cortical dysfunction, hydrocephalus, and perive-
ntricular heterotopia [91, 93]. Additionally, it is notewor-
thy that apoptosis within the CNS may impact neuronal
development, resulting in hydrocephalus and nasal mal-
formations [94]. In this section, we review 7 genes asso-
ciated with CNS, whose dysfunction could contribute to
hydrocephalus (Table 1) [82, 95-100].

Pank2 (pantothenate kinase 2) encodes a protein
belonging to the pantothenate kinase family and plays an
essential role in cellular coenzyme A biosynthesis. Pank2
morphant in zebrafish induced abnormal phenotypes
including disrupted brain morphology, hydrocephalus,
and edema in the heart region [95]. Downregulation of
Pank2 significantly impacts the development of neurons
in the CNS and neuronal cells. Ecrg4 (esophageal can-
cer-related gene 4) regulates the secretion of neuropep-
tides and is mainly expressed in the choroid plexus (CP)
epithelial cells, brain ventricular, and central canal cells
of the spinal cord. The product of Ecrg4, Augurin, con-
tributes to the development of CNS and participates in
the proliferation of NSC and NPC. Knockdown of Ecrg4
using morpholino in zebrafish induced a hydrocephalus-
like phenotype related to the damage of CNS [96].

Subcommissural organ (SCO)-RF-related genes

RF, a network of threadlike glycoproteins suspended
within the CSF, plays a pivotal role in the homeostatic
regulation of the brain’s internal environment, by binding
to and facilitating the transport and clearance of mono-
aminergic compounds. It is produced and released from
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the SCO of the brain, an active gland during develop-
ment in most species including humans [101]. The SCO
is an ependymal structure located at the roof of the third
ventricle and the entrance to the mesencephalic aque-
duct [102-104]. The RF extends through the SA, fourth
ventricle, and central canal of the spinal cord to reach the
caudal ampulla or fifth ventricle located at the end of the
central canal [101]. Dysfunction of the SCO-RF complex
is closely related to hydrocephalus phenotypes [103, 105].
Evidence suggested that the absence of RF or immuno-
logical damage to SCO could lead to stenosis or oblitera-
tion of cerebral aqueduct and defects in the neural canal
(NCa), thereby impairing CSF circulation resulting in
CH [106-108]. Moreover, the role of RF extends to neu-
ral development and axonal guidance, with its deficiency
being associated with morphological brain defects, high-
lighting its multifaceted contribution to both normal
physiology and disease pathology [88]. It is worth not-
ing that RF is exclusively present in animals, except for
humans. In humans, the secretory capacity of the SCO
is robust in 3—5-month-old fetuses; however, it regresses
significantly in 9-month fetuses. By 1-year-old, secre-
tory ependymal cells shrink and cluster into islets inter-
spersed with non-secretory cuboidal ependyma. This
regression continues through childhood, limiting secre-
tory parenchyma to scattered islets by the ninth year.
Despite the absence of RF in humans, SCO-spondin, the
unpolymerized form of RF, is present and soluble in CSF,
thus impacting brain development [109]. It also partici-
pates in certain aspects of neurogenesis, such as the cell
cycle of NSCs, neuronal differentiation, and axon path-
finding [104]. In this section, we discuss 2 genes linked to
RF function that contribute to the development of hydro-
cephalus (Table 1) [105, 110].

Camal encodes a protein associated with cell adhe-
sion. Camel regulates the development of brain ventric-
ular, and loss of camel function in zebrafish leads to the
manifestation of hydrocephalus and scoliosis. Deletion
of camel has been shown to result in hydrocephalus due
to defects in RF synthesis, resulting from abnormal CSF
flow [105]. MsxI (Msh homeobox 1) is involved in regu-
lating DNA-binding transcription factor activity and is
widely expressed in neuroepithelial cells. MsxI mutants
exhibit severe hydrocephalus at birth, accompanied by
abnormal SCO development. Additionally, RF was found
to be absent in Msx! mutant mice [110]. This suggests
that MsxI mutants inhibit RF synthesis by affecting nor-
mal SCO development, thereby affecting CSF flow.

Others

Table 1 also highlights five additional genes and small
molecular substances linked to hydrocephalus [111-
115]. However, the mechanisms by which these genes
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influence the progression of hydrocephalus are not fully
understood or categorized as mentioned earlier. Further-
more, the inflammatory/immune response may also be
associated with the progression and severity of hydro-
cephalus [2, 116]. In the syh mice and HTx rats (two ani-
mal models of fetal-onset hydrocephalus), the onset of
ventricle disruption is correlated with the infiltration of
macrophages and lymphocytes into denuded.

The expression of fS-Pix [Rho guanine nucleotide
exchange factor (GEF) 7b] is widespread in both the
brain and blood vessels, where it plays a role in regulating
cerebral vascular stability. In zebrafish, mutation of the
B-Pix gene can lead to obvious hydrocephalus and severe
intracranial hemorrhage during early embryonic devel-
opment. It has been hypothesized that deleting 5-Pix may
disrupt vascular stability, potentially affecting CSF circu-
lation [112]. Thioredoxinl is an antioxidant protein with
reactive oxygen species (ROS) scavenging capabilities
that govern processes such as cell proliferation, migra-
tion, apoptosis, and inflammation. Zebrafish injected
with thioredoxinl morpholine exhibit hydrocephalus and
midbrain malformations [115]. Deletion of thioredoxini
triggers a significant increase in ventricular epithelial
cell apoptosis while disrupting vascular endothelial cell
migration, ultimately leading to hydrocephalus.

Discussion

In this review, we have comprehensively summarized
the genetic factors and molecular mechanisms of CH
in both human subjects and animal models. The results
from human sequencing and validated genes showed that
these genes are related to dysfunction of the central sys-
tem, impaired cilia movement, and abnormalities in SA.
By utilizing animal models such as mice and zebrafish, it
becomes feasible to further investigate additional genes
related to hydrocephalus pathology. These genes can be
systematically classified into 4 principal groups: those
linked to ciliary function, ion transport, CNS function,
and RF synthesis. Genes related to ciliary function play
an important role in regulating the synthesis, formation,
and movement of cilia, which is closely connected with
CSF absorption. Ion transporter-related genes primarily
disrupt homeostasis by dysregulating the ions’ transpor-
tation processes, thus impacting CSF secretion. Muta-
tion in CNS function-related genes predominantly affects
the development, function, and apoptosis of nerve cells,
which might result in potential disturbances in brain
morphology. Additionally, the RF synthesis-related genes
dysregulate the formation and morphology of NCa, influ-
encing CSF circulation. The identification of these genes
in CH animal models provides valuable resources for val-
idation within larger clinical cohorts of CH patients.
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Genetic insights hold profound significance in the
management of CH. The pathogenesis of this complex
disease may be closely linked to multiple gene variants.
Genetic research aids in identifying these key gene vari-
ants, thereby unraveling the underlying mechanisms of
the disease and paving the way for innovative treatment
approaches [117]. For instance, if a specific genetic vari-
ant is found to be intricately associated with the disease,
gene-editing techniques or gene therapy can be employed
to correct this variant, ultimately aiming to cure the con-
dition [118-120]. Furthermore, genetic understanding
promotes personalized healthcare. As each individual
has a unique genome, responses to illnesses and treat-
ment outcomes naturally differ. Genetic research enables
tailored therapies based on a patient’s genotype, optimiz-
ing treatment efficiency and minimizing adverse effects
[121]. Moreover, genetic insights facilitate more accurate
disease prediction and risk assessment. Genetic screen-
ings allow us to anticipate an individual’s susceptibility to
certain illnesses, enabling proactive preventive measures.
This prediction is particularly crucial for genetic condi-
tions such as CH. In conclusion, genetic insights offer
immense potential to revolutionize disease treatment.
As genetic research advances and technology evolves, we
are poised to deliver more precise and effective medical
care in the foreseeable future. Nevertheless, it is crucial
to recognize that genetics do not hold all the answers,
they address only a portion of health conditions. Hence,
a holistic approach encompassing genetics as well as
environment and lifestyle factors is essential for devising
comprehensive treatment plans.

Addressing the complexities associated with CH neces-
sitates developing a multimodal detection approach that
integrates both clinical observations along radiological
phenotypic characteristics alongside genotypic analy-
sis for effective implementation within a clinical setting.
This comprehensive approach plays a pivotal role in
augmenting diagnostic precision and specificity, crucial
when dealing with conditions where initial symptoms
may not manifest at birth but evolve gradually over time.
The utilization of clinical radiological medical imag-
ing technology like CT as well as MRI offers substantial
benefits, particularly in identifying structural anomalies
within the brain including aqueduct stenosis, Dandy-
Walker malformation, arachnoid cysts, and neural tube
defects. Additionally, the insight provided by genotype
data facilitates a deeper understanding of the onset and
progression mechanisms related to CH pathology. How-
ever, it should be noted that genetic analysis alone may
have limitations when elucidating complex presentations
involving skull morphology, extracranial structures, and
skeletal deformities. Therefore, a synergistic amalgama-
tion encompassing genotype data along with detailed
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examination through clinical and radiologic means
holds promise for expediting precise disease identifica-
tion. Zhang et al. [122] integrated key findings from their
study which involved combining patient-specific traits,
and molecular analyses via neuroimaging modalities such
as MRI/CT scans, gene mutation tests, and metabolic
assessments. Moreover, Rijken et al. [123] demonstrated
how 3D-CT reconstruction technology played an indis-
pensable role in delineating morphometric changes in
foramen magnum configuration as well as the presence
of ventriculomegaly among pediatric patients diagnosed
with craniosynostosis; this technique exhibits consid-
erable potential for facilitating CH diagnostics. Conse-
quently, this multimodal detection strategy, involving
integration between radiologically derived phenotypes
and genotype analytics, serves not only to enhance diag-
nostic precision and treatment efficacy but also paves
the way for tailored medical interventions catering to
individual patient needs. With ongoing advancements
in technology-driven genomic research coupled with
expanding horizons within clinical applications, it is
anticipated that future management strategies will ena-
ble more accurate and effective treatment across diverse
spectrums of ailments.

The phenotypic manifestations of genetic defects are
remarkably diverse and complex. Pathogenic genes asso-
ciated with hydrocephalus may also present in other tis-
sues or organs, leading to a range of comorbidities. For
instance, dysfunctional ciliary genes can also trigger
renal cysts and scoliosis [46, 48, 49, 54, 56, 58]. Addition-
ally, the loss of function of the SLC25A4 gene can lead to
severe cardiomyopathy, scoliosis, cataracts, and depres-
sion [124]. Understanding the associated complications
of hydrocephalus is essential for identifying the underly-
ing pathology and implementing personalized treatment.
If patients exhibit symptoms of hydrocephalus, early
intervention, and targeted treatments should be provided
to prevent associated comorbidities.

Further research into the genetic and pathogenesis of
CH will facilitate the development of animal models for
investigating drug treatment options. Currently, the field
of drug therapy for CH remains largely unexplored, and
establishing effective animal models of hydrocephalus
provides a platform for exploring potential drug targets.

Conclusions

In this review, we have provided a comprehensive sum-
mary of recent discoveries regarding the genetic targets
of CH in both human and animal models. In addition
to the 4 confirmed genes associated with CH (X-linked
genes LICAM and AP1S2, autosomal recessive MPDZ,
and CCDC88C). We have also reviewed 35 genes identi-
fied through gene sequencing in human cases, as well as
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numerous related genes in the CH animal model. These
findings warrant further validation through extensive
clinical studies involving a large cohort of CH patients.
The implicated genes primarily participate in 4 path-
ways and may contribute to comorbidities affecting other
organ functions where these related genes are expressed.
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