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Abstract 

Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell prolif‑
eration, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue 
repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as car‑
tilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degen‑
erative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. 
In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, 
catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) 
promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine‑derived FGFs (FGF19, 
FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other 
FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF 
signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling 
have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are 
still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, 
this review aims to document the association between the FGF signaling pathway and the development and progres‑
sion of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent 
and treat orthopedic degeneration will be evaluated.

Keywords Fibroblast growth factor (FGF), Fibroblast growth factor receptor (FGFR), Osteoarthritis (OA), Intervertebral 
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Background
In mammals, the fibroblast growth factor (FGF) family 
consists of 18 highly conserved secreted signaling pro-
teins capable of binding and activating 4 receptor tyrosine 
kinases, thereby regulating downstream signaling pathways 
[1]. Fifteen classical FGF signaling molecules are known 
to be important in the early stages of embryonic growth 
and organ formation. They are persistently expressed 
in adult tissues as they are pivotal for regulating tissue 
growth, regeneration, repair, and metabolic homeostasis 
[2]. FGF15, FGF19, and FGF21 exhibit expression across 
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multiple tissues and exert essential functions during the 
initial stages of embryonic development. Anormal in FGF 
signaling pathways has been associated with various dis-
eases, including osteoarthritis (OA), cancer, heart disease, 
angiogenesis disorders, achondroplasia, and impaired 
embryonic development

Orthopedic degenerative diseases, including OA, 
intervertebral disc degeneration (IVDD), osteoporo-
sis (OP), and sarcopenia, are prevalent among the elderly 
population. With the increasing aging population, there is a 
rise in the incidence of these diseases, making the progres-
sion of pathological degeneration a significant public health 
concern. These disease conditions lead to reduced mobil-
ity, and increased muscle and joint pain, greatly impacting 
the quality of life for older individuals. This poses a sub-
stantial burden on both global public health and rehabilita-
tion healthcare systems. Orthopedic degenerative diseases 
involve various pathological changes, such as long-term 
chronic inflammation, joint cartilage degradation, and 
abnormal subchondral bone formation. These processes 
are often regulated by numerous signaling pathways in 
the body. Signaling pathways like transforming growth 
factor-β, Wnt/β-catenin, and hypoxia-inducible factor play 
important roles in regulating cartilage growth and devel-
opment, bone mineral density (BMD), and muscle mass 
associated with orthopedic degenerative diseases [3–6]. 
The FGF signaling pathway has gained attention from 
medical researchers due to its involvement in skeletal mus-
cle growth and development regulation as well as extra-
cellular matrix (ECM) synthesis and decomposition, and 
bone tissue signal transduction [7, 8]. Various members 
of the FGF family contribute differently to chronic patho-
logical changes seen in orthopedic degenerative diseases. 
For example, FGF1 and FGF8 may contribute to cartilage 
destruction during the development of OA [9, 10], whereas 
FGF18 can promote cartilage repair and protect joint car-
tilage integrity. Additionally, FGF18 inhibits apoptosis of 
nucleus pulposus (NP) cells protecting intervertebral discs 
(IVDs) affected by IVDD [11]. In cases of sarcopenia and 
OP, FGF shows potential for slowing down or reversing 
disease progression. The therapeutic applications target-
ing the FGF family have garnered significant attention, with 
ongoing clinical trials focused on FGF18. Therefore, this 
review emphasizes the role of the FGF signaling pathway in 
the pathogenesis and progression of orthopedic degenera-
tive diseases and assesses its potential as a molecular target 
for the prevention and treatment of these conditions.

FGFs and fibroblast growth factor receptors 
(FGFRs)
Structure of FGFs and FGFRs
The FGF superfamily has 22 members, with 4 of 
them being intracellular proteins that do not bind to 

extracellular receptors. The remaining 18 members 
(FGF1-10 and FGF16-23) act as ligands, binding to recep-
tor tyrosine kinases. FGFs share a similar core struc-
ture comprising 120 – 130 amino acids arranged in 12 
antiparallel β chains (β1-12), which exhibit high affin-
ity for FGFRs and heparin [12]. The mammalian FGFR 
family is encoded by 4 FGFR genes (FGFR1-4), consist-
ing of 3 extracellular immunoglobulin domains (D1-D3), 
a cytoplasmic tyrosine kinase domain, and a one-way 
transmembrane domain. These receptors possess highly 
conserved sequences but differ primarily in terms of 
ligand affinity and tissue distribution [13, 14]. An acidic 
sequence rich in serine known as the acid box is a dis-
tinctive feature located between D1 and D2 in the extra-
cellular immunoglobulin domain of FGFRs [15]. During 
receptor function, the acid box and D1 domain play 
roles in receptor self-inhibition, whereas the D2 and D3 
domains are involved in ligand-specific binding. The 
transmembrane domain anchors the receptor to the cell 
membrane facilitating receptor dimerization. Addition-
ally, the near-membrane region of the FGFR also con-
tributes to receptor dimerization [16]. Most FGFs act as 
paracrine factors during organogenesis. FGF19, FGF21, 
and FGF23 regulate the homeostasis of phosphate, vita-
min D, cholesterol, and glucose, among other substances 
in the endocrine system [2, 17].

FGF‑FGFR interaction
The binding of FGF ligands to FGFR initiates the FGF 
signaling cascade in a heparan sulfate glycosaminogly-
can-dependent manner, facilitating FGF-FGFR dimeri-
zation. This process promotes and stabilizes the 1:1 ratio 
between the ligand and receptor within the FGF-FGFR 
complex, as well as the 2:2 protein-protein contact in the 
FGF-FGFR dimer. Moreover, it contributes to stabilizing 
FGF against degradation. This complex consists of two 
FGFs, two heparin sulfate chains, and two FGFRs [18, 
19]. Upon FGFR dimerization, their cytoplasmic kinase 
domains undergo transphosphorylation at cyclic tyrosine 
residues, leading to activation. It has been determined 
that FGFR1 has at least 7 phosphorylation sites (Tyr163, 
Tyr583, Tyr585, Tyr653, Tyr654, Tyr730, and Tyr766) [20, 
21]. Following cyclic phosphorylation, tyrosine phos-
phorylation occurs at the C-terminus end near both the 
insertion and membrane regions of the kinase domain. 
The phosphotyrosine group serves as a site for down-
stream signal-binding proteins.

The binding of different FGFs and FGFRs elicits vari-
ous in  vivo effects. For instance, when FGF1 binds to 
FGFR1-3 IgIIIc subtypes, it quickly directs the receptor 
to the lysosome, whereas FGFR4 is directed toward the 
recycling region [22]. There are two speculative explana-
tions for this phenomenon. Firstly, distinct intracellular 
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signaling pathways are activated by different combina-
tions of FGF-FGFR. Secondly, the function of FGF-FGFR 
can be influenced by the target cell type and its surround-
ing environment. For example, one type of cell responds 
to FGFs by activating a specific intracellular pathway, 
whereas another type utilizes an entirely different mecha-
nism. Although both speculative mechanisms may deter-
mine the function of FGF-FGFR in  vivo, most studies 
have provided evidence supporting the second mecha-
nism involving the specific nature of the target cell and its 
microenvironment [23, 24]. Furthermore, when chimeric 
receptors were formed by linking different types of FGFR 
cytoplasmic domains with the extracellular domain of 
platelet-derived growth factor (PDGF) receptor, it was 
observed that this affected the intensity of tyrosine kinase 
activity rather than altering the identity of the target pro-
tein [25]. Therefore, quantitative or qualitative changes 
can also arise from variations in activation intensity 
within the FGF-FGFR system.

Common downstream signaling of FGF‑FGFR
The two intracellular substrates of FGFRs are phospholi-
pase C (PLC)-γ and FGFR substrates 1 and 2 (FRS1 and 
FRS2). FGFR-invariant tyrosine residue at the C-termi-
nus, specifically y766 in FGFR1, undergoes phospho-
rylation to form the SH2 structural domain binding site 
in PLC-γ. This phosphorylation event is necessary for 
both PLC-γ activation and its subsequent phosphoryla-
tion. FRS2 binds to the near-membrane region of FGFR 
and is phosphorylated by the receptor, thereby activating 
the Ras-mitogen-activated protein kinase (MAPK) and 
phosphatidylinositol-3-kinase (PI3K)-protein kinase B 
(Akt) signaling pathways. Consequently, these pathways 
including PLC-γ, RAS-MAPK, PI3K-Akt, as well as signal 
transduction and activator of transcription (STAT) path-
ways represent the most prevalent signaling pathways in 
the FGF signaling system [26–30].

RAS‑MAPK pathway
MAPKs are a group of serine-threonine protein kinases 
that are activated by various extracellular stimuli and 
regulate cellular processes both in  vivo and in  vitro. 
The effectors of MAPK include c-Jun N-terminal kinase 
(JNK), extracellular signal-regulated kinase (ERK), and 
p38 mitogen-activated kinase [31]. The RAS-MAPK 
signaling pathway serves as the principal downstream 
pathway of FGF signaling, controlling cell proliferation 
and differentiation [32]. Upon binding to the recep-
tor, FGF activates the phosphorylation of FRS2α, lead-
ing to the formation of the FRS2 complex that consists 
of FRS2α, guanine nucleotide exchange factor 2 (GRB2), 
GRB2-associated binding protein 1 (GAB1), son of sev-
enless (SOS), and tyrosine phosphatases. This complex 

activation subsequently triggers RAS and MAPK acti-
vation, ultimately resulting in ERK1/2 phosphoryla-
tion [33]. FGF also influences p38 phosphorylation and 
induces JNK-dependent proteasomal degradation of 
insulin receptor substrate 1 [34, 35]. Previous studies 
have demonstrated that the MAPK signaling pathway 
can reciprocally affect FGF function [36, 37]; for example, 
ERK1 and ERK2 directly phosphorylate FGFR1 on spe-
cific serine residues within its C-terminal region which 
significantly reduces tyrosine phosphorylation of the 
receptor kinase domain along with its associated with 
signalling [37]. Similarly, active ERKs also target multi-
ple threonine residues in the docking protein FRS2, a key 
mediator involved in FGFR signaling [37]. Therefore, we 
propose further investigations should delve deeper into 
understanding the intricate interactions between these 
two pathways.

PI3K‑Akt pathway
The findings demonstrate that FGF can recruit GAB1 to 
activate PI3K and the anti-apoptotic protein kinase Akt 
through the previously mentioned FRS2α [27]. Moreo-
ver, the anti-apoptotic and autophagy-regulating effects 
of FGF are closely associated with the PI3K-Akt signaling 
pathway. For example, an increase in autophagy induced 
by FGF-18 occurs after stimulation of Akt-transient 
receptor potential mucolipid 1-calponemalignin sign-
aling pathway [38], while FGF2 and FGF4 promote the 
proliferation of stem cell antigen-1 (Sca-1)+ bone mar-
row mesenchymal stem cells through the activation of 
ERK1/2 and PI3K-Akt signaling pathways [39].

PLC‑γ
After FGFR kinase activation, PLC-γ is recruited and 
hydrolyzed by phosphatidylinositol(4,5)bisphosphate 
(PIP2) to generate inositol triphosphate (IP3) and diacyl-
glycerol (DAG). IP3 triggers the release of stored calcium 
and activates multiple downstream pathways [21]. DAG 
activates protein kinase C (PKC) along with its subse-
quent signaling cascades. In general, the PLC-γ pathway 
affects a variety of phenotypes including cell differentia-
tion, transportation, and adhesion [40, 41].

STAT pathway
The STAT signaling pathway is also activated down-
stream of FGF. Activation of STAT1 in primary growth 
plate chondrocytes in response to FGF1 is necessary to 
inhibit proliferation [29]. STAT3 interacts with phospho-
rylated Tyr677 and the activated STAT pathways play a 
crucial role in regulating cellular gene expression [42].
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FGFs and OA
OA is a prevalent joint disease that primarily affects 
the knees, hips, hands, and spinal joints. Major clinical 
symptoms of OA include chronic joint pain, deformities, 
swelling, stiffness, and impaired joint function [43]. Nor-
mal articular cartilage consists of chondrocytes embed-
ded in an ECM composed of collagen and proteoglycans 
[44]. In individuals with OA, disturbances often occur 
in chondrocyte proliferation and survival while colla-
gen and proteoglycan levels in the cartilage matrix are 
reduced. Additionally, OA is characterized by enduring 
lesions in the articular cartilage along with subchondral 
bone sclerosis and osteophytosis [45]. The incidence of 
OA is affected by many factors such as environmental 
conditions, age, lack of exercise, obesity, genetic predis-
position as well as trauma [46, 47]. Further investigation 
is required to elucidate the specific molecular mecha-
nisms underlying OA. Once identified though these 
mechanisms can optimize existing diagnostic and treat-
ment programs while proposing preventive measures to 
reduce excessive treatment.

The pathogenesis of OA is typically characterized by 
alterations in chondrocytes and the cartilage matrix, 
disrupting the homeostasis of articular cartilage and 
resulting in its destruction. The progression of radio-
logical imaging and pain in OA is influenced by the 
development of synovitis and changes in synovial mac-
rophage subtypes [48]. The FGF family plays a crucial 
role in maintaining the homeostasis of articular cartilage 
and IVDs, regulating various cellular processes such as 
growth, migration, differentiation, and survival. Disrup-
tions in the FGF signaling pathway lead to modifications 
to chondrocyte proliferation and differentiation activity, 
as well as alterations to collagen fibers, proteoglycans, 
and other components of the cartilage ECM [49]. These 

pathological stimuli trigger macrophages to release pro-
inflammatory factors that eventually result in cartilage 
deformation, injury, ectopic osteophyte formation, and 
other symptoms [50, 51]. In addition to the indirect stim-
ulation of synovitis and changes in synovial macrophages 
through inflammatory substances, increased expression 
of FGF can directly accelerate these changes [52, 53]. In 
this review, we have identified FGF1, FGF2, FGF8, FGF9, 
FGF18, and FGF23 as being associated with both carti-
lage homeostasis maintenance and OA [54–70] (Table 1).

FGF1
Increased levels of FGF1 have been observed in the chon-
drocytes of patients with OA [9]. FGF1 is secreted by the 
mesenchymal stromal cells and exerts paracrine effects 
to stimulate chondrocyte proliferation [54]. Treatment 
with FGF1 resulted in reduced levels of proteoglycan 
and collagen type II while inducing expression of matrix 
metalloproteinase 13 (MMP13), which has a catabolic 
effect on cartilage. FGF1 also binds to cellular commu-
nication network factor 2 (CCN2) protein and inhibits 
its transcription initiation level [55]. CCN2 is involved in 
the regeneration of damaged articular cartilage and the 
inhibition of OA progression [71]. Additionally, glycogen 
synthase kinase-3β (GSK3β) is essential for mediating the 
inhibitory response of chondrocytes to FGF. Activation 
of GSK3β by FGF1 signaling can be overridden by inhib-
iting GSK3β, leading to enhanced chondrocyte prolifera-
tion and differentiation both in cell culture and in  vivo 
models [72].

FGF2
FGF2 exerts both catabolic and anabolic effects on the 
homeostasis of human cartilage. When cartilage is over-
loaded or damaged, there is a significant increase in the 

Table 1 Changes in the level of expression of members of the fibroblast growth factor (FGF) family in osteoarthritic cartilage

FGF Changes in 
osteoarthritis 
cartilage

Effect Reference

FGF1 Increased Inhibit the expression of proteoglycan and type II collagen (Col‑2) and matrix metalloproteinase 13 (MMP13) [54, 55]

FGF2 Increased Enhance the activation of Ras‑mitogen‑activated protein kinase pathways, leading to the induction of MMP13 
and a disintegrin and metalloproteinase thrombospondin motifs‑5 (ADAMTS‑5)

[56–61]

FGF8 Increased Reduce the content of sulfated glycosaminoglycan; Stimulate the expression of proMMP3 and prostaglandin 
E2 (PGE2);
Interaction with interleukin‑1, tumor necrosis factor‑α

[62–64]

FGF9 Decreased Promote proliferation of bone marrow stromal cells through the protein kinase B (Akt) pathways, maintains 
bone homeosta, and induces sry‑related HMG‑box gene 9 (SOX9) and Col‑2

[65]

FGF18 Decreased Promotes the growth and maturation of cartilage and the regeneration and repair of mature cartilage [66–68]

FGF23 Increased Increased in X‑linked hypophosphatemia;
Activation of p38‑MAPK and Wnt signaling pathways affects synthesis, which leads to bone abnormalities 
by inhibiting mineralization and inducing chondrocyte apoptosis

[69, 70]
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release of FGF2, which activates a variety of signaling 
pathways including MAPK and downstream ERK, p38, 
and JNK. These 3 converge on an E twenty-six (ETS)-
like transcription factor 1 (Elk-1), a transcription fac-
tor that can activate MMP13 [56, 57]. Similar to FGF1, 
FGF2 stimulates the upregulation of matrix-degrading 
enzymes MMP13 and a disintegrin and metalloprotein-
ase thrombospondin motifs-5 (ADAMTS-5), leading to 
degradation of type II collagen (Col-2) in the cartilage 
matrix and downregulates of proteoglycan expression 
[58, 59]. Furthermore, FGF2 activates the downstream 
FGFR1-Ras/PKCδ-RAF-mitogen-activated extracellular 
signal-regulated kinase (MEK) 1/2-ERK1/2 signaling cas-
cade [60]. FGF2 is also an activator of activator protein-1 
(AP-1) and Runt-related transcription factor 2 (RUNX2), 
with the latter inducing ADAMTS-5 production. How-
ever, under normal conditions in cartilage tissue, FGF2 
typically inhibits ADAMTS-5 activity thereby protecting 
articular cartilage. The ratio of FGFR1 to FGFR3 in the 
tissue likely determines the effect of FGF2 on cartilage 
[61]. In a previous study where either the expression ratio 
of FGFR1 to FGFR3 was decreased or the downstream 

pathway inhibition occurred, it resulted in reduced deg-
radation of the cartilage matrix mediated by FGF2. This 
suggests that specific inhibitors targeting downstream 
signaling pathways activated by FGF2 could be used 
for prevention or treatment strategies against OA [56, 
73]. However, some studies have confirmed that genes 
dependent on FGF2 (e.g., activin A and tissue inhibitor 
of metalloproteinase 1 (TIMP-1) exhibit neutral or pro-
tective effects in  vivo [74, 75]; therefore, the duration 
and dosage considerations regarding blockade of FGF2 
should be taken into account for future studies (Fig. 1).

FGF8
FGF8 has the ability to bind to FGFRL1, FGFR2IIIc, 
FGFR3IIIc, and FGFR4 receptors, playing a key role 
in embryogenesis and morphogenesis [76]. It exerts a 
negative regulatory effect on osteogenic development. 
Co-expression of RUNX2 with SRY-related HMG-box 
gene 9 (SOX9) and Col-2 in ectopic cartilage highlights 
the differentiation of osteoprogenitor cells into chon-
drogenic cells during osteogenesis. FGF8 downregulates 
genes involved in ossification and bone mineralization 

Fig. 1 Fibroblast growth factors (FGFs) 1 and 2 in osteoarthritis (OA). FGF1 activates the PI3K‑Akt pathway; FGF2 activates the Ras‑MAPK pathway 
and PKC. The effects of each FGF‑activating downstream signaling pathway on articular chondrocytes are shown. PI3K phosphoinositide 3‑kinase, 
Akt protein kinase B, MAPK mitogen‑activated protein kinase, PKC protein kinase C, GRB guanine nucleotide exchange factor, GAB GRB2‑associated 
binding protein, HS heparan sulfates, FRS2α FGFR substrates 2α, SOS son of sevenless, MEK mitogen‑activated extracellular signal‑regulated kinase, 
FGFR3 fibroblast growth factor receptor 3, JNK c‑Jun N‑terminal kinase
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while upregulating genes associated with proliferation, 
cartilage development, and cell fate commitment [10]. 
Abnormally elevated levels of FGF8 lead to the abnor-
mal proliferation and differentiation of chondrocytes 
that affect osteogenesis in the cartilage. In an animal 
study conducted by Uchii et  al. [77], it was found that 
FGF8 expression was significantly low in synovial cells 
and fibroblasts in normal joints but highly expressed in 
mechanically damaged joints, indicating that mechani-
cal injury induces the expression of FGF8 in synovium 
and fibroblasts. FGF8 can also decrease the sulfated gly-
cosaminoglycan content within the matrix, leading to 
increased production of proteases such as proMMP3 and 
prostaglandin E2 (PGE2) which subsequently degrade the 
cartilage matrix. Both FGF8 and FGFR3 are upregulated 
in hypertrophic chondrocytes [62]. Furthermore, FGF8 
is associated with the inflammatory factors interleukin 
(IL)-1β and tumor necrosis factor-α (TNF-α). Under 
physiological conditions, IL-1 stimulates the release of 
neutral proteases and PGE2 from synoviocytes and artic-
ular chondrocytes [63], while TNF-α induces the produc-
tion of various MMPs, such as MMP13, ADAMTS-5, and 
ADAMTS-7, as well as other inflammatory biomarkers 
[64]. These factors collectively contribute to articular car-
tilage changes and synovitis, playing a role in the degen-
eration of the articular cartilage matrix [78, 79]. Clinical 
studies have also supported the treatment of OA through 
inhibition of IL-1β and TNF [80, 81]. These two inflam-
matory factors are key downstream effectors in FGF8-
induced degradation of the cartilage matrix [77].

FGF9
Osteoblasts serve as the primary source of FGF9, which 
signals through FGFR3 in bone [82] to activate the Akt 
pathway, thereby stimulating the proliferation of bone 
marrow stromal cells, and maintaining bone homeosta-
sis [83]. In chondrocytes affected by OA, FGF9 reduces 
oxidative stress, apoptosis, and mitochondrial dysfunc-
tion by promoting the nuclear translocation of nuclear 
factor erythroid 2-related factor 2 (Nrf2), activating the 
Nrf2/heme oxygenase-1 (HO1) signaling pathway. This 
attenuation leads to a decrease in interphalangeal nar-
rowing and cartilage degradation in an OA mouse model 
[84]. Exogenous administration of FGF9 can inhibit the 
expression of matrix-degrading enzymes such as MMP13 
in OA cartilage while promoting the expression of Col-
2. However, it is important to note that exogenous FGF9 
not only enhances the expression of SOX9 and Col-2 but 
also stimulates cell proliferation and contributes to or 
exacerbates osteophyte formation. These adverse effects 
can lead to a decline or loss of joint function and joint 
pain [65]. This phenomenon is attributed to FGF9’s stim-
ulation of early chondrogenic differentiation, promotion 

of ECM production, and delayed terminal hypertrophy 
[85]. Furthermore, a recent study has shown that FGF9 
can be used as a molecular marker for OA diagnosis [86]. 
Therefore, targeting FGF9 could be crucial for future OA 
diagnosis and treatment.

FGF18
FGF18 is a growth factor that exerts its effects through 
heparin-binding polypeptides. It plays a role in the 
growth and maturation of cartilage in the musculoskel-
etal system as well as enhancing the regeneration and 
repair of mature cartilage [87, 88]. In an animal model of 
injury, FGF18 stimulated the formation and repair of car-
tilage [89]. In an in vitro model, FGF18 increased the syn-
thesis of chondrocyte proteoglycan and Col-2, promoted 
chondrocyte proliferation, restored chondrocyte count, 
prevented chondrocyte apoptosis, and increased carti-
lage thickness [66–68]. FGF18 is believed to promote the 
chondrogenic activity of bone morphogenetic protein 
(BMP) by inhibiting the expression of noggin, a natural 
inhibitor of BMP [90]. A potential mechanism underly-
ing the opposing effects of FGF2 and FGF18 on cartilage 
homeostasis may be attributed to their stimulation or 
suppression of noggin. The FGF18-FGFR3 axis promotes 
cartilage regeneration induced by BMP7 through antago-
nism with FGF2 [91]. Furthermore, it has been suggested 
that the proliferation of immature directional chon-
drocytes can be enhanced by FGF18 signaling through 
FGFR3. Additionally, it is speculated that FGF18 could 
serve as a growth factor preventing cartilage degradation 
and OA following surgery or mechanical cartilage injury. 
Both in vitro experiments and clinical trials have demon-
strated that the recombinant human FGF18 (rhFGF18, 
sprifermin) treatment for knee OA patients stimulates 
the proliferation of chondrocytes and increases the 
ratio of Col-2 to type I collagen (Col-1). This leads to 
an enhanced production of chondrocyte ECM without 
any specific adverse effects [68, 92, 93]. Based on mul-
tiple experimental studies, rhFGF18 is anticipated to be 
a promising disease-modifying drug for OA treatment 
[93–97].

FGF23
FGF23 levels are significantly elevated in patients diag-
nosed with X-linked hypophosphatemia (XLH) [69]. 
XLH can affect various physiological aspects, particu-
larly bone growth, including OA, osteomalacia, bone 
abnormalities, bone pain, and other symptoms [69]. 
The presence of phosphate in bone tissue can lead to 
an increase in serum FGF23. Excessive FGF23 levels 
result in hypophosphatemia which causes bone abnor-
malities by inhibiting mineralization and inducing 
apoptosis of hypertrophic chondrocytes. Insufficient 
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mineralization in newly formed bone leads to the 
accumulation of osteoids, reduced bone strength, and 
joints and long bone abnormalities. Furthermore, the 
upregulation of FGF23 as a negative regulator of chon-
drogenesis prompts premature termination of the pro-
liferative state among chondrocytes leading them into 
a hypertrophic state. Elevated expression of FGF23 in 
OA chondrocytes activates the expression of RUNX2 
that subsequently upregulates MMP13 expression [70]. 
In osteocytes, p38-MAPK and PKC signaling affect 
the synthesis of FGF23. These effects partly depend 
on the nuclear factor kappa-light-chain-enhancer acti-
vated B cells (NF-κB) activity [98, 99]. A mouse model 
exhibiting high expression of high-molecular-weight 
FGF2 demonstrated increased expression of FGF23 in 
articular cartilage along with activation of the classical 
Wnt signaling pathway [100]. This indicates that there 
is a close relationship between FGF23 and the signal-
ing pathways associated with other subtypes within the 
FGF family, highlighting its ability to regulate Wnt/β-
catenin signal transduction for facilitating chondrocyte 
differentiation. Consequently, it is imperative to con-
sider FGF23 as a potential risk factor in the develop-
ment of OA and cartilage disorders (Fig. 2).

FGFs and cartilage ossification
In addition to regulating the proliferation of cartilage and 
degradation of ECM, FGFs also play a role in cartilage 
ossification. The signaling pathway of FGF/FGFR3 regu-
lates bone growth during the process of cartilage osteo-
genesis. FGFR3 in periosteal cells controls chondrocyte 
hypertrophy and fibrosis, serving as a crucial regulatory 
factor in the transformation from cartilage to bone [101]. 
Different FGFs have varying effects on cartilage osteo-
genesis. Treatment with FGF2 led to the thickening of the 
cartilage growth plate, while hypertrophic chondrocytes 
exhibit flattened morphology with irregular arrangement 
in the lowermost part of FGF2-treated cartilage tissue. 
Additionally, FGF2 inhibits angiogenesis and endochon-
dral ossification at the growth plate [102].

The combination of FGF9 and FGFR3 activates the 
downstream ERK1/2 signaling pathway. The FGF sign-
aling mediated by the ERK1/2 pathway enhances SOX9 
expression in chondrocytes [103], thereby increasing the 
chondrocytes density and promoting cartilage formation. 
Moreover, elevated levels of FGF9 promote longitudinal 
bone growth. Thus, combined signaling through FGF9 
and FGFR3 results in increased thickness of cartilage, 
accelerated osteogenesis within the cartilaginous tissue, 

Fig. 2 Fibroblast growth factors (FGFs) 8, 9, 18, and 23 in osteoarthritis (OA). FGF8 and FGF23 activate the Wnt/β‑catenin pathway; FGF9 and FGF18 
activate the PI3K‑Akt pathway; FGF18 and FGF23 activate the Ras‑MAPK pathway. The effects of each FGF‑activating downstream signaling pathway 
on articular chondrocytes are shown. Dvl dishevelled, Axin axis inhibition, CK1 casein kinases 1, HS heparan sulfates, FRS2α FGFR substrates 2α, SOS 
son of sevenless, GRB guanine nucleotide exchange factor, GAB GRB2‑associated binding protein, PKC protein kinase C, JNK c‑Jun N‑terminal kinase, 
MEK mitogen‑activated extracellular signal‑regulated kinase, MAPK mitogen‑activated protein kinase, PI3K phosphoinositide 3‑kinase, Akt protein 
kinase B
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and enhanced length and width development in long 
bones [104].

FGF18 regulates cartilage osteogenesis through the 
activation of FGFR1-3. In a previous study, deletion of 
FGF18 led to delayed ossification, shorter bone length, 
and abnormal bone shape in mice, resulting in a lethal 
phenotype in FGF18 knockout mice [105]. Furthermore, 
FGF18 inhibits chondrocyte proliferation and differen-
tiation in the growth plate of rodents but induces pro-
liferation and differentiation in articular cartilage [106]. 
This generally leads to the thickening of cartilage growth 
plates and an increase in hypertrophic chondrocytes. 
Conversely, during chondrocyte development and in 
adult mammalian cartilage, FGF18 promotes chondro-
cyte proliferation and differentiation via FGFR3. It has 
been reported that FGF18 promotes the differentiation of 
hypertrophic chondrocytes into osteoblasts by activating 
FGFR1 in hypertrophic chondrocytes and FGFR2 in the 
perichondrium and trabecular bone [107]. However, most 
studies have indicated that FGF18 promotes cartilage for-
mation while inhibiting osteoblast differentiation [108–
110]. Previous studies confirmed that FGF18 activates 
JNK1, which phosphorylates BCL2 [111]. Additionally, 
FGF18 regulates the activity of the phosphatidylinositol 
3-kinase catalytic subunit type 3 (VPS34)-beclin-1 com-
plex to induce autophagy, while regulating ECM remod-
eling through chondrocyte autophagy in the cartilage 
growth plate [111].

FGFRs and OA
The expression of FGFR1-3 in articular cartilage is 
observed, with significantly higher levels of FGFR1 and 
FGFR3 compared to FGFR2. Inhibition of FGFR3 leads to 
a significant increase in the expression of FGFR1, which 
subsequently stimulates the catabolism of articular carti-
lage [56, 112]. During the pathogenesis of OA, an imbal-
ance in the expression ratio between FGFR1 to FGFR3 
may promote chondrocyte decomposition, and apopto-
sis, and hinder anabolism.

FGFR1
FGFR1 exhibits high expression in human knee chondro-
cytes. FGF2 binds to FGFR1, triggering the downstream 
Ras-Raf-MEK1/2-ERK1/2 signaling pathway and subse-
quently activating RUNX2, ETS-like transcription factor 
1 (ELK1), and other transcription factors. This activation 
leads to upregulation of downstream genes, promotion 
of chondrocyte catabolism, and inhibition of proteogly-
can formation. The FGF2-mediated FGFR1-ERK path-
way negatively regulates FGFR3. Activation of FGFR1 by 
FGF2 induces chondrocyte hypertrophy. Imbalance in 
chondrocyte proliferation and survival, as well as abnor-
mal hypertrophy of chondrocytes, are critical processes 

influencing articular cartilage during OA progression 
[113]. Furthermore, FGFR1 plays a significant role in car-
tilage injury mediated by IL-1β and other inflammatory 
factors. Specifically, blocking FGFR1 effectively alleviated 
cartilage catabolism [114]. R1-P1, a peptide inhibitor 
targeting FGFR1, modulates the ERK1/2 pathway while 
reversing IL-1β-induced loss of proteoglycans and Col-2. 
It also attenuates the expression of MMP13 and signifi-
cantly reduces the destruction of the articular cartilage 
[115]. These findings suggest that an inhibitor targeting 
FGFR could potentially serve as a therapeutic drug for 
OA treatment. Furthermore, in mice with FGFR1 knock-
out, reduced MMP13 expression was observed along 
with decreased cartilage degeneration, leading to delayed 
OA progression [116].

FGFR3
The expression of FGFR3 is higher in healthy articu-
lar cartilage but significantly lower in patients with OA. 
Mutations in human FGFR3 lead to abnormal bone 
development, and this is also observed in FGFR3-knock-
out mice [117, 118]. Several studies have shown that 
FGFR3 plays a crucial role in maintaining articular car-
tilage homeostasis. It also promotes the transformation 
of cartilage to bone [101, 119], and the reduced expres-
sion of FGFR3 may be responsible for the abnormal bone 
development seen in OA. Deletion or reduced expression 
of FGFR3 results in an increase in MMP13 and type X 
collagen in the cartilage, thereby enhancing DMM-
induced cartilage degeneration [4, 119].

Through FGFR3, the downregulation of chondrocyte 
proliferation by STAT1 ensures coordinated bone devel-
opment and morphogenesis via FGFR. In mutant or 
abnormally expressed FGFR3, there is an overexpression 
of STAT1 and STAT5 in pre-hypertrophic chondrocytes, 
indicating a dual role of FGFR3-STAT signaling in the 
regulation of cartilage development [120, 121]. The acti-
vation of the RUNX2 pathway occurs through the PI3K-
Akt pathway and induces chondrocyte maturation and 
differentiation via FGFR3 [122].

In human joints, FGF9 and FGF18 exhibit high specific 
affinities for FGFR3 [85], leading to downstream activa-
tion of RAS-MAPK and PI3K-Akt pathways, stimulation 
of Fox transcription factor, promotion of articular carti-
lage synthesis, promotion of articular cartilage synthesis 
and matrix production, and enhancement of cell activity 
and repair [87, 89]. Additionally, FGF2 binds to FGFR3 
to promote cartilage anabolism, suggesting its dual roles 
in cartilage development [123]. FGFR3 serves as a crucial 
factor for articular cartilage protection, with its expres-
sion levels reflecting the extent of cartilage damage. 
Therefore, targeting the FGFR3 pathway may present a 
novel approach for OA. Currently, available therapeutic 
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strategies for OA mainly involve nonsteroidal anti-
inflammatory drugs and opioid analgesics, as no disease-
modifying OA drugs have been approved yet. Among the 
FGF family members, FGF9 and FGF18 hold potential 
as targets for emerging molecular drugs. Furthermore, 
antibodies against the pathways of FGF1, FGF2, and 
FGF8 exhibit promising prospects in alleviating pain and 
mitigating cartilage damage. In the research and develop-
ment of emerging molecular drugs, our focus should not 
only be on reducing pain and preventing further cartilage 
damage but also on regenerating damaged joint cartilage 
and restoring normal joint function. Compared to tradi-
tional medications, emerging molecular drugs demon-
strate more pronounced effects, such as reduced cartilage 
damage and fewer side effects; thus, they offer broad 
prospects for research and application.

At present, the primary focus of the research and 
development in molecular-targeted drugs lies on FGF9, 
FGF18, and FGFR3. Other components within the FGF 
signaling pathway play a lesser role in the development 
of bones and joints as well as the pathogenesis of related 
diseases, necessitating further exploration. Specifically, 
there is a need for additional investigation into the inter-
actions between members of the FGF family, particularly 
those associated with OA, during cartilage, bone, and 
joint development processes. Further research is needed 
to understand the involvement of FGFs in OA progres-
sion and develop targeted molecular therapies for OA 
and related cartilage disorders. This will enhance existing 
diagnosis and treatment schemes, while reducing pain 
levels, facilitating damaged cartilage repair, and restoring 
joint function.

Research and development of new drugs related 
to FGFs in OA
FGF18 and sprifermin
As previously mentioned, FGF18 stimulates cartilage 
proliferation and promotes cartilage maturation. Among 
the development of FGF-related OA drugs, those based 
on FGF18 have been extensively studied. Notably, spri-
fermin has completed phase II clinical trials and dem-
onstrated efficacy in several non-clinical models as well 
as in three clinical studies [108, 124, 125]. Sprifermin 
is a truncated form of FGF18 consisting of 170 amino 
acids with the signal sequence and 11 C-terminal acids 
removed. It stands out as one of the few drugs that effec-
tively enhances cartilage proliferation and increases car-
tilage thickness. FGF18 is a growth factor for mature 
human chondrocytes and their progenitor cells, as well 
as in chondrocytes derived from various animal spe-
cies including rats, rabbits, sheep, pigs, cows, dogs, 
and horses [66, 67, 126]. This indicates that FGF18 
plays a highly conserved role in maintaining cartilage 

homeostasis among mammals. In  vitro studies have 
shown that sprifermin significantly increases cell prolif-
eration in a dose-dependent manner at concentrations 
of 0.1 – 1000 ng/ml with a median effect concentration 
(EC50) value of approximately 10 ng/ml [66]. It also 
increased the expression of Col-2 at concentrations of 
0.1 – 100 ng/ml, while reducing Col-1 expression, and 
promoting SOX9 expression in a dose-dependent man-
ner. However, when used at concentrations exceeding 
1000 ng/ml, the proliferative effect on cartilage gradu-
ally weakens [66]. Compared to insulin-like growth factor 
1/2, BMP7, and other growth factors, Sprifermin exhibits 
superior effects on promoting cell proliferation [67, 126]. 
Under cyclic sprifermin treatment, there was a signifi-
cant increase in the expression of COL2A1 and ACAN, 
and the proportion of Col-2/Col-1 was significantly 
higher than that achieved with other growth factors [67]. 
Sprifermin not only promotes cell proliferation but also 
enhances cartilage regeneration by producing a more 
normal hyaline cartilage matrix [66]. Furthermore, spri-
fermin effectively stimulates cartilage proliferation in var-
ious animal models. In a rat model, weekly injections of 3 
– 10 µg rhFGF18 effectively alleviated cartilage degenera-
tion and increased cartilage matrix activity [127]. Addi-
tionally, intra-articular injection of rhFGF18/sprifermin 
has been shown to reduce injury-related cartilage loss 
in dogs, rabbits, sheep, and other animal models [106, 
128, 129]. In terms of safety and systemic exposure lev-
els for promoting cell proliferation and matrix synthesis, 
intra-articular delivery of sprifermin has demonstrated 
favorable results [130]. However, excessive frequency or 
high doses of intra-articular sprifermin injections may 
stimulate joint tissues prone to inflammation and injury. 
A phase I clinical trial [131] involving 73 patients sched-
uled for total knee replacement (TKR) due to OA divided 
them into 3 groups (single dose/multiple doses/placebo). 
Each dose of sprifermin resulted in serious adverse reac-
tions without significant differences among the groups. 
Although administration of 300 µg sprifermin commonly 
causes an inflammatory reaction, it does not necessitate 
immediate termination. The histological and metabolic 
findings from this phase I study indicated that sprifer-
min promoted cell proliferation and matrix synthesis, 
while imaging revealed improvement in cartilage quality. 
Notably, the high-dose groups receiving either 100 µg or 
300 µg had lower probabilities for TKR events compared 
to the lower-dose groups, despite meeting the inclusion 
criteria for scheduled TKR surgery. In a phase II clini-
cal trial, patients were treated with different concentra-
tions (30 and 100 ng/ml) and frequencies (q6mo/q12mo) 
of rhFGF18. The total treatment duration was up to 1.5 
years, followed by a 3.5-year follow-up period, resulting 
in a 5-year study. Similar to the findings obtained from 
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in  vitro experiments, the promotion of cartilage pro-
liferation was dose-dependent. It was observed that a 
high-concentration dosage (100 ng/ml) administered at 
a high-frequency interval (q6mo) effectively increases 
the thickness of cartilage. However, there was no sig-
nificant difference in cartilage thickness between the 
groups receiving sprifermin at doses of 30 µg every 6 or 
12 months and placebo. Sprifermin primarily induces 
cartilage thickening as its main effect, while arthralgia is 
identified as its primary adverse reaction based on trial 
results. Compared with other growth factors, sprifermin 
demonstrates superior efficacy in promoting cartilage 
growth and proliferation [67]. The clinical trial for OA 
involving sprifermin revealed its effectiveness in promot-
ing cartilage proliferation, increasing cartilage thickness, 
improving metabolic activity, and relieving pain. Nev-
ertheless, further investigation is required to assess its 
clinical effects and safety profile. Sprifermin successfully 
achieved its primary endpoint of inducing changes in 
cartilage thickness during the FORWARD phase II trial 
[68]. A post-hoc analysis conducted on this phase II trial 
demonstrated symptomatic benefits associated with spri-
fermin treatment [93].

FGF2
Research on the treatment of OA by targeting FGF2 
has primarily focused on the utilization of recombinant 
adeno-associated virus (rAAV) to induce overexpression 
of FGF2. In vitro studies have demonstrated that rAAV-
mediated overexpression of FGF2 promotes prolonged 
chondrocyte proliferation. Furthermore, in  vivo animal 
experiments have shown that increased expression of 
FGF2 enhances repair, filling, architecture, and cell mor-
phology in osteochondral defects [132]. Additionally, sus-
tained high levels of FGF2 expression have been found 
to facilitate the restoration of damaged cartilage tissue 
[133]. Current research suggests that therapeutic delivery 
of human FGF2 through direct administration of rAAV 
can effectively enhance long-term osteochondral repair. 
Moreover, gene therapy mediated by rAAV holds prom-
ising potential for future clinical applications in cartilage 
regeneration.

Currently, multiple nano-delivery systems are uti-
lized for the targeted delivery of nano-drug delivery 
systems to the FGF family and FGF2 [134]. Electro-
spun chitosan fiber networks decorated with heparin-
containing polyelectrolyte complex nano-particles can 
effectively adsorb FGF2 and form a sustained-release 
system for growth factors. Nano-carriers enable the 
gradual release of FGF2 throughout 30 d, thereby play-
ing a long-term role in promoting the surrounding 
tissues’ proliferation. Low-molecular-weight hepa-
rin/protamine nano-particles can encapsulate FGF2, 

ensuring its stability in the nano-delivery system, and 
extending the biological half-life of FGF2 [135]. Incor-
porating FGF2 into a nano-material scaffold enhances 
the biocompatibility of the material while significantly 
promoting osteogenic differentiation of bone marrow 
stromal cells (BMSC). The utilization of FGF-modified 
nanomaterial scaffolds holds great potential in ortho-
pedic diseases involving bone defects or loss [136, 137]. 
At present, research and development efforts focused 
on FGF-related nano-drug delivery systems for ortho-
pedic diseases aim to exploit the proliferative effects of 
FGF2 on BMSCs as well as its ability to induce osteo-
genic differentiation. This approach involves develop-
ing biological scaffolds or drug delivery systems loaded 
with FGF2 to facilitate bone defect repair and address 
osteoporosis.

Combined use of growth factors
Sequential exposure to FGF2, 9, and 18 enhances chon-
drogenesis and differentiation. During the early stages 
of chondrogenesis and expansion, treatment with FGF2 
upregulates the expression of FGFR1 and SOX9, thereby 
promoting early chondrogenesis. Subsequently, during 
chondrogenic induction, there is a gradual decrease in 
FGFR1 expression leading to a weakened effect on both 
chondrogenesis and differentiation.

FGF9 and FGF18
Both FGF9 and FGF18 can combine with FGFR3 to 
enhance cartilage anabolism. However, in the absence 
of early-stage amplification or expression of FGF2, the 
expression levels of FGF9 and FGF18 remain low. During 
late-stage amplification and expression of FGF2, elevated 
levels of FGF9 and FGF18 significantly enhance cartilage 
anabolism through FGFR3. Nevertheless, their anabo-
lism-enhancing effects are not evident when expressed 
during the early stages of FGF2 amplification [85]. This 
study demonstrates the diverse roles played by different 
FGFs in chondrocyte proliferation and differentiation. 
The combined utilization of multiple FGFs can more 
effectively promote cartilage proliferation, differentiation, 
and anabolism while reducing adverse reactions associ-
ated with individual use.

In addition to the combination of FGFs, the concur-
rent utilization of FGFs in conjunction with other growth 
factors, such as TGF-β, insulin-like growth factor 1 
(IGF-1), and PDGF, can significantly improve cartilage 
proliferation while exerting minimal effect on chondro-
cyte genetic stability and tumorigenicity [138]. However, 
further investigation is warranted to assess the clinical 
efficacy and safety of this approach.



Page 11 of 23Li et al. Military Medical Research           (2024) 11:40  

FGFs and IVDD
IVDD is influenced by various factors, including genet-
ics, aging, and mechanical damage. IVDs consist of 
the NP, cartilaginous end-plates (CEP), and annulus 
fibrosus (AF), which predominantly comprises angu-
lar type 1 collagen with internally dispersed fibroblasts 
and chondrocytes that overlap. Compared with normal 
IVDs, degenerative IVDs exhibit numerous histologi-
cal changes such as NP fibrosis, fissure formation, and 
cell clusters. The AF fiber structure is destroyed and 
vascularized with cracks formed. CEPs display thin-
ning, mineralization, microfractures, and bone sclero-
sis among other abnormalities [139]. At the molecular 
level, degenerative IVDs show decreased proteogly-
cans and Col-2 but increased Col-1 [140]. Additionally, 
IVDD is accompanied by an increase in inflammatory 
factors and activation of inflammatory pathways where 
IL-1β and TNF-α can activate catabolic molecules, 
thereby leading to increased MMPs, ADAMTS, COX2, 
and other decomposing proteins [141]. Abnormal 
changes occur in FGF signaling during the development 

of IVDD. The roles of each FGF in its pathogenesis are 
discussed below (Fig. 3, Table 2).

FGF2
Similar to the effect of FGF2 on chondrocytes in OA, 
the role of FGF2 in IVDs and the pathogenesis of IVDD 
remains a subject of controversy. Some studies have dem-
onstrated that FGF2 promotes mitosis and substance 
synthesis during IVD [142, 143]. As an autocrine growth 
factor, low concentrations of FGF2 activate the MEK-
ERK and PI3K-Akt pathways, thereby inducing DNA syn-
thesis and promoting the proliferation of NP and AF cells 
[160]. Additionally, FGF2 can maintain tissue sensitivity 
to TGF-β, enhance sulfated proteoglycan (PG) synthesis, 
reduce ACAN turnover, and facilitate NP cell differentia-
tion [161, 162]. However, several studies have indicated 
that FGF2 promotes IVD catabolism. Its catabolic effects 
are primarily mediated by FGFR1-induced upregulation 
of catabolic enzymes, leading to increased fibrocarti-
lage content in cartilage while decreasing cartilage mass. 
Furthermore, it elevates levels of catabolic enzymes in 

Fig. 3 Fibroblast growth factors (FGFs) in intervertebral disc degeneration (IVDD). FGF2 promotes the catabolism of AF, NP, and CEP through FGFR1, 
and fibrosis of IVD cartilage. FGF2 works through FGFR3 to activate downstream Ras‑MAPK and PI3K‑Akt signaling pathways to promote anabolism 
and cell differentiation in various tissues of IVDs. FGF18 promotes tissue synthesis and apoptosis via FGFR3. AF annulus fibrosus, NP nucleus 
pulposus, CEP cartilaginous endplate, ERK extracellular signal‑regulated kinase, MAPK mitogen‑activated protein kinase, HS heparan sulfates, FRS2α 
FGFR substrates 2α, SOS son of sevenless, GRB guanine nucleotide exchange factor, GAB GRB2‑associated binding protein, PI3K phosphoinositide 
3‑kinase, Akt protein kinase B
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the ECM while inhibiting the anabolic effects of IGF-1 
and BMP7 [161, 163]. Melrose et al. [164] found varying 
expression levels of FGF2 at different stages which often 
account for its diverse functions. Li et al. [91] proposed 
a dose-dependent relationship between total PG accu-
mulation, PG synthesis, and elevated expression levels of 
FGF2 resulting in decreased PG synthesis. In summary, 
the activity of FGF2 in IVDD is similar to that in OA. 
Although it plays a crucial role in the growth and differ-
entiation of cartilage, an excessive amount of FGF2 can 
lead to pathological changes in cartilage tissue. However, 
there is still ongoing debate regarding the specific contri-
bution of FGF2 to joint degeneration.

FGF18
Studies on the expression of FGF18 in IVDD are still in 
their early stages. Similar to articular cartilage, FGF18 
plays a protective role in IVD cartilage by promoting 
anabolism and inhibiting the expression of proteases 
such as MMP3 and ADAMTS-5. Additionally, FGF18 can 
inhibit the apoptosis of NP cells, thereby providing fur-
ther protection for the IVD. FGF18 increases the expres-
sion of Col-2 and CA12 in NP cells while decreasing 
degeneration in vertebral joint NP [11, 144]. Currently, 
research related to FGF18 primarily focuses on cartilage 
and NPs rather than other tissues like AF. However, it 
should be noted that FGF18 has not yet been utilized as a 
drug for IVDD.

FGFs and OP
The pathogenesis of OP involves disruption of bone 
metabolism, leading to a systemic skeletal disease. Frac-
tures and other bone disorders associated with OP are 
increasingly prevalent in women aged over 55 years and 
men aged over 65 years. OP is characterized by decreased 
bone mass and density, as well as micro-architectural 
deterioration of bone tissue. The pathological process 
of OP can be classified into reduced bone synthesis, 
increased bone absorption, and destructive changes 
[165]. The FGF family of proteins plays essential roles in 
the regulation of bone formation, repair, regeneration, 
angiogenesis, and metabolism [145]. FGF2 and other fac-
tors also influence and regulate musculoskeletal signal 
crosstalk, maintain musculoskeletal homeostasis, and 
delay degeneration [8, 145–150] (Fig. 4, Table 2).

FGF2
FGF2 plays a crucial role in regulating bone regenera-
tion and cartilage differentiation; it is expressed in osteo-
blasts, stored in the ECM, and serves as a key regulator 
of osteoblast function. Disruption of FGF2 expression 
can lead to decreased osteoblast replication and impaired 
new bone formation [166]. FGF2 can also facilitate bone 
anabolism mediated by parathyroid hormone (PTH) 
through the Wnt/β-catenin signaling pathway [167]. 
Additionally, FGF2 promotes bone growth, develop-
ment, and fracture healing via the Wnt signaling pathway, 
BMP2 activation, and maintenance of calcium phosphate 

Table 2 Changes in the level of expression of members of the fibroblast growth factor (FGF) family in disease

FGF Changes Effect Reference

Intervertebral disc disease

 FGF2 Increased Low concentration of FGF2 activates the mitogen‑activated extracellular signal‑regulated kinase (MEK)‑extracellu‑
lar signal‑regulated kinase (ERK) and phosphatidylinositol‑3‑kinase ‑ protein kinase B (Akt) pathways and promotes 
the proliferation of NP and AF cells;
Promote fibrocartilage synthesis

[142, 143]

 FGF18 Decreased Promote cartilage synthesis;
Inhibit cartilage catabolism

[11, 144]

Osteoporosis

 FGF2 Decreased Promote parathyroid hormone ‑mediated bone anabolic metabolism through the Wnt/β‑catenin signaling path‑
way and maintains calcium phosphate homeostasis to promote bone growth, development, and fracture healing

[145]

 FGF19 Decreased Regulate glucose and lipid metabolism and bile acid metabolism, and activate the Wnt/β‑catenin signaling path‑
way, promote osteoblast differentiation, inhibit osteoclast generation

[146, 147]

 FGF21 Increased Improve glucose and lipid metabolism, indirectly affecting bone mass [8, 148]

 FGF23 Increased Regulate calcium and phosphorus metabolism and reduce bone formation [149, 150]

Sarcopenia

 FGF2 Increased Increase muscle mass and promote intramuscular adipose tissue [151–153]

 FGF19 Decreased Improve muscle glucose and lipid metabolism and promote muscle growth [154, 155]

 FGF21 Increased Promote muscle cell growth by activating the ERK1/2 signaling pathway and ribosomal protein S6 kinase 1 (S6K1) 
and improve systemic metabolism and reduce muscle mass

[156, 157]

 FGF23 Increased Promote aging of muscle and stem cells [158, 159]
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homeostasis [168]. With promising therapeutic potential, 
FGF2 holds prospects for promoting osteogenesis, frac-
ture healing, and regulation of bone calcium-phosphorus 
balance. Furthermore, it can be utilized as a coadjuvant 
in the existing treatment methods. For example, admin-
istering FGF2 during intermittent PTH treatment may be 
beneficial [169].

Endocrine FGFs
The FGF19 subfamily, also known as endocrine FGFs, 
consists of FGF19, FGF21, and FGF23. In comparison to 
other members of the FGF family, endocrine FGFs exhibit 
a relatively low affinity for FGFR. The binding of the 
cofactor klotho to FGFR is essential for the interaction 
between endocrine FGFs and this receptor. Endocrine 
FGFs play crucial roles in regulating calcium-phosphorus 
balance, bile acid secretion, as well as glucose and lipid 
metabolism. They are closely associated with conditions 
such as atherosclerosis, mitochondrial diseases, muscu-
loskeletal diseases, and various other tissue-related ail-
ments [170].

FGF19
FGF19 is secreted by the ileal epithelial cells and forms 
a complex with FGFR4 and β-klotho. It primarily lies in 
regulating hepatic glycolipid and bile acid metabolism 
[146]. A previous study observed lower levels of bile acid 
and FGF19 in postmenopausal women with OP com-
pared to normal women [171]. Changes in FGF19 expres-
sion or abnormal bile acid metabolism may significantly 
contribute to the development of OP. Guo et  al. [172] 
found that FGF19 can ameliorate obesity-induced bone 
loss caused by activating the Wnt/β-catenin signaling 
pathway, promoting osteoblast differentiation, and inhib-
iting osteoclastogenesis through osteopontin. Moreover, 
it has been suggested that FGF19 can modulate BMD 
in vivo by regulating bile acid balance and lipid metabo-
lism [146, 171].

FGF21
FGF21 exhibits high expression in the liver, adipose tis-
sue, and muscle. In the context of muscle tissue, increased 
FGF21 expression enhances the uptake and utilization of 

Fig. 4 Fibroblast growth factors (FGFs) in osteoporosis (OP). FGF2 and FGF19 promote osteogenesis through the Wnt‑β‑catenin signaling 
pathway. FGF23 binds to FGFR3 to affect osteoblast metabolism through the RAS‑MAPK and PI3K‑Akt signaling pathways, as well as calcium 
and phosphate metabolism. It also affects calcium and phosphate metabolism by influencing hormone secretion and cell metabolism. Dvl 
dishevelled, Axin axis inhibition, CK1 casein kinases 1, MEK mitogen‑activated extracellular signal‑regulated kinase, MAPK mitogen‑activated protein 
kinase, PI3K phosphoinositide 3‑kinase, Akt protein kinase B, GRB guanine nucleotide exchange factor, GAB GRB2‑associated binding protein, HS 
heparan sulfates, FRS2α FGFR substrates 2α, SOS son of sevenless
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glucose and improves lipid metabolism [148, 173]. FGF21 
is closely related to fat metabolism, muscle diseases, 
and mitochondrial diseases. However, further investiga-
tion is required to understand the metabolic relationship 
between FGF21 and bone tissue. Experimental studies on 
rats have demonstrated that exogenous administration of 
FGF21 leads to increased bone absorption, reduced bone 
formation, and decreased BMD [174, 175]. Some studies 
suggest a negative correlation between serum FGF21 and 
BMD [176, 177], whereas others indicate no significant 
association between FGF21 expression and BMD. The 
influence of BMD by FGF21 or by abnormalities in the 
metabolism of glucose and lipids due to liver or muscle 
tissue dysfunction remains unconfirmed [178, 179]. Indi-
rectly impacting bone mass through regulation of glu-
cose and lipid metabolism as well as secretion of factors 
related to muscle tissue function characterizes the role of 
FGF21. Nevertheless, further research is needed to deter-
mine whether it directly affects bone tissue along with its 
specific impact on BMD within pathological conditions 
affecting special populations.

FGF23
FGF23 is synthesized by osteoblasts under normal physi-
ological conditions. It binds to FGFR through klotho and 
plays a regulatory role in the metabolism of vitamin D, 
phosphate, and other minerals in the body [180]. The 
metabolic regulation function of FGF23 involves multi-
ple cellular signaling pathways, including the MAPK and 
PI3K signaling pathways, as well as its impact on PTH 
signaling. IGF-1 directly and indirectly regulates cal-
cium and phosphorus metabolism in the body [17, 149, 
181]. In addition to its dependence on klotho, FGF23 
can also independently modulate local bone mineraliza-
tion through FGFR3 [150]. Overall, FGF23 exerts various 
effects on bone mineral metabolism in vivo. Overexpres-
sion of FGF23 leads to excessive phosphate consump-
tion, hypophosphatemia, reduced vitamin D levels, and 
decreased BMD.

The expression of FGF23 is upregulated in patients with 
OP [182]. FGF23-induced bone loss is a consequence of 
mineral and bone disorders associated with chronic kid-
ney disease (CKD). FGF23 suppresses the production 
and secretion of PTH while inhibiting the synthesis of 
1,25(OH)2D3 in the kidneys [183]. Intermittent use of 
PTH in the early stages of CKD may alleviate phospho-
rus retention, thereby potentially elevating FGF23 levels 
in CKD patients with coexisting osteoporosis [184]. In 
bone, FGF23 directly interacts with FGFR3 in a klotho-
independent manner and inhibits osteoblast activity. 
It also forms a complex with FGFR3 through klotho, 
downregulating tissue-nonspecific alkaline phosphatase 
(TNAP), consequently reducing bone mineralization 

[185]. By influencing bone tissue directly and regulating 
calcium, phosphorus, and mineral metabolism through 
endocrine signaling pathways, FGF23 reduces the syn-
thesis of bone minerals while enhancing their decompo-
sition. Numerous studies have explored the specific role 
and regulation mechanisms underlying FGF23 in OP. In 
future investigations, targeting FGF23 could prove essen-
tial for preventing, monitoring, and treating OP [186, 
187]. Nevertheless, it should be noted that apart from its 
impact on bones, FGF23 can also affect other organs such 
as the heart, kidney, and parathyroid glands. Therefore 
when investigating its mechanism or developing drugs 
related to FGF23 action, it is crucial to consider its effects 
on these organs to minimize potential adverse reactions.

FGFs and sarcopenia
Sarcopenia is an age-associated degeneration condition 
that significantly compromises the overall well-being and 
health of older individuals, leading to a decline in their 
quality of life. The primary manifestation of sarcopenia 
is a gradual reduction in both muscle mass and func-
tion, which subsequently increases the risk of physical 
disability, mortality, and other detrimental outcomes 
[188]. Due to variations among ethnic groups, countries, 
and regions, the global prevalence of sarcopenia ranges 
from 9.9% to 40.0% [189], imposing a substantial burden 
on medical services, healthcare systems, and elderly care 
facilities. Muscle growth is regulated by various factors; 
among them are several members of the FGF family such 
as FGF2 that play crucial roles in modulating muscle 
growth and metabolism [151–159] (Fig. 5, Table 2).

FGF2
In vitro experiments have shown that FGF2 accelerates 
muscle loss caused by malnutrition and promotes muscle 
regeneration [152]. FGF2 activates the downstream RAS-
MAPK signaling pathway through FGFR1, thereby miti-
gating skeletal muscle loss and damage. The expression of 
FGF2 gradually declines with age, leading to diminished 
muscle growth [190]. However, FGF2 plays diverse roles 
in skeletal muscle. Elevated levels of FGF2 expression 
promote muscle growth and increase the generation of 
intramuscular adipose tissue (IMAT). FGF2 also regu-
lates downstream signaling through MEK1/2 and facili-
tates IMAT generation [153]. Given that fat infiltration 
affects skeletal muscle function, it is crucial to regulate 
downstream molecular pathways and minimize IMAT 
generation when developing FGF2-related molecular 
drugs for regulating muscle tissue growth.

FGF19
A cross-sectional study demonstrated a significant 
decrease in serum FGF19 levels and a significant increase 
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in serum FGF21 levels among elderly individuals with 
sarcopenia compared to those without sarcopenia [156]. 
Animal and in  vitro experiments have revealed that 
FGF19 plays a role in regulating skeletal muscle func-
tion and mitigating muscle atrophy [191]. FGF19 stimu-
lates and activates the ERK1/2 signaling pathway as well 
as ribosomal protein S6 kinase 1 (S6K1), which is a key 
mammalian target of rapamycin (mTOR)-dependent 
regulator promoting muscle cell growth [154]. Activation 
of FXR-FGF15/19 signaling in the ileum has been found 
to reduce muscle atrophy in the elderly [192]. The signal 
transduction in this pathway may be influenced by the 
composition of the host intestinal flora [193]. In addition 
to enhancing skeletal muscle quality and function, FGF19 
also safeguards against obesity-induced muscle atro-
phy and steatosis [155]. The findings from these diverse 
experiments have demonstrated that FGF19 alleviates 
age-related, disease-induced, or abnormal metabolic 
state-induced muscle atrophy while modulating carbo-
hydrate and lipid metabolism as well as myocyte prolif-
eration through diverse intracellular and extracellular 
signaling pathways.

FGF21
The therapeutic application of FGF21 extends to car-
bohydrate and fat metabolic disorders, including type 
2 diabetes mellitus (T2DM) and obesity [170]. An 
increasing body of research has explored the relation-
ship between FGF21 expression, aging, and muscle tis-
sue status. Elderly individuals with elevated serum levels 
exhibit reduced muscle strength and quality, as well as an 
increased susceptibility to sarcopenia [157]. Conversely, 
certain studies have indicated that high levels of FGF21 
are associated with muscle strength rather than muscle 
mass [194]. Due to variations in ethnic representation 
across existing controlled trials and cohort studies, the 
reported findings may differ. Overall, heightened serum 
levels of FGF21 have consistently been linked to a decline 
in muscle strength and muscle atrophy among elderly 
individuals.

However, some studies have proposed a beneficial role 
for FGF21 in maintaining body homeostasis [195, 196]. 
Autophagy-deficient mouse muscle cells or those with 
mitochondrial dysfunction can reduce fat production by 
secreting FGF21, thereby preventing obesity and insulin 

Fig. 5 Fibroblast growth factors (FGFs) in sarcopenia. FGF2 and FGF19 increase muscle mass through the RAS‑MAPK signaling pathway, and FGF2 
promotes IMAT. FGF21 promotes autophagy of muscle tissue and decreases muscle mass. FGF23 accelerates the senescence of muscle tissue 
and maintains muscle function. IMAT intramuscular adipose tissue, FOXO forkhead box protein O, BNIP3 Bcl‑2/E1B‑19 kD interacting protein 3, HS 
heparan sulfates, FRS2α FGFR substrates 2α, SOS son of sevenless, MEK mitogen‑activated extracellular, MAPK mitogen‑activated protein kinase, ERK 
extracellular signal‑regulated kinase
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resistance [197]. Elevated expression of FGF21 expression 
enhances liver sensitivity to insulin, promotes lipid oxida-
tion and ketone production, and inhibits cell growth and 
bone loss, ultimately extending the lifespan of mice [198]. 
In cases of muscle tissue damage or metabolic abnormal-
ities under stress conditions, myocytes secrete increased 
levels of FGF21 into the bloodstream to improve whole-
body metabolism [199]. Nevertheless, it is worth noting 
that FGF21 is also considered a marker of mitochondrial 
myopathy and aging [200, 201].

FGF21 is highly expressed in muscle tissue during peri-
ods of fasting, metabolic disorders, and mitochondrial 
myopathy. During low nutritional supply conditions like 
fasting, FGF21 is abundantly produced and activates the 
mitochondrial autophagy protein BNIP3, which induces 
muscle mitochondrial autophagy. Elevated levels of 
FGF21 expression contribute to muscle atrophy and a 
decline in muscle function [202]. Additionally, FGF21 
collaborates with other proteins such as optic tropism 1 
protein that are associated with stress and aging-related 
signals. The activation of FGF21 occurs through the 
downstream FOXO signaling pathway, leading to protein 
decomposition and subsequent loss of muscle mass. In 
cases of inflammation and aging, there is an interaction 
between FGF21 and the highly expressed inflammatory 
factors IL-6 and IL-1α, resulting in a synergistic effect 
on lipid metabolism and muscle homeostasis interaction 
[203].

Current FGF21-related drugs and therapies primar-
ily target obesity and dysregulated glucose and lipid 
metabolism, including conditions such as liver steato-
sis, T2DM, and viral hepatitis [204, 205]. As a myokine 
secreted by muscle tissue, FGF21 is involved in the reg-
ulation of glucose and lipid metabolism. In response to 
mitochondrial and endoplasmic reticulum stress accom-
panied by excessive secretion of inflammatory factors, 
the expression of FGF21 is upregulated in muscle tissue, 
making it a potential biomarker for disease status assess-
ment. Although muscle tissue secretes FGF21 to regulate 
overall metabolic homeostasis, its activity can also be 
influenced by signals from other tissues or proteins. Serv-
ing as an important regulator of metabolism in muscles, 
FGF21 acts protectively during periods of stress-induced 
autophagy in muscle tissue which may lead to muscular 
atrophy and functional decline. Future research on drug 
development and treatment strategies should aim to elu-
cidate the specific mechanisms through which FGF21 
operates within muscle tissue to preserve both musculo-
skeletal integrity while mitigating systemic stress.

FGF23
FGF23 is a hormone-like protein secreted by osteocytes, 
which plays a crucial role in regulating calcium and 

phosphorus metabolism through its binding to klotho 
and activation of FGFR [206]. The absence of klotho in 
mice leads to elevated phosphate levels and prema-
ture senility symptoms, indicating a close relationship 
between klotho and aging [207]. A cross-sectional study 
showed a positive correlation between high FGF23 levels 
and frailty among elderly individuals [158]. Furthermore, 
oxidative stress-induced senescence in skeletal muscle 
mesenchymal stem cells can be induced by FGF23 [159]. 
Conversely, FGF23 inhibits reactive oxygen species (ROS) 
production, thereby enhancing skeletal muscle motor 
function [208]. Although the specific role of FGF23 in 
muscle tissue remains largely unexplored, it is believed 
to promote muscle cell aging, increase muscle mass, and 
improve muscle function. However, further research is 
needed to investigate the combined effects of FGF23 
with FGFR as well as the intricate interplay between 
klotho and FGFR signaling pathways. It should be noted 
that excessive activation of FGF23 may have detrimental 
effects on the body such as hypophosphatemia and bone 
loss. Nevertheless, the impact of FGF23 on the biochemi-
cal and metabolic status of muscle tissue along with its 
underlying mechanisms still requires elucidation.

Other FGFs also regulate the growth of muscle tissue. 
For example, FGF6 enhances muscle tissue regeneration 
through ERK1/2 signaling [209] and facilitates the repair 
of muscle damage after exercise. FGF9 and its subfamily 
members, FGF16 and FGF20, inhibit myogenic differen-
tiation while promoting myoblast proliferation. The inhi-
bition of differentiation and promotion of proliferation 
are independent functions [210]. Numerous members 
within the FGF family directly impact the regeneration 
and differentiation processes of muscle stem cells, myo-
blasts, and muscle tissue through endocrine or meta-
bolic regulation, thus promoting the onset of sarcopenia. 
Muscle tissue can secrete certain FGFs such as FGF21, 
whereas bone tissue can also secrete FGFs to influence 
muscle anabolism. Further investigation is required to 
understand how signal crosstalk between skeletal muscle 
and bone can be balanced, as well as how FGF signaling 
can be regulated in various tissues and organs through-
out the body. Future research should focus on elucidat-
ing specific mechanisms underlying FGF signaling and 
related drug development.

Conclusions and perspective
In this review, we have shown the crucial role of the 
FGF-FGFR signaling pathway in the pathogenesis and 
progression of orthopedic degenerative diseases. In the 
pathology of OA, there is an upregulation of FGF1, FGF2, 
FGF8, and FGF23 along with a downregulation of FGF9 
and FGF18, leading to cartilage degeneration, apoptosis, 
and alterations in matrix composition as well as calcium 
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and phosphorus levels. Dysregulated FGFR signaling also 
contributes significantly to cartilage-related disorders 
such as OA by mediating downstream pathways through 
increased FGFR1 expression and decreased FGFR3 
expression. Similarly, IVDD is characterized by dis-
rupted function of FGF2, reduced expression of FGF18, 
and imbalanced proportions of FGFRs. Mechanical stress 
induces upregulation of FGF9 which results in ligamen-
tum flavum hypertrophy and spinal stenosis [211, 212], 
thereby exacerbating pain symptoms. OP and sarcopenia 
involve the regulation of bone and muscle metabolism by 
various members including endocrine FGFs (FGF19 and 
FGF23). The expression of FGF2 is downregulated, result-
ing in weakened osteoblast activity and reduced bone 
tissue density. FGF19 exerts its effects on bone through 
metabolic pathways by regulating glucose and lipid 
metabolism, activating osteoblasts, inhibiting osteoclasts, 
and maintaining BMD. Therefore, a decrease in FGF19 
expression may be associated with OP. In OP, there is a 
high expression of FGF23 which acts via the endocrine 
system to affect PTH levels and reduce 1,25(OH)2D3 
synthesis, leading to reduced BMD. It also directly inhib-
its osteoblast activity and reduces bone mineral synthe-
sis. In sarcopenia, FGF2 induces IMAT while promoting 
muscle growth and repair. The expression of FGF19 is 
decreased in sarcopenia where it regulates the metabo-
lism of glucose and lipids in muscle tissue to increase 
muscle mass. FGF21 is an aging marker that is upregu-
lated in sarcopenia causing muscle decomposition and 
bone loss while also regulating systemic glucose and lipid 
metabolism for maintaining body stability. Lastly, high 
expression of FGF23 can induce aging in muscle tissues 
with a positive correlation observed between high levels 
of FGF23 expression and frailty in elderly individuals.

Thus, the activity of the FGF family in bone, cartilage, 
and muscle plays an essential role in regulating tissue 
regeneration, differentiation, and metabolism, as well as 
the occurrence and progression of associated age-related 
diseases. Clinical trials have also been conducted on FGF-
related drugs. Despite being promising candidates for 
treating degenerative bone diseases, there are still impor-
tant issues that researchers need to address regarding the 
FGF family. For example, while progress has been made 
in understanding the downstream pathways regulated 
by FGF and FGFR, a comprehensive analysis of the FGF 
regulatory network and its involvement in the pathologi-
cal mechanisms of degenerative diseases is still lacking. 
Additionally, most studies have relied on mouse or rat 
disease models t which may not accurately reflect human 
conditions. In future research endeavors, constructing 
animal disease models using pigs, sheep, or even mon-
keys would provide better insights into the functions of 
the FGF family. It is worth mentioning that clinical drug 

trials for FGF18 and FGF2 are currently underway; how-
ever, their non-selective activation of FGFR1 and FGFR3 
raises uncertainties about their therapeutic efficacy. Fur-
thermore, the concentration-dependent biphasic effects 
of FGFs make it challenging to determine the specific 
treatment timings and dosages for drugs targeting these 
proteins. Additionally, current FGFR inhibitors mostly 
function as broad-spectrum inhibitors that carry risks 
such as hyperphosphatemia owing to the inhibition of 
FGFR1. Therefore, the development of targeted and 
selective FGFR inhibitors remains a key focus of future 
research in this field.

Therefore, in future investigations into the unique 
mechanism of action of FGF in orthopedic degenera-
tive diseases and the identification of therapeutic- and 
prevention-specific targets, it is crucial to also consider 
the impact of FGF on systemic metabolism and other tis-
sues and organs. This is because FGF plays a vital role in 
maintaining the homeostasis of bile acids, glucose, lipids, 
energy, and minerals through modulation of the func-
tional interactions between multiple organs and driving 
multiple metabolic axes [213]. Consequently, combining 
FGF with the piezoelectric hydrogel developed by Wu 
et al. [214] for precise and sustained drug delivery at the 
lesion site holds promising potential for future therapeu-
tic programs.

In conclusion, the FGF signaling pathway plays a piv-
otal role in the study of orthopedic degenerative diseases. 
A deeper comprehension of the regulatory function of 
the FGF signaling pathway in the pathogenesis of ortho-
pedic degenerative diseases will establish a foundation 
for the development of new treatment strategies. Explor-
ing inhibition of the FGF signaling pathway as well as 
its crosstalk with other signaling pathways may gener-
ate innovative concepts for personalized medicine, ena-
bling tailored treatment options based on patient-specific 
signaling pathways. The most promising research areas 
include: 1) elucidating the intricate fine-tuning mecha-
nism of the FGF signaling pathway in orthopedic degen-
erative diseases, 2) investigating the interplay between 
the FGF signaling pathway and other signaling pathways 
to provide novel precision therapy approaches, and 3) 
expanding the diversity of therapeutic modalities target-
ing the FGF signaling pathway in the treatment of ortho-
pedic degenerative diseases.
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