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Abstract 

Digital in-line holographic microscopy (DIHM) is a non-invasive, real-time, label-free technique that captures three-
dimensional (3D) positional, orientational, and morphological information from digital holographic images of living 
biological cells. Unlike conventional microscopies, the DIHM technique enables precise measurements of dynamic 
behaviors exhibited by living cells within a 3D volume. This review outlines the fundamental principles and compre-
hensive digital image processing procedures employed in DIHM-based cell tracking methods. In addition, recent 
applications of DIHM technique for label-free identification and digital tracking of various motile biological cells, 
including human blood cells, spermatozoa, diseased cells, and unicellular microorganisms, are thoroughly examined. 
Leveraging artificial intelligence has significantly enhanced both the speed and accuracy of digital image processing 
for cell tracking and identification. The quantitative data on cell morphology and dynamics captured by DIHM can 
effectively elucidate the underlying mechanisms governing various microbial behaviors and contribute to the accu-
mulation of diagnostic databases and the development of clinical treatments.
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Background
Recent advancements in microscopy technology have 
facilitated quantitative analysis of cell dynamics in the 
fields of cell biology and biomedical research [1–5]. The 
utilization of miniaturized total analytic systems and lab-
on-a-chip technologies has increasingly enabled digital 
imaging techniques to analyze the dynamic behaviors of 
living cells under various microfluidic conditions [6–10]. 
For example, optical microscopy has been employed to 
analyze membrane deformation and rotational motion 
of erythrocytes flowing in microchannels [11–16]. 
Confocal microscopy was utilized to reconstruct the 

three-dimensional (3D) morphological structures of vari-
ous biological samples from their high-resolution stacks 
of images obtained by point-by-point scanning using 
a focused illuminating beam [17–20]. This advanced 
microscopy technique allowed for the analysis of cell 
dynamics under different microenvironments. Defocus-
ing microscopy was used to estimate the 3D surface char-
acteristics of cells under various experimental conditions 
[21–23]. However, these microscopy techniques have 
technical limitations in observing cell dynamics within a 
wide 3D volume due to their limited depth of field (DOF).

Digital in-line holographic microscopy (DIHM) is a 3D 
imaging technique that efficiently captures both the 3D 
positional and morphological information of test sam-
ples over time [24–32]. Unlike conventional microscopy 
techniques, which only provide two-dimensional (2D) 
images on the focal plane of an objective lens, DIHM 
records consecutive holographic interference signals of 
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test samples that contain 3D volumetric information 
using a digital image recording device, such as a charge-
coupled device camera or a complementary metal-oxide-
semiconductor camera. By employing various numerical 
backpropagation methods, holographic images at differ-
ent distances from the sensor plane of the DIHM system 
are reconstructed. Autofocusing algorithms are sub-
sequently applied to determine the 3D positions of test 
samples and obtain the corresponding in-focus recon-
structed images. Four-dimensional (4D; 3D spaces + 1D 
time) spatio-temporal trajectories of test samples can 
be extracted from the reconstructed consecutive holo-
graphic images. Therefore, the DIHM technique has been 
widely utilized for precise and quantitative measurement 
of the 3D behavioral characteristics exhibited by various 
microscale particles, including flow tracers in microfluid-
ics [33–39], colloids [40–42], microbubbles [43, 44], par-
ticulate matter [45, 46], and microorganisms [47–50].

This review article presents an overview of the funda-
mental principles and applications of DIHM for quan-
titative analyses of cell dynamics in 3D volumes. The 
DIHM-based cell tracking procedures, including DIHM 
configuration, digital image preprocessing, numeri-
cal reconstruction, autofocusing, and particle tracking 
velocimetry (PTV) algorithms, are summarized. Recent 
studies on 3D dynamic analysis of living cells using 
DIHM technique are also discussed, covering a range of 
organisms such as erythrocytes, spermatozoa, bacteria, 
dinoflagellates, and algae. Experimental investigations 

into various dynamic behaviors of living cells, encom-
passing single-cell motilities, cell-cell interactions, and 
cell-surface interactions, are reviewed. Finally, recent 
studies on label-free sensing and classification of different 
types of living cells, such as diseased cells and microor-
ganisms, demonstrate the potential clinical applications 
of DIHM technique for facile and accurate diagnosis of 
cellular diseases.

Principles of DIHM
Optical configuration of DIHM
The basic configuration of DIHM, which uses a point 
light source, is derived from Gabor holography (Fig. 1a) 
[24]. It consists of a coherent laser source, a spatial fil-
ter, and a digital camera. A coherent laser beam with 
spherical waves is scattered from a test sample to gen-
erate an object beam. When the distance between the 
light source and the image sensor of the digital camera 
is sufficiently large, the incident wave can be approxi-
mated as a plane wave. A reference beam represents an 
unaffected wave emitted from the light source. In the 
DIHM configuration, the object and reference beams 
propagate in the same direction and interfere to form 
holographic interference patterns recorded on the 
image sensor. The magnification ratio can be adjusted 
by changing the ratio of the distance between the pin-
hole and the test sample to that between the pinhole 
and the camera. On the other hand, increasing the dis-
tance between the pinhole and the camera decreases 

Fig. 1  Schematics of the optical configurations of digital in-line holographic microscopy using a point source (a) and a collimated beam (b)
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the numerical aperture (NA) of the DIHM configura-
tion using spherical waves. In addition, the magnifi-
cation ratio and light intensity of holographic signals 
vary depending on the depth-wise position of the test 
sample. To visualize 3D dynamic behaviors of test sam-
ples over a wide volume with extended DOF, a col-
limated laser beam is utilized to configure the DIHM 
system (Fig.  1b) [29]. For this purpose, a convex lens 
converts spherical waves into plane waves, while an 
additional objective lens attached in front of the image 
sensor of the camera increases the magnification ratio. 
The holographic images captured by the DIHM sys-
tem using plane waves maintain a constant pixel length 
and resolution, regardless of the depth position of 
the test sample. This advantage facilitates the design 
of experimental setups and enables the application 
of reconstruction algorithms to analyze 3D dynamic 
behaviors of test samples moving in a large volume. The 
field of view (FOV) is calculated by dividing the physi-
cal dimension of an image sensor by the magnification 
ratio of the DIHM system. The lateral and longitudi-
nal resolutions are defined as |Δrlateral|≥ 0.5λ/NA and 
|Δrlongitudinal|≥ 0.5λ/NA2, where λ represents the wave-
length of the light source [26].

Several other in-line holographic configurations 
have recently been introduced. The DIHM configura-
tion can be further simplified by replacing the coher-
ent laser source with an inexpensive partially coherent 
light source, such as a light-emitting diode [32, 51–53]. 
Due to the lack of expensive objective lenses and a 
coherent laser source, the lensless DIHM system can 
be employed for developing compact portable devices 
to monitor various microscale particulates. Instead 
of using a coherent light source, spatially incoherent 
sunlight or fluorescence has recently been utilized 
for developing incoherent digital holography tech-
niques, including optical scanning holography, Fresnel 
incoherent correlation holography, and coded aper-
ture correlation holography [54–57]. To resolve the 
twin-image problem of DIHM configuration, single-
shot in-line phase-shifting interferometry has been 
developed [58–60]. A phase-shifting array device is 
employed to capture multiple holograms with various 
phase shifts. This enables precise measurements of the 
phase information of a test object from the captured 
holograms and enhances the quality of reconstructed 
images. Multi-wavelength DIHM systems are utilized 
to extract multiple single-wavelength holograms from 
one single-shot hologram [61–64]. These extracted 
holograms are then used for phase unwrapping and 
comprehensive analysis of 3D morphological charac-
teristics of biological samples illuminated with differ-
ent wavelengths.

Preprocessing of holographic images
Raw holographic images of a test sample contain unin-
tended background noises induced by static dust par-
ticles and scratches on optical components. There are 
several methods available to remove these background 
noises and acquire clean holographic signals from the 
test sample. Firstly, the raw holographic images are nor-
malized using the background image obtained by record-
ing a holographic image without the test sample [65–67]. 
Secondly, normalization is performed based on the illu-
mination intensity to effectively suppress multiplicative 
artifacts [40, 68]. Thirdly, spatially invariant background 
noises are subtracted from the raw holographic images by 
calculating an ensemble average of hundreds of consecu-
tive holograms [29, 69]. Further improvement of the sig-
nal-to-noise ratio in holographic images can be achieved 
by employing various denoising techniques, such as 
band-pass filters [70–72], mean filters [73], median fil-
ters [74], Wiener filters [75], local-mean-subtraction fil-
ters [76], spectral filters [77], wavelet-based denoising 
[78], non-local means filtering [79], correlation-based 
denoising [80], and deep-learning-based denoising meth-
ods [81–83]. Super-resolution techniques can also be 
adopted to achieve high-resolution holographic imaging 
results [84–88].

Numerical reconstruction of holographic images
Holographic images located at different depths away 
from the image plane can be numerically reconstructed 
by adopting several light diffraction theories [89, 90]. 
Kirchhoff-Helmholtz transform has been utilized to 
reconstruct holographic images (Hr) from the original 
holographic image (Ho) recorded by a DIHM setup with 
a point light source [91–93]. The reconstruction equa-
tion of the Kirchhoff-Helmholtz transform is expressed 
as follows:

where Ho(ψ) is the contrast image on the detector screen 
S at coordinates ψ = (x, y, l) located at a depth-wise dis-
tance l  away from the point source. r and  k denote the 
position vector from the point source and the wave num-
ber of the light source, respectively.

The Kirchhoff’s theory yields precise empirical results. 
However, the boundary conditions of Kirchhoff’s theory 
imply the absence of waves behind the aperture, leading to 
mathematical and physical contradictions [89]. To elimi-
nate these inconsistencies associated with the boundary 
conditions in the Kirchhoff’s theory, the Rayleigh-Som-
merfeld diffraction integral is utilized to reconstruct 

(1)Hr(r) =
1

4π s

dψHo(ψ) exp ikψ ·
r

|ψ |
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holograms of both spherical and plane waves [94–97]. The 
Rayleigh-Sommerfeld propagator (h), which enables wave 
field recovery, can be expressed as follows:

where x and y, and ξ and η are the spatial coordinates on 
the image and reconstruction planes, respectively. z is 
the distance from the image plane to the reconstruction 
plane. The diffraction integral is expressed as follows:

where Hr(ξ,η;z) and Ho(x,y;0) are the reconstructed and 
original holographic images, respectively.

Based on the Fresnel approximation, the diffraction inte-
gral can be converted into a simpler expression [27, 80, 98]. 
The hologram reconstruction process employing the Fresnel 
transformation can be expressed as follows:

The Fresnel approximation exhibits precise reconstruc-
tion performance for small diffraction angles. The Fraun-
hofer approximation can be adopted to further simplify 
the transformation equation in the following manner:

where the quadratic terms of x2 + y2 are omitted [89]. The 
Fraunhofer transformation facilitates rapid calculation of 
the propagating wavefronts in far-field imaging.

Angular spectrum method is usually employed for 
reconstructing holographic images captured by a DIHM 
setup using plane waves [29, 99]. The angular spectrum of 
the wavefront recorded in the original holographic image is 
obtained through the application of fast Fourier transform 
(FFT), enabling extraction of the spatial frequency com-
ponents distribution contained in the holographic image. 
Each spatial frequency component propagates through 
the space at different distances and angles. By applying the 
inverse FFT to these propagated spatial frequency com-
ponents, a new hologram reconstructed at a depth-wise 
distance z from the original hologram can be obtained. 
This method does not require the minimum z-distance or 
any assumptions such as the Fresnel approximation, mak-
ing it suitable for conducting 3D dynamic analyses of test 
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samples moving in a large volume. The reconstruction 
equation of the angular spectrum method is expressed as 
follows:

where F and F−1 represent FFT and inverse FFT, respec-
tively. fx and fy denote the spatial frequencies of x and y 
coordinates, respectively. To further improve the spatial 
resolution and signal-to-noise ratio of the reconstructed 
holograms, additional methodologies are adopted to sup-
press the twin-image problem associated with DIHM 
technique [61, 100–106].

3D localization of test samples using autofocusing 
algorithms
The 3D positional information of test samples is deter-
mined based on the reconstructed holograms, which are 
obtained by numerically reconstructing holograms at dif-
ferent depth-wise distances from an original hologram 
of a test sample. These reconstructed holograms are then 

projected into a single image plane. In-plane (x, y) posi-
tion of each particle recorded on the projected hologram is 
determined by identifying extreme values in local intensity, 
image contrast, or sharpness. Among the reconstructed 

holograms of the object at the determined in-plane posi-
tion, the degree of sharpness and image contrast (i.e., 
focus value) of the holograms is quantified by adopting 
various autofocusing functions. Subsequently, the depth-
wise position z of each particle is determined by search-
ing an extreme peak in focus values obtained by using 
focus functions, such as gradient (GRA), Laplacian (LAP), 
weighted  spectral (SPEC), Tamura coefficient (TC), and 
variance (VAR) focus functions. These focus functions 
used for calculating focus values are defined as follows:

(6)
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where σ is the standard deviation [107, 108]. The reso-
lution of the reconstructed hologram is Nξ × Nη pix-
els. fξ and fη denote the spatial frequencies of ξ and η 
coordinates, respectively. Hr(z) represents the spatial 
average value of a hologram reconstructed at the depth-
wise position z. In the Rayleigh-Sommerfeld diffraction 
integral-based reconstruction process, the Gouy phase 
anomaly is utilized for the 3D localization of test samples 
[62, 97, 109]. Additionally, Gini’s index [110], Tenengrad 
function [111], Brenner function [112], DarkFocus algo-
rithm [113], spectral L1 norm [114, 115], and novel deep-
learning-based methodologies [116–120] are employed 
for autofocusing. Due to variations in experimental con-
ditions such as the size and shape of test samples and 
the relative refractive index of media, it is important to 
consider an appropriate autofocusing method for a given 
experimental condition.

3D PTV algorithms for cell tracking
The 3D dynamic behaviors of test samples can be ana-
lyzed by extracting the 3D positional information from 
reconstructed consecutive holographic images. Further-
more, the trajectory of test samples can be easily obtained 
by connecting the 3D positions of individual objects in 
subsequent holograms. Several 3D PTV algorithms can 
be applied to thousands of 3D positional information 
of test samples to obtain their trajectories. For example, 
the two-frame PTV algorithm based on iterative esti-
mation of match probability can be utilized for rapid 
tracking of particle trajectory using only two successive 
image frames [121]. The Crocker-Grier algorithm can be 
employed to search for the probable set of particle indi-
ces and locations in each frame among the successive and 
preceding image frames, taking into account various fac-
tors such as size, intensity, and displacement of particles 
to ensure accurate tracking [122, 123]. Additionally, high-
order multi-frame tracking algorithms are employed for 
robust and accurate 3D Lagrangian tracking of particles 
[124–128]. Machine learning-based cell tracking algo-
rithms can also be adopted to improve the performance 
of holographic PTV measurements. A neural network is 
used for nonlinear global regression to filter out random 
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noises present in PTV data and reconstruct the entire 
flow field from captured photographs [129]. To overcome 
technical limitations associated with previous PTV algo-
rithms when dealing with highly concentrated tracer par-
ticles and high-speed flows, a long short-term memory 
network is utilized to predict the subsequent velocity of a 
tracer particle based on its past PTV data [130].

Alternative holographic processing techniques
Conventional digital image processing methods for holo-
graphic PTV typically include preprocessing, numeri-
cal reconstruction, autofocusing, and particle tracking. 
Recently, several alternative holographic processing 
techniques deviating from traditional categories have 
been proposed. For example, 3D volumetric deconvolu-
tion method utilizes a point-spread function to enhance 
the optical features contained in reconstructed holo-
grams [131–133]. It effectively resolves the superimposed 
out-of-focus signals of highly concentrated particles. 
Additionally, various inverse reconstruction methods 
employing fused lasso regularization [134], Tikhonov 
regularization [135], and iterative predictive algorithm 
[136] are introduced to overcome the technical limita-
tions of DIHM in terms of particle concentration and 
reconstruction dynamic range.

Recently, artificial intelligence (AI) has been applied to 
expedite the computational time required for numeri-
cal reconstruction and autofocusing procedures in digi-
tal image processing. Specifically, a convolutional neural 
network (CNN) is trained using holograms of test sam-
ples and corresponding ground-truth depth-wise posi-
tion labels [118]. By leveraging this trained CNN model, 
it can directly predict the depth-wise positions of test 
samples from their holograms without resorting to 
numerical reconstruction and autofocusing procedures. 
To achieve this, a CNN architecture composed of con-
volutional layers, up-sampling blocks, and nonlinear 
activation functions is trained with pairs of raw holo-
grams and their corresponding reconstructed amplitude 
and phase maps [104]. Additionally, a U-Net architec-
ture is utilized to predict 3D locations of highly concen-
trated particles based on input holograms, depth maps, 
and maximum phase projections [137]. Furthermore, 
a fusion approach involving two U-Nets is trained with 
raw holograms at the input layer of one down-sampling 
path and pairs of intensity and phase maps at the output 
layer of two up-sampling paths [138]. Moreover, a gen-
erative adversarial network, which utilizes mutual train-
ing of the generator and discriminator, is employed to 
generate in-focus intensity and phase maps from an input 
hologram [139–141]. In addition to these techniques 
mentioned above, a Fourier imager network consisting 
of spatial Fourier transform modules can provide a global 
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receptive field for processing holographic diffraction 
patterns obtained from test samples [142]. Lastly, a self-
supervised learning model is trained by using a physics-
consistency loss along with synthetic images instead of 
generating experimental datasets [143]. Therefore, recent 
advancements in AI techniques facilitate rapid hologram 
reconstruction and precise localization in cell tracking, 
thereby replacing the time-consuming digital image pro-
cessing procedures of traditional DIHM methods.

Applications of DIHM to various microscale 
biological cells
4D tracking of human blood cells
The DIHM technique enables effective analysis of 4D 
dynamic behaviors of human blood cells, including 

neutrophils and erythrocytes (Table  1) [144–151]. For 
example, rapid movement of neutrophils (HL60 cells) 
was visualized with lateral and longitudinal resolutions 
in the range of a few micrometers [144]. A DIHM system 
was employed to track cell migration of unlabeled asth-
matic and non-asthmatic neutrophils at a high temporal 
resolution [145]. Their study comparatively investigated 
the averages of undirected speed and outward velocity 
of neutrophils exposed to various chemotactic stimuli 
(interleukin-8 and N-formylmethionyl-leucyl-phenylala-
nine) under different mechanical environments such as 
collagen stiffness and pore size. The 3D velocity profile 
of erythrocytes in Hagen-Poiseuille flows was measured 
depending on their radial position while flowing through 
a microtube with an inner diameter of 350  μm [146]. 

Table 1  Summary of previous studies on four-dimensional (4D) tracking of human blood cells using digital in-line holographic 
microscopy

Year Object Content Reconstruction method Axial localization 
algorithm

Tracking algorithm References

2008 Neutrophil Three-dimensional (3D) 
dynamic behavior of fast-
moving neutrophils in sus-
pension cultures

Wavelet transform derived 
from Fresnel transforma-
tion

Local extreme intensity Connecting 3D positions 
for each object in subse-
quent holograms

[144]

2022 Neutrophil Comparison of cell 
migration of asthmatic 
and non-asthmatic neutro-
phils subjected to differ-
ent chemotactic stimuli 
and mechanical environ-
ments

Angular spectrum method Thresholding minimum 
projections

Crocker-Grier algorithm [145]

2009 Erythrocyte The 3D motion of erythro-
cytes in Hagen-Poiseuille 
flows in microtubes

Angular spectrum method Laplacian (LAP) focus 
function

Two-frame particle track-
ing velocimetry (PTV) 
algorithm

[146]

2012 Erythrocyte Inertial migration of eryth-
rocytes in low-viscosity 
and high-shear rate micro-
tube flows

Angular spectrum method Determining based 
on the velocity profile 
of a Poiseuille flow

Crocker-Grier algorithm [147]

2014 Erythrocyte Inertial migration of eryth-
rocytes in water and viscoe-
lastic flows in rectangular 
microchannels

Angular spectrum method LAP focus function Superimposing 3D posi-
tions of objects in subse-
quent holograms

[148]

2017 Erythrocyte Comparison of inertial 
migration, deformation 
index, and orientation 
of normal and hardened 
erythrocytes in viscoelastic 
flows in rectangular micro-
channels

Angular spectrum method Tamura coefficient focus 
function

Superimposing 3D posi-
tions of objects in subse-
quent holograms

[149]

2018 Erythrocyte Digital stereo-holographic 
microscopy for measuring 
3D position, orientation, 
and morphology of eryth-
rocytes

Angular spectrum method Intensity thresholding Two-frame PTV algorithm [150]

2023 Erythrocyte Deep-learning-based meas-
urement of 3D position 
and orientation of eryth-
rocytes

Angular spectrum method Gradient focus function No tracking [151]
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Statistical analysis was conducted on the inertial migra-
tion phenomena exhibited by erythrocytes moving in 
cylindrical and rectangular microchannels under various 
microfluidic conditions [147, 148]. 3D spatial distribu-
tions of erythrocytes and microspheres were investigated 
under different shear rates. Quantitative comparisons 
were made between healthy and hardened erythrocytes, 
regarding their lateral migration, deformation index, and 
orientation for various flow rates of viscoelastic fluids 
in a rectangular microchannel (Fig.  2a) [149]. The typi-
cal experimental setup for microfluidic DIHM measure-
ments is illustrated in Fig.  2ai. Digital image processing 
procedures involving background subtraction (Fig. 2aii), 
depth localization using a TC focus function (Fig. 2aiii), 
as well as in-plane positioning (Fig.  2aiv), were utilized 

to detect the 3D spatial distribution of erythrocytes. 
The spatial distributions of spherical particles, hardened 
erythrocytes, and normal erythrocytes in microchannels 
were obtained with varying flow rates in microchannels 
(Fig. 2av-vii).

Stereo-holographic microscopy was developed to 
obtain 3D positional, orientational, and morphological 
information on non-spherical particles, including ellip-
soidal particles and erythrocytes [150]. To accurately 
measure the 3D orientations of erythrocytes, a deep-
learning-based DIHM technique was developed, which 
can estimate the in-plane and out-of-plane angles of 
erythrocytes from their in-focus reconstructed holo-
grams (Fig.  2b) [151]. The signal-to-noise ratio of holo-
graphic signals of three erythrocytes recorded in a raw 

Fig. 2  Applications of digital in-line holographic microscopy (DIHM) to track human erythrocytes and spermatozoa. a Lateral migration of hardened 
and normal erythrocytes in viscoelastic flows under different microfluidic conditions. Experimental setup for the microfluidic measurement 
(i). Digital image processing procedure: background subtraction (ii, scale bar = 10 μm), depth localization using a Tamura coefficient (TC) focus 
function (iii, scale bar = 10 μm), in-plane positioning (iv, scale bar = 10 μm), and 3D spatial distributions of spherical particles, hardened erythrocytes, 
and normal erythrocytes measured using DIHM (v-vii). Reprinted from ref. [149], Copyright 2017. b Measurement of 3D locations and orientations 
of erythrocytes using DIHM and deep learning techniques. Digital image processing procedure: raw hologram (i, scale bar = 20 μm), background 
subtraction (ii, scale bar = 20 μm), projection (iii, scale bar = 20 μm), depth localization using a gradient focus function (iv, scale bar = 5 μm), in-plane 
angle measurement (v, scale bar = 5 μm), and 3D positions and orientations of erythrocytes measured using DIHM (vi). Reprinted with permission 
from ref. [151], Copyright 2023, Elsevier B.V. c Transitions between different swimming patterns of a human spermatozoon. Hyper-activated (i, iv) 
and helical patterns (iii) are observed in a whole trajectory of the human spermatozoon (ii). Reprinted from ref. [152], Copyright 2012
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hologram (Fig.  2bi) was enhanced by subtracting back-
ground noises (Fig.  2bii). The reconstructed holograms 
of erythrocytes were projected on a single image plane to 
determine in-plane locations of erythrocytes by search-
ing for local intensity extrema (Fig. 2biii). Depth locations 
and in-focus reconstructed holograms of erythrocytes 
were obtained by employing a GRA focus function 
(Fig.  2biv). The in-plane angle (φ) of each erythrocyte 
was determined by evaluating the inclined angle of its 
major axis (Fig.  2bv). A convolutional autoencoder was 
utilized to increase the number of holographic images 
with respect to the out-of-plane angle of erythrocytes. 
Subsequently, a CNN for regression analysis was used to 
directly predict the out-of-plane angle (θ) from the recon-
structed hologram of each erythrocyte (Fig. 2bvi). On the 
other hand, previous studies on erythrocytes have mainly 
focused on measuring their 3D translational dynamics in 
straight microchannels. Further development is required 
for DIHM technique with the aid of AI to analyze the 3D 
rotational dynamics exhibited by moving erythrocytes 
within more complex microfluidic conduits.

4D tracking of spermatozoa
The swimming motility of human and animal sperma-
tozoa can be analyzed by visualizing 3D trajectories of 
spermatozoa swimming in a 3D volume using a DIHM 
technique (Table  2) [152–157]. For example, submicron 
accuracy was achieved in tracking various swimming 
patterns of human spermatozoa, including typical, heli-
cal, hyper-activated, and hyper-helical patterns [152]. 
The transitions between swimming patterns within each 
sperm’s trajectory were statistically investigated using a 
lens-free imaging platform (Fig.  2c). A whole trajectory 
of a human spermatozoon (Fig. 2cii) includes transitions 
from the hyper-activated pattern (Fig.  2civ) to the heli-
cal pattern (Fig.  2ciii), and back to the hyper-activated 
pattern again (Fig.  2ci). By adopting the lensless DIHM 
configuration, a cost-effective microscopic device can 
be established for analyzing the swimming motions of 
human spermatozoa with high resolution and a large 
FOV [153]. Spiral trajectories of goat spermatozoa exhib-
ited significantly higher concentration and intense motil-
ity compared to those of human spermatozoa [154]. 
Quantitative visualization was performed on the 3D tra-
jectories of Arbacia punctulata spermatozoa which navi-
gate through 3D chemoattractant gradients provided by 
an egg for fertilization, revealing their tracking process 
toward the egg [155]. The swimming motions of horse 
spermatozoa were categorized into six different patterns, 
including irregular, linear, planar, helical, ribbon, and 
hyper-progressive patterns [156]. Free-swimming sper-
matozoa of normal and unhealthy mice were also com-
paratively investigated [157]. A double-knockout mouse 

model lacking tubulin glycosylation was generated by 
targeting the initiating glycylases tubulin-tyrosine ligase-
like (TTLL) 3 and TTLL8 (Ttll3−/−Ttll8−/− mouse). 
The DIHM technique was employed to measure the 3D 
behaviors of spermatozoa from both a normal mouse 
and a Ttll3−/−Ttll8−/− mouse. The spermatozoa from the 
normal mouse exhibited twisted ribbon patterns, while 
those from the Ttll3−/−Ttll8−/− mouse displayed helical 
patterns. As the spermatozoa from the Ttll3−/−Ttll8−/− 
mouse approached the wall of the observation cham-
ber, their swimming patterns transitioned from helical 
to circular motion. Consequently, this kind of change in 
swimming patterns disrupted their progressive move-
ment. These experimental studies show that the DIHM 
technique possesses sufficient resolution and measure-
ment accuracy for assessing the 3D swimming motions of 
spermatozoa.

4D tracking of bacteria
The free-swimming behaviors of various bacteria have 
been quantitatively analyzed using a DIHM technique 
to reveal the underlying mechanisms of microbial motil-
ity (Table 3) [62, 80, 158–171]. Pseudomonas aeruginosa 
(P. aeruginosa) exhibited several swimming behaviors, 
including meandering, oscillation, helix, pseudohelix, 
and twisting patterns, and the transitions between dif-
ferent patterns were analyzed (Fig.  3a) [158]. Statistical 
comparisons were made on the 3D swimming speed and 
turning angle distributions of P. aeruginosa, Agrobac-
terium tumefaciens, and Escherichia coli (E. coli) [159]. 
Submicron-scale kinematics, morphological shape, and 
orientation measurements were conducted on indi-
vidual E. coli to assess their motilities, including swim-
ming speed, tumbling motion, and wobbling motion 
[62, 80, 160]. The body-angle rotation during runs, tum-
bles, and pole reversal in E. coli was measured using a 
C-implemented discrete dipole approximation code and 
the Levenberg-Marquardt algorithm [161]. The filament 
compositions of Shewanella putrefaciens were observed 
to affect the flagellar morphology and free-swimming 
trajectories [162].

Quantitative measurement of bacteria cell-surface 
interactions is essential to understand diverse microbial 
behaviors, such as bacterial adhesion and biofilm forma-
tion, and the development of biomedical and antibiofoul-
ing surfaces. Various swimming motions of E. coli were 
observed in both near-surface and bulk regions (Fig. 3bi, 
viii), encompassing running and tumbling (Fig.  3bii, 
vi), slow random walk (Fig.  3biii), gyrating on a surface 
(Fig.  3biv), attaching and detaching (Fig.  3bv), and cir-
cular swimming (Fig.  3bvii) [163]. In the near-surface 
region, tumbling motions of E. coli were reduced by 50%, 
while reorientations were restricted to surface-parallel 



Page 9 of 24Kim and Lee ﻿Military Medical Research           (2024) 11:38 	

Ta
bl

e 
2 

Su
m

m
ar

y 
of

 p
re

vi
ou

s 
st

ud
ie

s 
on

 fo
ur

-d
im

en
si

on
al

 (4
D

) t
ra

ck
in

g 
of

 s
pe

rm
at

oz
oa

 u
si

ng
 d

ig
ita

l i
n-

lin
e 

ho
lo

gr
ap

hi
c 

m
ic

ro
sc

op
y

Ye
ar

O
bj

ec
t

Co
nt

en
t

Re
co

ns
tr

uc
tio

n 
m

et
ho

d
A

xi
al

 lo
ca

liz
at

io
n 

al
go

ri
th

m
Tr

ac
ki

ng
 a

lg
or

ith
m

Re
fe

re
nc

es

20
12

H
um

an
 s

pe
rm

at
oz

oo
n

Sw
im

m
in

g 
pa

tt
er

ns
 o

f s
pe

rm
a-

to
zo

a,
 s

uc
h 

as
 ty

pi
ca

l, 
he

lic
al

, 
hy

pe
r-

ac
tiv

at
ed

, a
nd

 h
yp

er
-h

el
ic

al
 

pa
tt

er
ns

W
ei

gh
te

d 
ba

ck
-p

ro
je

ct
io

n 
m

et
ho

d
Lo

ca
l e

xt
re

m
e 

co
nt

ra
st

Li
nk

in
g 

up
 th

e 
ne

ar
es

t t
hr

ee
-

di
m

en
si

on
al

 (3
D

) p
os

iti
on

s 
of

 o
bj

ec
ts

 in
 s

ub
se

qu
en

t h
ol

o-
gr

am
s

[1
52

]

20
22

H
um

an
 s

pe
rm

at
oz

oo
n

Sw
im

m
in

g 
m

ot
io

ns
 o

f h
um

an
 

sp
er

m
at

oz
oa

A
ng

ul
ar

 s
pe

ct
ru

m
 m

et
ho

d
D

ar
kF

oc
us

 a
lg

or
ith

m
Co

nn
ec

tin
g 

3D
 p

os
iti

on
s 

fo
r e

ac
h 

ob
je

ct
 in

 s
ub

se
qu

en
t h

ol
og

ra
m

s
[1

53
]

20
22

H
um

an
 a

nd
 g

oa
t s

pe
rm

at
oz

oa
Co

m
pa

ris
on

 o
f s

w
im

m
in

g 
m

ot
io

ns
 o

f h
um

an
 a

nd
 g

oa
t 

sp
er

m
at

oz
oa

A
ng

ul
ar

 s
pe

ct
ru

m
 m

et
ho

d
D

ar
kF

oc
us

 a
lg

or
ith

m
Co

nn
ec

tin
g 

3D
 p

os
iti

on
s 

fo
r e

ac
h 

ob
je

ct
 in

 s
ub

se
qu

en
t h

ol
og

ra
m

s
[1

54
]

20
15

Ar
ba

ci
a 

pu
nc

tu
la

ta
 (A

. p
un

ct
u-

la
ta

) s
pe

rm
at

oz
oo

n
Sw

im
m

in
g 

m
ot

io
ns

 o
f A

. p
un

ct
u-

la
ta

 s
pe

rm
at

oz
oa

 n
av

ig
at

in
g 

3D
 

ch
em

oa
tt

ra
ct

an
t g

ra
di

en
ts

 p
ro

-
vi

de
d 

by
 a

n 
eg

g 
fo

r f
er

til
iz

at
io

n

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
G

ou
y 

ph
as

e 
an

om
al

y 
an

d 
So

be
l 

fil
te

rin
g

Li
nk

in
g 

3D
 p

os
iti

on
s 

in
to

 c
on

tin
u-

ou
s 

tr
aj

ec
to

rie
s 

us
in

g 
a 

cu
st

om
-

m
ad

e 
tr

ac
ki

ng
 p

ro
gr

am
 w

rit
te

n 
in

 Ja
va

[1
55

]

20
16

H
or

se
 s

pe
rm

at
oz

oo
n

Sw
im

m
in

g 
pa

tt
er

ns
 o

f h
or

se
 s

pe
r-

m
at

oz
oa

, s
uc

h 
as

 ir
re

gu
la

r, 
lin

ea
r, 

pl
an

ar
, h

el
ic

al
, r

ib
bo

n,
 a

nd
 h

yp
er

-
pr

og
re

ss
iv

e 
pa

tt
er

ns

W
ei

gh
te

d 
ba

ck
-p

ro
je

ct
io

n 
m

et
ho

d
Lo

ca
l e

xt
re

m
e 

co
nt

ra
st

Li
nk

in
g 

up
 th

e 
ne

ar
es

t 3
D

 p
os

i-
tio

ns
 o

f o
bj

ec
ts

 in
 s

ub
se

qu
en

t 
ho

lo
gr

am
s

[1
56

]

20
21

M
ou

se
 s

pe
rm

at
oz

oo
n

Co
m

pa
ris

on
 o

f s
w

im
m

in
g 

m
ot

io
ns

 o
f a

 n
or

m
al

 m
ou

se
 

an
d 

a 
m

ou
se

 w
ith

ou
t t

ub
ul

in
 

gl
yc

os
yl

at
io

n

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
G

ou
y 

ph
as

e 
an

om
al

y
Co

nn
ec

tin
g 

3D
 p

os
iti

on
s 

fo
r e

ac
h 

ob
je

ct
 in

 s
ub

se
qu

en
t h

ol
og

ra
m

s
[1

57
]



Page 10 of 24Kim and Lee ﻿Military Medical Research           (2024) 11:38 

Ta
bl

e 
3 

Su
m

m
ar

y 
of

 p
re

vi
ou

s 
st

ud
ie

s 
on

 fo
ur

-d
im

en
si

on
al

 (4
D

) t
ra

ck
in

g 
of

 b
ac

te
ria

 u
si

ng
 d

ig
ita

l i
n-

lin
e 

ho
lo

gr
ap

hi
c 

m
ic

ro
sc

op
y

Ye
ar

O
bj

ec
t

Co
nt

en
t

Re
co

ns
tr

uc
tio

n 
m

et
ho

d
A

xi
al

 lo
ca

liz
at

io
n 

al
go

ri
th

m
Tr

ac
ki

ng
 a

lg
or

ith
m

Re
fe

re
nc

es

20
14

Ps
eu

do
m

on
as

 a
er

ug
in

os
a 

 
(P

. a
er

ug
in

os
a)

Sw
im

m
in

g 
m

ot
ili

ty
 o

f P
. a

er
-

ug
in

os
a,

 in
cl

ud
in

g 
m

ea
nd

er
, 

os
ci

lla
tio

n,
 h

el
ix

, p
se

ud
oh

el
ix

, 
an

d 
tw

is
tin

g 
pa

tt
er

ns

Ki
rc

hh
off

-H
el

m
ho

ltz
 tr

an
sf

or
m

a-
tio

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Sa
tis

fy
in

g 
se

lf-
co

ns
is

te
nc

y 
be

tw
ee

n 
tr

aj
ec

to
rie

s 
pr

oj
ec

te
d 

on
 x

z-
 a

nd
 y

z-
pl

an
es

[1
58

]

20
15

P. 
ae

ru
gi

no
sa

, A
gr

ob
ac

te
riu

m
 

tu
m

ef
ac

ie
ns

 (A
. t

um
ef

ac
ie

ns
), 

an
d 

Es
ch

er
ic

hi
a 

co
li 

(E
. c

ol
i)

Sw
im

m
in

g 
m

ot
ili

ty
 o

f P
. a

er
ug

i-
no

sa
, A

. t
um

ef
ac

ie
ns

, a
nd

 E
. c

ol
i

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
In

te
ns

ity
 th

re
sh

ol
di

ng
Co

nn
ec

tin
g 

th
re

e-
di

m
en

si
on

al
 

(3
D

) p
os

iti
on

s 
fo

r e
ac

h 
ob

je
ct

 
in

 s
ub

se
qu

en
t h

ol
og

ra
m

s

[1
59

]

20
14

E.
 c

ol
i

Sw
im

m
in

g 
m

ot
ili

ty
 o

f E
. c

ol
i

Fr
es

ne
l t

ra
ns

fo
rm

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

3D
 L

ag
ra

ng
ia

n 
tr

ac
ki

ng
 a

lg
or

ith
m

[8
0]

20
16

E.
 c

ol
i

Sw
im

m
in

g 
m

ot
ili

ty
 o

f E
. c

ol
i., 

su
ch

 a
s 

bo
dy

 a
ng

le
 ro

ta
tio

n 
du

rin
g 

ru
ns

, t
um

bl
es

, a
nd

 p
ol

e 
re

ve
rs

al

D
is

cr
et

e 
di

po
le

 a
pp

ro
xi

m
a-

tio
n 

an
d 

Le
ve

nb
er

g-
M

ar
qu

ar
dt

 
al

go
rit

hm

M
in

im
um

 s
um

 o
f s

qu
ar

ed
 d

if-
fe

re
nc

es
 b

et
w

ee
n 

th
e 

si
m

ul
at

ed
 

m
od

el
 a

nd
 m

ea
su

re
d 

ho
lo

gr
am

s

Co
nn

ec
tin

g 
3D

 p
os

iti
on

s 
fo

r e
ac

h 
ob

je
ct

 in
 s

ub
se

qu
en

t h
ol

og
ra

m
s

[1
61

]

20
17

E.
 c

ol
i

Sw
im

m
in

g 
m

ot
ili

ty
 o

f E
. c

ol
i

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Co
nn

ec
tin

g 
3D

 p
os

iti
on

s 
fo

r e
ac

h 
ob

je
ct

 in
 s

ub
se

qu
en

t h
ol

og
ra

m
s

[6
2]

20
23

E.
 c

ol
i

Sw
im

m
in

g 
m

ot
ili

ty
 o

f E
. c

ol
i

A
ng

ul
ar

 s
pe

ct
ru

m
 m

et
ho

d
Va

ria
nc

e 
fo

cu
s 

fu
nc

tio
n

Su
pe

rim
po

si
ng

 3
D

 p
os

iti
on

s 
of

 o
bj

ec
ts

 in
 s

ub
se

qu
en

t h
ol

o-
gr

am
s

[1
60

]

20
18

Sh
ew

an
el

la
 p

ut
re

fa
ci

en
s (

S.
 p

ut
re

-
fa

ci
en

s)
Sw

im
m

in
g 

m
ot

ili
ty

 o
f S

. p
ut

re
-

fa
ci

en
s w

ith
 v

ar
yi

ng
 fi

la
m

en
t 

co
m

po
si

tio
ns

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
G

ou
y 

ph
as

e 
an

om
al

y 
an

d 
So

be
l 

fil
te

rin
g

Co
nn

ec
tin

g 
3D

 p
os

iti
on

s 
fo

r e
ac

h 
ob

je
ct

 in
 s

ub
se

qu
en

t h
ol

og
ra

m
s

[1
62

]

20
14

E.
 c

ol
i

Ce
ll-

su
rf

ac
e 

in
te

ra
ct

io
n;

 
Sw

im
m

in
g 

m
ot

io
ns

 o
f E

. c
ol

i 
in

 n
ea

r-
su

rf
ac

e 
an

d 
bu

lk
 re

gi
on

s, 
in

cl
ud

in
g 

gy
ra

tin
g 

on
 th

e 
su

rf
ac

e,
 

at
ta

ch
in

g,
 d

et
ac

hi
ng

, r
un

ni
ng

, 
tu

m
bl

in
g,

 s
w

im
m

in
g 

in
 c

irc
le

s, 
an

d 
sl

ow
 ra

nd
om

 w
al

k

Fr
es

ne
l t

ra
ns

fo
rm

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

3D
 L

ag
ra

ng
ia

n 
tr

ac
ki

ng
 a

lg
or

ith
m

[1
63

]

20
16

E.
 c

ol
i

Ce
ll-

su
rf

ac
e 

in
te

ra
ct

io
n;

 S
w

im
-

m
in

g 
m

ot
io

ns
 o

f E
. c

ol
i i

n 
a 

ne
ar

-
su

rf
ac

e 
re

gi
on

 u
nd

er
 v

ar
io

us
 fl

ow
 

sh
ea

r

Fr
es

ne
l t

ra
ns

fo
rm

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Fr
am

e-
to

-fr
am

e 
pa

rt
ic

le
 tr

ac
ki

ng
 

ve
lo

ci
m

et
ry

 a
lg

or
ith

m
[1

64
]

20
17

E.
 c

ol
i

Ce
ll-

su
rf

ac
e 

in
te

ra
ct

io
n;

 L
an

di
ng

 
dy

na
m

ic
s 

of
 E

. c
ol

i n
ea

r p
ol

ym
er

ic
 

su
rf

ac
es

 w
ith

 v
ar

yi
ng

 s
ur

fa
ce

 
hy

dr
op

ho
bi

ci
ty

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Li
nk

in
g 

3D
 p

os
iti

on
s 

in
to

 c
on

-
tin

uo
us

 tr
aj

ec
to

rie
s 

us
in

g 
ho

m
e-

m
ad

e 
Py

th
on

 c
od

e

[1
65

]

20
17

E.
 c

ol
i

Ce
ll-

su
rf

ac
e 

in
te

ra
ct

io
n;

 S
w

im
-

m
in

g 
m

ot
io

ns
 o

f E
. c

ol
i d

ur
in

g 
w

al
l 

en
tr

ap
m

en
t

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Co
nn

ec
tin

g 
3D

 p
os

iti
on

s 
fo

r e
ac

h 
ob

je
ct

 in
 s

ub
se

qu
en

t h
ol

og
ra

m
s

[1
66

]

20
17

E.
 c

ol
i a

nd
 P

se
ud

om
on

as
 s

pe
ci

es
Ce

ll-
su

rf
ac

e 
in

te
ra

ct
io

n;
 S

w
im

-
m

in
g 

m
ot

io
ns

 o
f E

. c
ol

i a
nd

 P
se

u-
do

m
on

as
 s

pe
ci

es
 o

n 
bi

od
eg

ra
d-

ab
le

 p
ol

ym
er

ic
 s

ur
fa

ce
s

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Li
nk

in
g 

3D
 p

os
iti

on
s 

in
to

 c
on

-
tin

uo
us

 tr
aj

ec
to

rie
s 

us
in

g 
ho

m
e-

m
ad

e 
Py

th
on

 c
od

e

[1
67

]



Page 11 of 24Kim and Lee ﻿Military Medical Research           (2024) 11:38 	

Ta
bl

e 
3 

(c
on

tin
ue

d)

Ye
ar

O
bj

ec
t

Co
nt

en
t

Re
co

ns
tr

uc
tio

n 
m

et
ho

d
A

xi
al

 lo
ca

liz
at

io
n 

al
go

ri
th

m
Tr

ac
ki

ng
 a

lg
or

ith
m

Re
fe

re
nc

es

20
19

E.
 c

ol
i a

nd
 P

se
ud

om
on

as
 s

pe
ci

es
Ce

ll-
su

rf
ac

e 
in

te
ra

ct
io

n;
 S

w
im

-
m

in
g 

m
ot

io
ns

 o
f E

. c
ol

i a
nd

 P
se

u-
do

m
on

as
 s

pe
ci

es
 o

n 
po

ly
m

er
ic

 
su

rf
ac

es
 w

ith
 v

ar
yi

ng
 s

ur
fa

ce
 

st
iff

ne
ss

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Li
nk

in
g 

3D
 p

os
iti

on
s 

in
to

 c
on

-
tin

uo
us

 tr
aj

ec
to

rie
s 

us
in

g 
ho

m
e-

m
ad

e 
Py

th
on

 c
od

e

[1
68

]

20
19

P. 
ae

ru
gi

no
sa

Ce
ll-

su
rf

ac
e 

in
te

ra
ct

io
n;

 S
w

im
-

m
in

g 
m

ot
io

ns
 o

f P
. a

er
ug

in
os

a 
in

 a
 n

ea
r-

su
rf

ac
e 

re
gi

on

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
In

te
ns

ity
 th

re
sh

ol
di

ng
Co

nn
ec

tin
g 

3D
 p

os
iti

on
s 

fo
r e

ac
h 

ob
je

ct
 in

 s
ub

se
qu

en
t h

ol
og

ra
m

s
[1

69
]

20
23

Sh
ew

an
el

la
 s

pe
ci

es
Ce

ll-
su

rf
ac

e 
in

te
ra

ct
io

n;
 S

w
im

-
m

in
g 

m
ot

io
ns

 o
f S

he
w

an
el

la
 

sp
ec

ie
s 

in
 n

ea
r-

su
rf

ac
e 

an
d 

bu
lk

 
re

gi
on

s

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
In

te
ns

ity
 th

re
sh

ol
di

ng
A

 th
re

e-
fra

m
e 

pr
ed

ic
tiv

e 
pa

rt
ic

le
 

tr
ac

ki
ng

 a
lg

or
ith

m
[1

70
]

20
23

En
te

ro
ba

ct
er

 sa
ka

za
ki

i (
E.

 sa
ka

za
ki

i)
Ce

ll-
su

rf
ac

e 
in

te
ra

ct
io

n;
 S

w
im

-
m

in
g 

m
ot

io
ns

 o
f E

. s
ak

az
ak

ii 
ne

ar
 th

e 
su

rf
ac

es
 c

oa
te

d 
w

ith
 s

es
-

si
le

 p
ro

bi
ot

ic
s

Ra
yl

ei
gh

-S
om

m
er

fe
ld

 b
ac

k-
pr

op
ag

at
io

n
Lo

ca
l e

xt
re

m
e 

in
te

ns
ity

Li
nk

in
g 

3D
 p

os
iti

on
s 

in
to

 c
on

-
tin

uo
us

 tr
aj

ec
to

rie
s 

us
in

g 
ho

m
e-

m
ad

e 
Py

th
on

 c
od

e

[1
71

]



Page 12 of 24Kim and Lee ﻿Military Medical Research           (2024) 11:38 

directions, impeding their escape from this region. Shear 
flow generated in the near-surface area promoted tum-
bling and reorientation movements, thereby enhanc-
ing bacterial dispersion [164]. Surface hydrophobicity 
reduced the swimming speed of E. coli in the near-surface 

region, promoting their landing on and adhesion to the 
surface [165].

The wall entrapment mechanism of E. coli was inves-
tigated by quantifying various parameters such as cell 
axis ratio, vertical speed, collision angle, pitch angle, 

Fig. 3  Applications of digital in-line holographic microscopy to track various unicellular microorganisms. a Trajectories of swimming Pseudomonas 
aeruginosa obtained by using DIHM (i, ii) and the corresponding statistical analysis of various swimming patterns, including meander, oscillation, 
helix, pseudohelix, and twisting patterns (iii, iv). Reprinted from ref. [158], Copyright 2014. b Various swimming patterns of Escherichia coli  
(E. coli) in near-surface and bulk regions. Trajectories of swimming E. coli (i, viii). Swimming patterns of E. coli in the bulk region: running and tumbling  
motions (ii) and slow random walk (iii). Swimming patterns of E. coli in the near-surface region: gyrating on a surface (iv), attaching and detaching 
motions (v), running and tumbling motions (vi), and swimming in circles (vii). Reprinted with permission from ref. [163], Copyright 2014, American 
Physical Society. c 3D trajectories of solitary and chain-forming Cochlodinium polykrikoides. Reprinted with permission from ref. [172], Copyright 
2010, Springer-Verlag. d Trajectories of Prorocentrum minimum in helical motions (i-iii), obtained using DIHM. Probability density functions (PDFs) 
of helix parameters in the near and bulk regions: radius (R, iv) and pitch (P, v). Statistical differences in helix parameters between the near and bulk 
regions, represented as probability values (P-values): curvature (κ, vi) and torsion (τ, vii). Reprinted with permission from ref. [173], Copyright 2016, 
Springer-Verlag Berlin Heidelberg
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and wobbling angle [166]. 3D motion analysis of E. coli 
and Pseudomonas species over biodegradable poly(ε-
caprolactone)-based polymers revealed that enzymatic  
degradation rate was inversely correlated with irrevers-
ible adhesion [167]. Similarly, decreasing surface stiffness 
led to reduced bacterial adhesion for E. coli and Pseu-
domonas species on polydimethylsiloxane surfaces [168]. 
Swimming behaviors were found to differ between wild-
type strains and isogenic flagellar stator mutants of P. aer-
uginosa in near-surface environments [169]. Shewanella 
species exhibited faster swimming speeds and longer tra-
jectories in the bulk region, despite accumulating in the  
region near the surface [170]. Enterobacter sakazakii  
(E. sakazakii) showed adaptive swimming behaviors in 
the region near the surface coated with sessile probiotics, 
reducing wall accumulation [171].

4D tracking of dinoflagellates
Swimming speeds of Alexandrium ostenfeldii, Alex-
andrium minutum, and Alexandrium tamarense were 
compared at different temperatures [174]. Prey-induced 
changes in the swimming behaviors of Karlodinium 
veneficum (K. veneficum) and Pfiesteria piscicida were 
compared in terms of the radius and pitch of their heli-
cal swimming trajectories, as well as their translational 
and angular velocities [98]. Quantitative visualization 
was performed on the 3D trajectories of predatory  
K. veneficum and prey Storeatula major immobilized by 
karlotoxins [175]. Using a DIHM technique, the helical 
swimming trajectories of Cochlodinium polykrikoides 
(C. polykrikoides) and Prorocentrum minimum (P. mini-
mum) were also analyzed [72]. The motile character-
istics of solitary cells vs. chain-forming cells showed 
that the swimming speed, helix radius, and pitch of 
3D trajectories increased with an increasing number 
of cells in the C. polykrikoides chain (Fig. 3c) [172]. As 
the viscosity of the surrounding media increased, both 
the swimming speed and flagella beating frequency 
decreased for P. minimum [176]. The hydrodynamic 
power consumed for the swimming motion of P. mini-
mum was quantitatively estimated. The analyzed 3D 
swimming trajectories and helix parameters indicated 
that motility and thrust generation were higher in the 
near-surface region for P. minimum (Fig.  3d) [173]. 
Based on the measured 3D trajectories of P. mini-
mum showing helical motions (Fig.  3di-iii), the basic 
helix parameters, including radius (R, Fig.  3div), pitch 
(P, Fig.  3dv), curvature (κ, Fig.  3dvi), and torsion (τ, 
Fig. 3dvii), were evaluated in the near and bulk regions. 
An abrupt drifting motion exhibited by P. minimum 
was tracked using a lens-free configuration [177]. 

Previous studies on the 4D tracking of dinoflagellates 
are summarized in Table 4 [72, 98, 172–177].

4D tracking of other biological cells
3D trajectories of free-swimming algae Tetraselmis spe-
cies in seawater were measured using a DIHM technique 
[178]. Unknown species of algae and bacteria were col-
lected from glacial meltwater and investigated using 
DIHM in terrestrial and exobiological studies [179]. The 
relationship between inertial migration and elastic shell 
compliance was analyzed by measuring the spatial distri-
butions of normal and hardened Chlorella cells in a pipe 
flow [180]. 3D swimming trajectories of Dunaliella pri-
molecta (D. primolecta) in shear flow were measured to 
investigate the shear-induced algal migration, compared  
to those in a quiescent fluid [181]. Complex helical  
trajectories and velocity fluctuations of free-swimming  
D. primolecta across different growth phases were also sta-
tistically measured using the DIHM technique [134, 182]. 
Ulva zoospores exhibited various swimming patterns  
in the near-surface and bulk regions, including straight 
path, gyration, search circle, orientation, and wobbling 
motions [183]. Swimming velocity and diving direc-
tion of Ulva zoospores near glass surfaces were statisti-
cally analyzed [184]. Additionally, 3D trajectories of Ulva 
zoospores were monitored over various surfaces, such as 
polyethylene glycol coating, acid-washed glass, and tride-
cafluorooctyl-triethoxysilane-coated glass surfaces [185].

Underwater DIHM was utilized to observe a diverse 
range of microorganisms in oceans or lakes, such as Par-
amecium species, Ciliate species, Didinium species, and 
Coscinodiscus wailesii (diatom) [26]. The 3D motility of 
blood-parasite Trypanosoma brucei was quantified under 
various external conditions to investigate the mechanism 
of immune evasion [186]. Optimal chemotactic behaviors 
of Haloarchaea (Haloferax species and Haloarcula spe-
cies) were examined to reveal the survival strategies of 
archaea under extreme, nutrient-poor conditions [187]. 
The 3D trajectory analysis unveiled the active diving 
motion exhibited by a neuroblastoma cell [177]. Infec-
tive and non-infective intracellular parasites (Leishma-
nia mexicana) displayed distinctive swimming patterns 
and chemotaxis towards human cells [188]. Furthermore, 
DIHM technique was utilized for measuring size distri-
butions and trajectories of airborne virus-laden drop-
lets and aerosols, such as MS2 bacteriophage and severe 
acute respiratory syndrome coronavirus 2 [189]. These 
previous studies underscore the immense potential of 
DIHM technique for in situ, real-time, and non-invasive 
measurements of 3D dynamic behaviors across various 
biological cells. A summary table containing these studies 
on 4D tracking is presented in Table 5 [26, 134, 177–189].
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Label‑free identification of biological cells
Holographic images of biological cells can be usefully 
utilized for label-free cell identification. A lens-free 
holographic imaging platform was developed for on-
chip cytometry to automatically characterize erythro-
cytes, yeast cells, E. coli, and micro-particles of various 
sizes [190]. A custom-made decision algorithm was 
introduced to match the detected hologram textures of 
arbitrary objects with hologram datasets. The lens-free 
holographic on-chip imaging platform was employed 
for enumeration and volume measurement of human 
blood cells, as well as differentiation between vari-
ous types of white blood cells, including granulocytes, 
monocytes, and lymphocytes [191]. The three different 
types of unlabeled leukocytes were classified by evalu-
ating their cellular size and internal complexity [192]. 
The focal lengths of real focus and virtual focus were 
determined from light-intensity profiles obtained from 
reconstructed holographic images of erythrocytes 
[193]. The real focal length of erythrocytes decreased 
after the morphological transition from discocytes to 
echinocytes and spherocytes with the lapse of duration 
time of blood storage. Breast cancer cells and ovarian 
cancer cells were enumerated and characterized based 
on the in-focus scattered light intensity and cell diam-
eter obtained from their holographic images [194]. Bac-
terial colonies of E. coli and Staphylococcus intermedius 
were classified using principal components analysis 
applied to optical signatures, such as reconstructed 
amplitude and phase maps [195]. The growth charac-
teristics of Haematococcus pluvialis were experimen-
tally analyzed by measuring the variation in cell size 
under different levels of light stress [196].

With the rapid advancements of AI, a variety of 
machine learning and deep learning algorithms have 
been employed for label-free cell classification. A deci-
sion tree was employed to classify 3 distinct types 
of erythrocytes, including discocytes, echinocytes, 
and spherocytes [197]. To train a machine learning 
algorithm, numerous features of erythrocytes were 
quantified, including morphological traits, intensity 
distributions of holograms, and optical focusing char-
acteristics. The classification of healthy and unstained 
malaria-infected erythrocytes was achieved by using 
a support vector machine (SVM) algorithm trained 
with morphological and light scattering characteristics 
[198]. Similarly, the SVM algorithm with a linear kernel 
trained on various features such as basic morphologies, 
optical characteristics, and translational and rotational 
invariants was used to classify different types of leuko-
cytes [199].

Label-free classification techniques were developed 
using a decision tree algorithm trained with characteristic 

metrics of cell size and intensity values of holograms to 
enumerate erythrocytes, peripheral blood mononuclear 
cells, and breast cancer cells [200]. A CNN consisting 
of 5 convolutional layers was utilized to classify human 
mammary gland epithelial cells, breast cancer cells, and 
esophageal cancer cells [201]. In-flow enumeration of 
breast cancer cells and ovarian cancer cells from lysed 
blood samples containing white blood cells was per-
formed using a custom-built shallow network [202]. The 
viability and concentration of yeast cells were evaluated 
by employing the SVM algorithm trained with spatial 
features extracted from the reconstructed amplitude and 
phase maps [203]. A deep-learning-based architecture 
named You Only Look Once version 5 was employed to 
directly predict the viability of yeast cells from denoised 
holograms without a hologram reconstruction process 
[204]. Diatom phytoplankton, diatom pennate, Navicula 
species, and Selenastrum species were classified by a ran-
dom forest algorithm trained with various features, such 
as optical volume, coefficient of variation, mean optical 
path length, projected area, cell skewness, and cell kur-
tosis [205]. The death rate of algal cells in the East China 
Sea was assessed using the SVM algorithm trained with 
features collected from reconstructed amplitude and 
phase maps obtained from holographic images of Proro-
centrum lima algae [206]. A 3D CNN model was utilized 
to measure the number of clustered algae Phaeodacty-
lum tricornutum [207]. With the assistance of AI-based 
DIHM technique, most biological cells can be detected 
and enumerated with high throughput. These studies on 
AI-based label-free identification methods for biological 
cell analysis are summarized in Table 6 [197–207].

Comparison with other 3D imaging techniques
Comparison with off‑axis digital holographic microscopy 
(DHM)
Off-axis DHM has been extensively investigated for 
measuring 3D phase information in various biological 
samples [28]. In the off-axis DHM systems, there exists 
a slight difference in the propagating directions of refer-
ence and object waves. A band-pass filter is commonly 
employed to separate real, twin, and zero-order images 
in the frequency domain of a recorded hologram. The 
off-axis DHM systems have been utilized for quantita-
tive phase imaging [208–210], holographic tomography 
[211, 212], and dynamic analysis of biological samples 
[213–216]. On the contrary, obtaining clear real images 
from holograms recorded by DIHM systems is chal-
lenging due to the twin-image problem. To address this 
issue during the hologram reconstruction process, itera-
tive phase retrieval methods [100, 101, 105] and deep 
learning techniques [104, 217, 218] have been devel-
oped. However, sparse test samples with weak phase 
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fluctuations are prerequisites to ensure high precision in 
phase retrieval using DIHM systems. Therefore, off-axis 
DHM is suitable for analyzing detailed 3D morphology of 
biological samples.

On the other hand, the space bandwidth product (SBP) 
of reconstructed holograms obtained from an off-axis 
DHM system is somewhat limited compared to DIHM 
[219]. The SBP of reconstructed holograms is deter-
mined by multiplying the FOV and spatial frequency 
bandwidth. In comparison, the SBP values for DIHM 
are approximately three times larger for Fresnel holo-
grams and two times larger for Fourier holograms, com-
pared to those of off-axis DHM. Assuming a fixed FOV 
in the reconstructed holograms, DIHM has a higher 
maximum spatial frequency than off-axis DHM. There-
fore, the resolvable details of an object in reconstructed 
holograms from DIHM are finer than those from off-
axis DHM. Additionally, high-frequency components in 
reconstructed holograms from off-axis DHM undergo 
partial filtration during the extraction process of real 
images. To determine the depth position of biologi-
cal samples, an autofocusing function is usually utilized 
to search for an in-focus image with the highest sharp-
ness or GRA among the reconstructed holograms. Given 
that the SBP of reconstructed holograms from DIHM is 
higher than that of off-axis DHM, adopting a DIHM sys-
tem is advantageous for reconstructing edge structures 
with high-frequency components and accurately deter-
mining their 3D positional information.

The NA of off-axis DHM systems is also limited due 
to the requirement for a minimum recording distance to 
distinguish between real, twin, and zero-order images. To 
overcome this limitation in spatial resolution for off-axis 

DHM, it is common practice to employ an objective 
lens with a high magnification ratio and NA to acquire 
detailed 3D phase information of test samples. However, 
increasing the magnification ratio of the objective lens 
leads to a decrease in the FOV of off-axis DHM. On the 
other hand, DIHM systems typically utilize an objective 
lens with a relatively lower magnification ratio and NA 
for analyzing 3D locations of microscale particulates 
from the reconstructed holograms, while maintaining 
sufficient spatial resolution. Thus, 3D dynamics of biolog-
ical samples moving in a wide FOV can be tracked more 
precisely compared to off-axis DHM. Additionally, due 
to its simpler optical configuration and shorter recording 
distance requirements, building up experimental setups 
for DIHM systems is easier. Therefore, the DIHM system 
is suitable for the 4D tracking of biological cells.

Advantages of DIHM over other microscopic imaging 
techniques
Various microscopic imaging techniques have been 
developed to visualize the 3D structures of biological 
samples with high lateral and axial resolutions. Fluores-
cence microscopy techniques, including confocal micros-
copy [20], two-photon microscopy [220], multi-photon 
fluorescence microscopy [221], and structured illumina-
tion microscopy [222], enable the reconstruction of 3D 
morphology by stacking fluorescent images at different 
focal planes or scanning fluorescence point-by-point 
across the samples. Light-sheet microscopy is utilized 
to scan a test sample by irradiating a light sheet at dif-
ferent depths and angles [223]. Spatial light interference 
microscopy is used to measure nanoscale phase informa-
tion and dynamics of live cells over periods ranging from 

Table 6  Summary of previous studies on artificial intelligence (AI)-based label-free identification of biological cells using digital in-line 
holographic microscopy

Year Object Content AI algorithm References

2018 Erythrocyte Classification of discocytes, echinocytes, and spherocytes Decision tree [197]

2018 Erythrocyte Classification of healthy and malaria-infected erythrocytes Support vector machine (SVM) [198]

2018 Leukocyte Classification of lymphocytes, granulocytes, and monocytes SVM with a linear kernel [199]

2017 Tumor cell Screening and enumeration of erythrocytes, peripheral 
blood mononuclear cells, and breast cancer cells

Decision tree [200]

2021 Tumor cell Classification of human mammary gland epithelial cells, 
breast cancer cells, and esophageal cancer cells

Convolutional neural network (CNN) [201]

2023 Tumor cell Enumeration of breast cancer cells and ovarian cancer cells Custom-built shallow network [202]

2016 Yeast cell Evaluation of viability and concentration of yeast cells SVM [203]

2023 Yeast cell Evaluation of viability of yeast cells You Only Look Once version 5 [204]

2018 Diatoms and algae Automatic identification of various biological cells Random forest [205]

2021 Prorocentrum lima (P. lima) Evaluation of death rate of algae P. lima SVM [206]

2022 Phaeodactylum tricornutum 
(P. tricornutum)

Enumeration of clustered algae P. tricornutum Three-dimensional CNN [207]
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seconds to days [224]. Differential-interference-contrast 
microscopy collects a set of 2D images of a thick sample 
by moving it through the direction of focus to obtain its 
3D image [225]. These advanced 3D imaging techniques 
effectively visualize the 3D structures and long-term vari-
ations of biological samples. However, real-time moni-
toring of rapidly changing cell dynamics is somewhat 
limited due to the shallow DOF and the long scanning 
time associated with these 3D imaging techniques.

Compared to other 3D imaging techniques, DIHM ena-
bles simultaneous measurement of multiple biological cells 
located at different depth-wise positions. It can analyze not 
only unicellular organisms but also multicellular organisms, 
including marine plankton [27, 49, 50, 226, 227], embryos 
[228], and stem cells [229, 230]. Additionally, DIHM allows 
visualization of transparent thin tissue structures, such as 
human breast carcinoma [231] and human hepatocellular 
carcinoma tissues [232]. Unlike the volumetric scanning 
process used in other techniques, DIHM records holo-
graphic images of moving cells using a high-speed camera 
with a high frame rate. This facilitates effective analysis 
of the 3D dynamics of biological cells with high temporal 
resolution.

The specialized nature of DIHM in analyzing the 3D 
dynamics of individual biological cells makes it a highly 
effective tool for studying multicellular interactions and 
collective cell migration behaviors. For example, DIHM 
has been employed to investigate cell-cell interactions 
between intestinal pathogenic bacteria E. sakazakii and 
the probiotic Lactobacillus rhamnosus [171]. Addition-
ally, it has been utilized to monitor the morphology 
and migration behaviors of cancer cells in large-scale 
3D matrix gels [233]. Consequently, DIHM systems can 
be effectively used for analyzing cell-cell interactions 
and cell migrations in various microenvironments that 
are challenging to investigate with other 3D imaging 
techniques.

Limitations of DIHM
Nevertheless, DIHM does have certain technical and 
experimental limitations. The lateral and axial resolutions 
are diffraction-limited due to the optical configuration of 
DIHM systems. The FOV is typically limited to hundreds 
of microns due to the restricted SBP of DIHM. Moreover, 
the shallow depth of focus prevents full reconstruction of 
the morphological structure of elongated objects. Over-
lapped holographic signals from highly concentrated 
particles reduce the accuracy of their 3D localization 
measurements. To avoid unexpected optical aberrations, 
it is crucial for the medium containing a test sample to 
have a uniform refractive index and for the beam paths 
within it to be free from impurities that induce unneces-
sary light scattering. Therefore, meticulous arrangement 

of the experimental setup and cautious execution of 
experiments are essential prerequisites for obtaining 
clear holographic signals from test samples.

Conclusions and perspectives
In summary, the DIHM technique holds great promise 
as a 3D imaging method suitable for label-free identifica-
tion and tracking of various biological cells at the micro-
scale level. It enables quantitative analysis of diverse 3D 
dynamics exhibited by biological cells, such as motil-
ity, migration, cell-surface interaction, and chemotactic 
behavior. By acquiring statistical information on their 
3D location, orientation, and morphology over time with 
the aid of DIHM, it is possible to gain insights into these 
dynamic behaviors. Recent advancements in hologram 
handling techniques have significantly improved meas-
urement accuracy in characterizing 3D dynamic behav-
iors of different species of cells under varying conditions 
such as diseases, external stimuli, and surrounding 
environments. Notably, rapid progress in AI technol-
ogy has greatly enhanced the processing speed during 
reconstruction and autofocusing stages for precise 3D 
localization, while improving image quality through 
super-resolution algorithms and twin-image suppression 
methods. The reconstructed amplitude and phase maps 
derived from biological cells provide morphological and 
optical features that can be used for label-free detection, 
classification, and enumeration.

On the contrary, the majority of reconstruction and 
autofocusing methods that utilize AI techniques exhibit 
diminished generalization performance due to the lim-
ited availability of training datasets. Although AI tech-
niques can effectively reduce the computational time 
required for reconstruction and autofocusing procedures, 
only a few studies have applied them to 3D PTV analysis 
of biological cells. Given the importance of demonstrat-
ing distinct differences in experimental samples and con-
trol groups in biological research, it is crucial to rapidly 
process numerous holographic images to obtain reliable 
statistical results. Conventional numerical reconstruction 
equations have been used for decades, as they are capable 
of reconstructing the amplitude and phase maps at dif-
ferent depth-wise locations from holographic signals of 
any unknown particles. If an innovative AI model with 
superior generalization performance were developed to 
replace conventional reconstruction methods, it would 
greatly accelerate the time-consuming digital image pro-
cessing routines for cell tracking and facilitate related 
biological research.

The lateral and axial resolutions of DIHM are primarily 
determined by the NA of the DIHM setup and the wave-
length of the light source, resulting in minor differences 
in resolutions among different DIHM systems. These 
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slight variations depend on their specific optical configu-
rations and numerical reconstruction methods. Rayleigh-
Sommerfeld back-propagation and angular spectrum 
method would offer slightly more accurate holograms 
reconstructed from an original hologram recorded by 
DIHM systems using plane waves, as they do not require 
any approximation. Additionally, other numerical recon-
struction equations using approximations can be utilized 
to reduce computational costs.

The main source of measurement errors in the 3D 
localization of biological cells is primarily associated with 
the autofocusing process. Although several autofocus-
ing methods have demonstrated excellent performance 
for their own optical setup in DHM, it should be noted 
that the optimal focus function may depend on various 
factors, such as sample type, optical configuration, and 
post-image-processing method  involving denoising and 
reconstruction algorithms. Therefore, selecting the most 
suitable autofocusing method for a specific experimental 
setup often requires trial and error. With the exception 
of highly concentrated particles, all PTV algorithms gen-
erally provide sufficient accuracy in the tracking process. 
It is recommended to refer to other studies that success-
fully analyzed similar biological cells to identify an opti-
mal experimental setup and adapt it accordingly to suit 
specific experimental conditions. Several commercial 
DIHM platforms, including 4-Deep in-line holographic 
microscopes (NanoAndMore, USA), HO-DIHM-HT01 
(Holmarc Opto-Mechatronics, India), and LISST-Holo2 
(Sequoia Scientific, USA), are available for various 
applications.

By integrating the compact optical configurations of 
DIHM with state-of-the-art AI algorithms, it is pos-
sible to develop user-friendly devices for real-time 
and in  situ analysis of biological cells. Portable smart-
phones or tablet computers equipped with DIHM and 
AI techniques can be effectively utilized for the facile 
diagnosis of hematologic diseases characterized by 
morphological disorders in human blood cells, as well 
as for continuous monitoring of hazardous microscale 
particulates, such as toxic contaminants, bacteria, 
and viruses in airborne or submersible environments. 
The ongoing advancements in DIHM and AI tech-
niques hold great potential to significantly enhance 
the measurement performance related to translational 
and rotational behaviors, cell deformations, as well as 
cell-cell and cell-surface interactions. While previous 
studies on hemodynamics have primarily focused on 
the translational motions of erythrocytes, innovative 
AI-based DIHM techniques can now be employed to 
measure the dynamic behaviors of abnormal eryth-
rocytes, thereby shedding light on their unknown 
impacts on human health. Furthermore, these advances 

enable simultaneous measurements of rapid variations 
in motility, orientation, and morphology of biological 
cells under various chemical, optical, and mechanical 
stimuli. Such progress offers high measurement accu-
racy along with significant throughput capacity and fast 
processing speed for quantitative analyses of biologi-
cal cells. By fostering collaboration between engineers 
utilizing DIHM technologies and cell biologists pro-
viding expertise in cellular behaviors, a wide range of 
new research can be conducted to elucidate previously 
undisclosed dynamic characteristics of various bio-
logical cells, and will provide valuable information for 
potential applications in the diagnosis and treatment of 
associated diseases.
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