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Abstract

Digital in-line holographic microscopy (DIHM) is a non-invasive, real-time, label-free technique that captures three-
dimensional (3D) positional, orientational, and morphological information from digital holographic images of living
biological cells. Unlike conventional microscopies, the DIHM technique enables precise measurements of dynamic
behaviors exhibited by living cells within a 3D volume. This review outlines the fundamental principles and compre-
hensive digital image processing procedures employed in DIHM-based cell tracking methods. In addition, recent
applications of DIHM technique for label-free identification and digital tracking of various motile biological cells,
including human blood cells, spermatozoa, diseased cells, and unicellular microorganisms, are thoroughly examined.
Leveraging artificial intelligence has significantly enhanced both the speed and accuracy of digital image processing
for cell tracking and identification. The quantitative data on cell morphology and dynamics captured by DIHM can
effectively elucidate the underlying mechanisms governing various microbial behaviors and contribute to the accu-
mulation of diagnostic databases and the development of clinical treatments.
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Background

Recent advancements in microscopy technology have
facilitated quantitative analysis of cell dynamics in the
fields of cell biology and biomedical research [1-5]. The
utilization of miniaturized total analytic systems and lab-
on-a-chip technologies has increasingly enabled digital
imaging techniques to analyze the dynamic behaviors of
living cells under various microfluidic conditions [6—10].
For example, optical microscopy has been employed to
analyze membrane deformation and rotational motion
of erythrocytes flowing in microchannels [11-16].
Confocal microscopy was utilized to reconstruct the
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three-dimensional (3D) morphological structures of vari-
ous biological samples from their high-resolution stacks
of images obtained by point-by-point scanning using
a focused illuminating beam [17-20]. This advanced
microscopy technique allowed for the analysis of cell
dynamics under different microenvironments. Defocus-
ing microscopy was used to estimate the 3D surface char-
acteristics of cells under various experimental conditions
[21-23]. However, these microscopy techniques have
technical limitations in observing cell dynamics within a
wide 3D volume due to their limited depth of field (DOF).

Digital in-line holographic microscopy (DIHM) is a 3D
imaging technique that efficiently captures both the 3D
positional and morphological information of test sam-
ples over time [24—32]. Unlike conventional microscopy
techniques, which only provide two-dimensional (2D)
images on the focal plane of an objective lens, DIHM
records consecutive holographic interference signals of
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test samples that contain 3D volumetric information
using a digital image recording device, such as a charge-
coupled device camera or a complementary metal-oxide-
semiconductor camera. By employing various numerical
backpropagation methods, holographic images at differ-
ent distances from the sensor plane of the DIHM system
are reconstructed. Autofocusing algorithms are sub-
sequently applied to determine the 3D positions of test
samples and obtain the corresponding in-focus recon-
structed images. Four-dimensional (4D; 3D spaces+ 1D
time) spatio-temporal trajectories of test samples can
be extracted from the reconstructed consecutive holo-
graphic images. Therefore, the DIHM technique has been
widely utilized for precise and quantitative measurement
of the 3D behavioral characteristics exhibited by various
microscale particles, including flow tracers in microfluid-
ics [33-39], colloids [40—42], microbubbles [43, 44], par-
ticulate matter [45, 46], and microorganisms [47—-50].
This review article presents an overview of the funda-
mental principles and applications of DIHM for quan-
titative analyses of cell dynamics in 3D volumes. The
DIHM-based cell tracking procedures, including DIHM
configuration, digital image preprocessing, numeri-
cal reconstruction, autofocusing, and particle tracking
velocimetry (PTV) algorithms, are summarized. Recent
studies on 3D dynamic analysis of living cells using
DIHM technique are also discussed, covering a range of
organisms such as erythrocytes, spermatozoa, bacteria,
dinoflagellates, and algae. Experimental investigations
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into various dynamic behaviors of living cells, encom-
passing single-cell motilities, cell-cell interactions, and
cell-surface interactions, are reviewed. Finally, recent
studies on label-free sensing and classification of different
types of living cells, such as diseased cells and microor-
ganisms, demonstrate the potential clinical applications
of DIHM technique for facile and accurate diagnosis of
cellular diseases.

Principles of DIHM

Optical configuration of DIHM

The basic configuration of DIHM, which uses a point
light source, is derived from Gabor holography (Fig. 1a)
[24]. It consists of a coherent laser source, a spatial fil-
ter, and a digital camera. A coherent laser beam with
spherical waves is scattered from a test sample to gen-
erate an object beam. When the distance between the
light source and the image sensor of the digital camera
is sufficiently large, the incident wave can be approxi-
mated as a plane wave. A reference beam represents an
unaffected wave emitted from the light source. In the
DIHM configuration, the object and reference beams
propagate in the same direction and interfere to form
holographic interference patterns recorded on the
image sensor. The magnification ratio can be adjusted
by changing the ratio of the distance between the pin-
hole and the test sample to that between the pinhole
and the camera. On the other hand, increasing the dis-
tance between the pinhole and the camera decreases
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Fig. 1 Schematics of the optical configurations of digital in-line holographic microscopy using a point source (a) and a collimated beam (b)
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the numerical aperture (NA) of the DIHM configura-
tion using spherical waves. In addition, the magnifi-
cation ratio and light intensity of holographic signals
vary depending on the depth-wise position of the test
sample. To visualize 3D dynamic behaviors of test sam-
ples over a wide volume with extended DOF, a col-
limated laser beam is utilized to configure the DIHM
system (Fig. 1b) [29]. For this purpose, a convex lens
converts spherical waves into plane waves, while an
additional objective lens attached in front of the image
sensor of the camera increases the magnification ratio.
The holographic images captured by the DIHM sys-
tem using plane waves maintain a constant pixel length
and resolution, regardless of the depth position of
the test sample. This advantage facilitates the design
of experimental setups and enables the application
of reconstruction algorithms to analyze 3D dynamic
behaviors of test samples moving in a large volume. The
field of view (FOV) is calculated by dividing the physi-
cal dimension of an image sensor by the magnification
ratio of the DIHM system. The lateral and longitudi-
nal resolutions are defined as |Ary,,,|>0.54/NA and
|Ar10ngitudinal|zO.5)L/NA2, where A represents the wave-
length of the light source [26].

Several other in-line holographic configurations
have recently been introduced. The DIHM configura-
tion can be further simplified by replacing the coher-
ent laser source with an inexpensive partially coherent
light source, such as a light-emitting diode [32, 51-53].
Due to the lack of expensive objective lenses and a
coherent laser source, the lensless DIHM system can
be employed for developing compact portable devices
to monitor various microscale particulates. Instead
of using a coherent light source, spatially incoherent
sunlight or fluorescence has recently been utilized
for developing incoherent digital holography tech-
niques, including optical scanning holography, Fresnel
incoherent correlation holography, and coded aper-
ture correlation holography [54—-57]. To resolve the
twin-image problem of DIHM configuration, single-
shot in-line phase-shifting interferometry has been
developed [58-60]. A phase-shifting array device is
employed to capture multiple holograms with various
phase shifts. This enables precise measurements of the
phase information of a test object from the captured
holograms and enhances the quality of reconstructed
images. Multi-wavelength DIHM systems are utilized
to extract multiple single-wavelength holograms from
one single-shot hologram [61-64]. These extracted
holograms are then used for phase unwrapping and
comprehensive analysis of 3D morphological charac-
teristics of biological samples illuminated with differ-
ent wavelengths.
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Preprocessing of holographic images

Raw holographic images of a test sample contain unin-
tended background noises induced by static dust par-
ticles and scratches on optical components. There are
several methods available to remove these background
noises and acquire clean holographic signals from the
test sample. Firstly, the raw holographic images are nor-
malized using the background image obtained by record-
ing a holographic image without the test sample [65-67].
Secondly, normalization is performed based on the illu-
mination intensity to effectively suppress multiplicative
artifacts [40, 68]. Thirdly, spatially invariant background
noises are subtracted from the raw holographic images by
calculating an ensemble average of hundreds of consecu-
tive holograms [29, 69]. Further improvement of the sig-
nal-to-noise ratio in holographic images can be achieved
by employing various denoising techniques, such as
band-pass filters [70-72], mean filters [73], median fil-
ters [74], Wiener filters [75], local-mean-subtraction fil-
ters [76], spectral filters [77], wavelet-based denoising
[78], non-local means filtering [79], correlation-based
denoising [80], and deep-learning-based denoising meth-
ods [81-83]. Super-resolution techniques can also be
adopted to achieve high-resolution holographic imaging
results [84—88].

Numerical reconstruction of holographic images
Holographic images located at different depths away
from the image plane can be numerically reconstructed
by adopting several light diffraction theories [89, 90].
Kirchhoff-Helmholtz transform has been utilized to
reconstruct holographic images (H,) from the original
holographic image (H,) recorded by a DIHM setup with
a point light source [91-93]. The reconstruction equa-
tion of the Kirchhoff-Helmholtz transform is expressed
as follows:

1
Hi(r) = — /dI/fHo(W)eXp [i/ﬂ/f . <|;|>} (1)

where H () is the contrast image on the detector screen
S at coordinates y=(x, y, /) located at a depth-wise dis-
tance [ away from the point source. r and k denote the
position vector from the point source and the wave num-
ber of the light source, respectively.

The Kirchhoff’s theory yields precise empirical results.
However, the boundary conditions of Kirchhoft’s theory
imply the absence of waves behind the aperture, leading to
mathematical and physical contradictions [89]. To elimi-
nate these inconsistencies associated with the boundary
conditions in the Kirchhoff’s theory, the Rayleigh-Som-
merfeld diffraction integral is utilized to reconstruct
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holograms of both spherical and plane waves [94—97]. The
Rayleigh-Sommerfeld propagator (/), which enables wave
field recovery, can be expressed as follows:

1 g &P [ik\/(s — )2+ (n— )% + 22

1 9 exp(ikr) _
21 3z

T om oz r -

JE-—02+ -y +2

()
where x and y, and § and # are the spatial coordinates on
the image and reconstruction planes, respectively. z is
the distance from the image plane to the reconstruction
plane. The diffraction integral is expressed as follows:

Hi(&,n;2) = //Ho(x,y; 0) - h(§ — x,n — y; z)dxdy
; 3)

where H,({,7;2) and H,(x,y;0) are the reconstructed and
original holographic images, respectively.

Based on the Fresnel approximation, the diffraction inte-
gral can be converted into a simpler expression [27, 80, 98].
The hologram reconstruction process employing the Fresnel
transformation can be expressed as follows:

exp(ikz)
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samples moving in a large volume. The reconstruction
equation of the angular spectrum method is expressed as
follows:

Hy(E,m:2) = F’l{F[HO(x,y; 0)Jexp [ikzm — () - (ny)z] }

(6)

where F and F! represent FFT and inverse FFT, respec-

tively. f, and f, denote the spatial frequencies of x and y

coordinates, respectively. To further improve the spatial

resolution and signal-to-noise ratio of the reconstructed

holograms, additional methodologies are adopted to sup-

press the twin-image problem associated with DIHM
technique [61, 100-106].

3D localization of test samples using autofocusing
algorithms

The 3D positional information of test samples is deter-
mined based on the reconstructed holograms, which are
obtained by numerically reconstructing holograms at dif-
ferent depth-wise distances from an original hologram
of a test sample. These reconstructed holograms are then

ik
e = 20 [ Hota310)-exp {55 (i€ 02 4 0 - 2] Ly @

ilz

The Fresnel approximation exhibits precise reconstruc-
tion performance for small diffraction angles. The Fraun-
hofer approximation can be adopted to further simplify
the transformation equation in the following manner:

exp(ikz) exp [% (52 + nz)}

PP
1254

H (¢, 2) =

projected into a single image plane. In-plane (x, y) posi-
tion of each particle recorded on the projected hologram is
determined by identifying extreme values in local intensity,
image contrast, or sharpness. Among the reconstructed

ik
// Hy(x,7;0) - exp {—lz (Sx + ny)] dxdy (5)

where the quadratic terms of x>+ y* are omitted [89]. The
Fraunhofer transformation facilitates rapid calculation of
the propagating wavefronts in far-field imaging.

Angular spectrum method is usually employed for
reconstructing holographic images captured by a DIHM
setup using plane waves [29, 99]. The angular spectrum of
the wavefront recorded in the original holographic image is
obtained through the application of fast Fourier transform
(FFT), enabling extraction of the spatial frequency com-
ponents distribution contained in the holographic image.
Each spatial frequency component propagates through
the space at different distances and angles. By applying the
inverse FFT to these propagated spatial frequency com-
ponents, a new hologram reconstructed at a depth-wise
distance z from the original hologram can be obtained.
This method does not require the minimum z-distance or
any assumptions such as the Fresnel approximation, mak-
ing it suitable for conducting 3D dynamic analyses of test

holograms of the object at the determined in-plane posi-
tion, the degree of sharpness and image contrast (ie.,
focus value) of the holograms is quantified by adopting
various autofocusing functions. Subsequently, the depth-
wise position z of each particle is determined by search-
ing an extreme peak in focus values obtained by using
focus functions, such as gradient (GRA), Laplacian (LAP),
weighted spectral (SPEC), Tamura coefficient (TC), and
variance (VAR) focus functions. These focus functions
used for calculating focus values are defined as follows:

GRA(z) = Y IVH. (€, 2)| @)
&
2
LAPGz) = {V2Hr (&, 2) (8)
&n
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SPEC(z) = Y log {1+ |F[H:(¢,n: 2) — He(2)] |}

Jely

)

TC(z) = %&Zz)] (10)
1 — 2

VAR(z) = NN, > [He(,n: 2) — He(2)] (11)

&n

where o is the standard deviation [107, 108]. The reso-
lution of the reconstructed hologram is N¢XN, pix-
els. f¢ and f, denote the spatial frequencies of ¢ and 7
coordinates, respectively. H,(z) represents the spatial
average value of a hologram reconstructed at the depth-
wise position z. In the Rayleigh-Sommerfeld diffraction
integral-based reconstruction process, the Gouy phase
anomaly is utilized for the 3D localization of test samples
[62, 97, 109]. Additionally, Gini’s index [110], Tenengrad
function [111], Brenner function [112], DarkFocus algo-
rithm [113], spectral L, norm [114, 115], and novel deep-
learning-based methodologies [116—120] are employed
for autofocusing. Due to variations in experimental con-
ditions such as the size and shape of test samples and
the relative refractive index of media, it is important to
consider an appropriate autofocusing method for a given
experimental condition.

3D PTV algorithms for cell tracking

The 3D dynamic behaviors of test samples can be ana-
lyzed by extracting the 3D positional information from
reconstructed consecutive holographic images. Further-
more, the trajectory of test samples can be easily obtained
by connecting the 3D positions of individual objects in
subsequent holograms. Several 3D PTV algorithms can
be applied to thousands of 3D positional information
of test samples to obtain their trajectories. For example,
the two-frame PTV algorithm based on iterative esti-
mation of match probability can be utilized for rapid
tracking of particle trajectory using only two successive
image frames [121]. The Crocker-Grier algorithm can be
employed to search for the probable set of particle indi-
ces and locations in each frame among the successive and
preceding image frames, taking into account various fac-
tors such as size, intensity, and displacement of particles
to ensure accurate tracking [122, 123]. Additionally, high-
order multi-frame tracking algorithms are employed for
robust and accurate 3D Lagrangian tracking of particles
[124-128]. Machine learning-based cell tracking algo-
rithms can also be adopted to improve the performance
of holographic PTV measurements. A neural network is
used for nonlinear global regression to filter out random
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noises present in PTV data and reconstruct the entire
flow field from captured photographs [129]. To overcome
technical limitations associated with previous PTV algo-
rithms when dealing with highly concentrated tracer par-
ticles and high-speed flows, a long short-term memory
network is utilized to predict the subsequent velocity of a
tracer particle based on its past PTV data [130].

Alternative holographic processing techniques
Conventional digital image processing methods for holo-
graphic PTV typically include preprocessing, numeri-
cal reconstruction, autofocusing, and particle tracking.
Recently, several alternative holographic processing
techniques deviating from traditional categories have
been proposed. For example, 3D volumetric deconvolu-
tion method utilizes a point-spread function to enhance
the optical features contained in reconstructed holo-
grams [131-133]. It effectively resolves the superimposed
out-of-focus signals of highly concentrated particles.
Additionally, various inverse reconstruction methods
employing fused lasso regularization [134], Tikhonov
regularization [135], and iterative predictive algorithm
[136] are introduced to overcome the technical limita-
tions of DIHM in terms of particle concentration and
reconstruction dynamic range.

Recently, artificial intelligence (AI) has been applied to
expedite the computational time required for numeri-
cal reconstruction and autofocusing procedures in digi-
tal image processing. Specifically, a convolutional neural
network (CNN) is trained using holograms of test sam-
ples and corresponding ground-truth depth-wise posi-
tion labels [118]. By leveraging this trained CNN model,
it can directly predict the depth-wise positions of test
samples from their holograms without resorting to
numerical reconstruction and autofocusing procedures.
To achieve this, a CNN architecture composed of con-
volutional layers, up-sampling blocks, and nonlinear
activation functions is trained with pairs of raw holo-
grams and their corresponding reconstructed amplitude
and phase maps [104]. Additionally, a U-Net architec-
ture is utilized to predict 3D locations of highly concen-
trated particles based on input holograms, depth maps,
and maximum phase projections [137]. Furthermore,
a fusion approach involving two U-Nets is trained with
raw holograms at the input layer of one down-sampling
path and pairs of intensity and phase maps at the output
layer of two up-sampling paths [138]. Moreover, a gen-
erative adversarial network, which utilizes mutual train-
ing of the generator and discriminator, is employed to
generate in-focus intensity and phase maps from an input
hologram [139-141]. In addition to these techniques
mentioned above, a Fourier imager network consisting
of spatial Fourier transform modules can provide a global
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receptive field for processing holographic diffraction
patterns obtained from test samples [142]. Lastly, a self-
supervised learning model is trained by using a physics-
consistency loss along with synthetic images instead of
generating experimental datasets [143]. Therefore, recent
advancements in Al techniques facilitate rapid hologram
reconstruction and precise localization in cell tracking,
thereby replacing the time-consuming digital image pro-
cessing procedures of traditional DIHM methods.

Applications of DIHM to various microscale
biological cells

4D tracking of human blood cells

The DIHM technique enables effective analysis of 4D
dynamic behaviors of human blood cells, including
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neutrophils and erythrocytes (Table 1) [144—151]. For
example, rapid movement of neutrophils (HL60 cells)
was visualized with lateral and longitudinal resolutions
in the range of a few micrometers [144]. A DIHM system
was employed to track cell migration of unlabeled asth-
matic and non-asthmatic neutrophils at a high temporal
resolution [145]. Their study comparatively investigated
the averages of undirected speed and outward velocity
of neutrophils exposed to various chemotactic stimuli
(interleukin-8 and N-formylmethionyl-leucyl-phenylala-
nine) under different mechanical environments such as
collagen stiffness and pore size. The 3D velocity profile
of erythrocytes in Hagen-Poiseuille flows was measured
depending on their radial position while flowing through
a microtube with an inner diameter of 350 um [146].

Table 1 Summary of previous studies on four-dimensional (4D) tracking of human blood cells using digital in-line holographic

MiCroscopy
Year Object Content Reconstruction method  Axial localization Tracking algorithm References
algorithm
2008 Neutrophil  Three-dimensional (3D) Wavelet transform derived  Local extreme intensity Connecting 3D positions [144]
dynamic behavior of fast-  from Fresnel transforma- for each object in subse-
moving neutrophils in sus-  tion quent holograms
pension cultures
2022 Neutrophil  Comparison of cell Angular spectrum method  Thresholding minimum Crocker-Grier algorithm [145]
migration of asthmatic projections
and non-asthmatic neutro-
phils subjected to differ-
ent chemotactic stimuli
and mechanical environ-
ments
2009 Erythrocyte The 3D motion of erythro-  Angular spectrum method  Laplacian (LAP) focus Two-frame particle track- [146]
cytes in Hagen-Poiseuille function ing velocimetry (PTV)
flows in microtubes algorithm
2012 Erythrocyte Inertial migration of eryth-  Angular spectrum method  Determining based Crocker-Grier algorithm [147]
rocytes in low-viscosity on the velocity profile
and high-shear rate micro- of a Poiseuille flow
tube flows
2014 Erythrocyte Inertial migration of eryth-  Angular spectrum method  LAP focus function Superimposing 3D posi- [148]
rocytes in water and viscoe- tions of objects in subse-
lastic flows in rectangular quent holograms
microchannels
2017 Erythrocyte Comparison of inertial Angular spectrum method  Tamura coefficient focus Superimposing 3D posi- [149]
migration, deformation function tions of objects in subse-
index, and orientation quent holograms
of normal and hardened
erythrocytes in viscoelastic
flows in rectangular micro-
channels
2018 Erythrocyte Digital stereo-holographic ~ Angular spectrum method  Intensity thresholding Two-frame PTV algorithm  [150]
microscopy for measuring
3D position, orientation,
and morphology of eryth-
rocytes
2023 Erythrocyte Deep-learning-based meas- Angular spectrum method — Gradient focus function No tracking [151]

urement of 3D position
and orientation of eryth-
rocytes
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Fig. 2 Applications of digital in-line holographic microscopy (DIHM) to track human erythrocytes and spermatozoa. a Lateral migration of hardened
and normal erythrocytes in viscoelastic flows under different microfluidic conditions. Experimental setup for the microfluidic measurement

(i). Digital image processing procedure: background subtraction (ii, scale bar=10 um), depth localization using a Tamura coefficient (TC) focus
function (iii, scale bar=10 um), in-plane positioning (iv, scale bar=10 um), and 3D spatial distributions of spherical particles, hardened erythrocytes,
and normal erythrocytes measured using DIHM (v-vii). Reprinted from ref. [149], Copyright 2017. b Measurement of 3D locations and orientations

of erythrocytes using DIHM and deep learning techniques. Digital image processing procedure: raw hologram (i, scale bar=20 um), background
subtraction (ii, scale bar=20 um), projection (iii, scale bar=20 um), depth localization using a gradient focus function (iv, scale bar=5 um), in-plane
angle measurement (v, scale bar=>5 um), and 3D positions and orientations of erythrocytes measured using DIHM (vi). Reprinted with permission
from ref. [151], Copyright 2023, Elsevier B.V. c Transitions between different swimming patterns of a human spermatozoon. Hyper-activated (i, iv)

and helical patterns (iii) are observed in a whole trajectory of the human spermatozoon (ii). Reprinted from ref. [152], Copyright 2012

Statistical analysis was conducted on the inertial migra-
tion phenomena exhibited by erythrocytes moving in
cylindrical and rectangular microchannels under various
microfluidic conditions [147, 148]. 3D spatial distribu-
tions of erythrocytes and microspheres were investigated
under different shear rates. Quantitative comparisons
were made between healthy and hardened erythrocytes,
regarding their lateral migration, deformation index, and
orientation for various flow rates of viscoelastic fluids
in a rectangular microchannel (Fig. 2a) [149]. The typi-
cal experimental setup for microfluidic DIHM measure-
ments is illustrated in Fig. 2ai. Digital image processing
procedures involving background subtraction (Fig. 2aii),
depth localization using a TC focus function (Fig. 2aiii),
as well as in-plane positioning (Fig. 2aiv), were utilized

to detect the 3D spatial distribution of erythrocytes.
The spatial distributions of spherical particles, hardened
erythrocytes, and normal erythrocytes in microchannels
were obtained with varying flow rates in microchannels
(Fig. 2av-vii).

Stereo-holographic microscopy was developed to
obtain 3D positional, orientational, and morphological
information on non-spherical particles, including ellip-
soidal particles and erythrocytes [150]. To accurately
measure the 3D orientations of erythrocytes, a deep-
learning-based DIHM technique was developed, which
can estimate the in-plane and out-of-plane angles of
erythrocytes from their in-focus reconstructed holo-
grams (Fig. 2b) [151]. The signal-to-noise ratio of holo-
graphic signals of three erythrocytes recorded in a raw
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hologram (Fig. 2bi) was enhanced by subtracting back-
ground noises (Fig. 2bii). The reconstructed holograms
of erythrocytes were projected on a single image plane to
determine in-plane locations of erythrocytes by search-
ing for local intensity extrema (Fig. 2biii). Depth locations
and in-focus reconstructed holograms of erythrocytes
were obtained by employing a GRA focus function
(Fig. 2biv). The in-plane angle (¢) of each erythrocyte
was determined by evaluating the inclined angle of its
major axis (Fig. 2bv). A convolutional autoencoder was
utilized to increase the number of holographic images
with respect to the out-of-plane angle of erythrocytes.
Subsequently, a CNN for regression analysis was used to
directly predict the out-of-plane angle (6) from the recon-
structed hologram of each erythrocyte (Fig. 2bvi). On the
other hand, previous studies on erythrocytes have mainly
focused on measuring their 3D translational dynamics in
straight microchannels. Further development is required
for DIHM technique with the aid of AI to analyze the 3D
rotational dynamics exhibited by moving erythrocytes
within more complex microfluidic conduits.

4D tracking of spermatozoa

The swimming motility of human and animal sperma-
tozoa can be analyzed by visualizing 3D trajectories of
spermatozoa swimming in a 3D volume using a DIHM
technique (Table 2) [152-157]. For example, submicron
accuracy was achieved in tracking various swimming
patterns of human spermatozoa, including typical, heli-
cal, hyper-activated, and hyper-helical patterns [152].
The transitions between swimming patterns within each
sperm’s trajectory were statistically investigated using a
lens-free imaging platform (Fig. 2c). A whole trajectory
of a human spermatozoon (Fig. 2cii) includes transitions
from the hyper-activated pattern (Fig. 2civ) to the heli-
cal pattern (Fig. 2ciii), and back to the hyper-activated
pattern again (Fig. 2ci). By adopting the lensless DIHM
configuration, a cost-effective microscopic device can
be established for analyzing the swimming motions of
human spermatozoa with high resolution and a large
FOV [153]. Spiral trajectories of goat spermatozoa exhib-
ited significantly higher concentration and intense motil-
ity compared to those of human spermatozoa [154].
Quantitative visualization was performed on the 3D tra-
jectories of Arbacia punctulata spermatozoa which navi-
gate through 3D chemoattractant gradients provided by
an egg for fertilization, revealing their tracking process
toward the egg [155]. The swimming motions of horse
spermatozoa were categorized into six different patterns,
including irregular, linear, planar, helical, ribbon, and
hyper-progressive patterns [156]. Free-swimming sper-
matozoa of normal and unhealthy mice were also com-
paratively investigated [157]. A double-knockout mouse
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model lacking tubulin glycosylation was generated by
targeting the initiating glycylases tubulin-tyrosine ligase-
like (TTLL) 3 and TTLL8 (TtI3™'~Ttll8~'~ mouse).
The DIHM technique was employed to measure the 3D
behaviors of spermatozoa from both a normal mouse
and a TtlI37/~TtlI8 '~ mouse. The spermatozoa from the
normal mouse exhibited twisted ribbon patterns, while
those from the Ttl[3~/~Ttll8 '~ mouse displayed helical
patterns. As the spermatozoa from the T3/~ TtlI8~'~
mouse approached the wall of the observation cham-
ber, their swimming patterns transitioned from helical
to circular motion. Consequently, this kind of change in
swimming patterns disrupted their progressive move-
ment. These experimental studies show that the DIHM
technique possesses sufficient resolution and measure-
ment accuracy for assessing the 3D swimming motions of
spermatozoa.

4D tracking of bacteria

The free-swimming behaviors of various bacteria have
been quantitatively analyzed using a DIHM technique
to reveal the underlying mechanisms of microbial motil-
ity (Table 3) [62, 80, 158—171]. Pseudomonas aeruginosa
(P aeruginosa) exhibited several swimming behaviors,
including meandering, oscillation, helix, pseudohelix,
and twisting patterns, and the transitions between dif-
ferent patterns were analyzed (Fig. 3a) [158]. Statistical
comparisons were made on the 3D swimming speed and
turning angle distributions of P aeruginosa, Agrobac-
terium tumefaciens, and Escherichia coli (E. coli) [159].
Submicron-scale kinematics, morphological shape, and
orientation measurements were conducted on indi-
vidual E. coli to assess their motilities, including swim-
ming speed, tumbling motion, and wobbling motion
[62, 80, 160]. The body-angle rotation during runs, tum-
bles, and pole reversal in E. coli was measured using a
C-implemented discrete dipole approximation code and
the Levenberg-Marquardt algorithm [161]. The filament
compositions of Shewanella putrefaciens were observed
to affect the flagellar morphology and free-swimming
trajectories [162].

Quantitative measurement of bacteria cell-surface
interactions is essential to understand diverse microbial
behaviors, such as bacterial adhesion and biofilm forma-
tion, and the development of biomedical and antibiofoul-
ing surfaces. Various swimming motions of E. coli were
observed in both near-surface and bulk regions (Fig. 3bi,
viii), encompassing running and tumbling (Fig. 3bii,
vi), slow random walk (Fig. 3biii), gyrating on a surface
(Fig. 3biv), attaching and detaching (Fig. 3bv), and cir-
cular swimming (Fig. 3bvii) [163]. In the near-surface
region, tumbling motions of E. coli were reduced by 50%,
while reorientations were restricted to surface-parallel
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Fig. 3 Applications of digital in-line holographic microscopy to track various unicellular microorganisms. a Trajectories of swimming Pseudomonas
aeruginosa obtained by using DIHM (j, ii) and the corresponding statistical analysis of various swimming patterns, including meander, oscillation,
helix, pseudohelix, and twisting patterns (iii, iv). Reprinted from ref. [158], Copyright 2014. b Various swimming patterns of Escherichia coli

(E. coli) in near-surface and bulk regions. Trajectories of swimming E. coli (i, viii). Swimming patterns of £. coli in the bulk region: running and tumbling
motions (i) and slow random walk (iii). Swimming patterns of £. coli in the near-surface region: gyrating on a surface (iv), attaching and detaching
motions (v), running and tumbling motions (vi), and swimming in circles (vii). Reprinted with permission from ref. [163], Copyright 2014, American
Physical Society. € 3D trajectories of solitary and chain-forming Cochlodinium polykrikoides. Reprinted with permission from ref. [172], Copyright
2010, Springer-Verlag. d Trajectories of Prorocentrum minimum in helical motions (i-iii), obtained using DIHM. Probability density functions (PDFs)
of helix parameters in the near and bulk regions: radius (R, iv) and pitch (P, v). Statistical differences in helix parameters between the near and bulk
regions, represented as probability values (P-values): curvature (k, vi) and torsion (7, vii). Reprinted with permission from ref. [173], Copyright 2016,

Springer-Verlag Berlin Heidelberg

directions, impeding their escape from this region. Shear
flow generated in the near-surface area promoted tum-
bling and reorientation movements, thereby enhanc-
ing bacterial dispersion [164]. Surface hydrophobicity
reduced the swimming speed of E. coli in the near-surface

region, promoting their landing on and adhesion to the
surface [165].

The wall entrapment mechanism of E. coli was inves-
tigated by quantifying various parameters such as cell
axis ratio, vertical speed, collision angle, pitch angle,
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and wobbling angle [166]. 3D motion analysis of E. coli
and Pseudomonas species over biodegradable poly(e-
caprolactone)-based polymers revealed that enzymatic
degradation rate was inversely correlated with irrevers-
ible adhesion [167]. Similarly, decreasing surface stiffness
led to reduced bacterial adhesion for E. coli and Pseu-
domonas species on polydimethylsiloxane surfaces [168].
Swimming behaviors were found to differ between wild-
type strains and isogenic flagellar stator mutants of P. aer-
uginosa in near-surface environments [169]. Shewanella
species exhibited faster swimming speeds and longer tra-
jectories in the bulk region, despite accumulating in the
region near the surface [170]. Enterobacter sakazakii
(E. sakazakii) showed adaptive swimming behaviors in
the region near the surface coated with sessile probiotics,
reducing wall accumulation [171].

4D tracking of dinoflagellates

Swimming speeds of Alexandrium ostenfeldii, Alex-
andrium minutum, and Alexandrium tamarense were
compared at different temperatures [174]. Prey-induced
changes in the swimming behaviors of Karlodinium
veneficum (K. veneficum) and Pfiesteria piscicida were
compared in terms of the radius and pitch of their heli-
cal swimming trajectories, as well as their translational
and angular velocities [98]. Quantitative visualization
was performed on the 3D trajectories of predatory
K. veneficum and prey Storeatula major immobilized by
karlotoxins [175]. Using a DIHM technique, the helical
swimming trajectories of Cochlodinium polykrikoides
(C. polykrikoides) and Prorocentrum minimum (P. mini-
mum) were also analyzed [72]. The motile character-
istics of solitary cells vs. chain-forming cells showed
that the swimming speed, helix radius, and pitch of
3D trajectories increased with an increasing number
of cells in the C. polykrikoides chain (Fig. 3c) [172]. As
the viscosity of the surrounding media increased, both
the swimming speed and flagella beating frequency
decreased for P. minimum [176]. The hydrodynamic
power consumed for the swimming motion of P. mini-
mum was quantitatively estimated. The analyzed 3D
swimming trajectories and helix parameters indicated
that motility and thrust generation were higher in the
near-surface region for P minimum (Fig. 3d) [173].
Based on the measured 3D trajectories of P mini-
mum showing helical motions (Fig. 3di-iii), the basic
helix parameters, including radius (R, Fig. 3div), pitch
(P, Fig. 3dv), curvature (x, Fig. 3dvi), and torsion (7,
Fig. 3dvii), were evaluated in the near and bulk regions.
An abrupt drifting motion exhibited by P minimum
was tracked using a lens-free configuration [177].
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Previous studies on the 4D tracking of dinoflagellates
are summarized in Table 4 [72, 98, 172-177].

4D tracking of other biological cells
3D trajectories of free-swimming algae Tetraselmis spe-
cies in seawater were measured using a DIHM technique
[178]. Unknown species of algae and bacteria were col-
lected from glacial meltwater and investigated using
DIHM in terrestrial and exobiological studies [179]. The
relationship between inertial migration and elastic shell
compliance was analyzed by measuring the spatial distri-
butions of normal and hardened Chlorella cells in a pipe
flow [180]. 3D swimming trajectories of Dunaliella pri-
molecta (D. primolecta) in shear flow were measured to
investigate the shear-induced algal migration, compared
to those in a quiescent fluid [181]. Complex helical
trajectories and velocity fluctuations of free-swimming
D. primolecta across different growth phases were also sta-
tistically measured using the DIHM technique [134, 182].
Ulva zoospores exhibited various swimming patterns
in the near-surface and bulk regions, including straight
path, gyration, search circle, orientation, and wobbling
motions [183]. Swimming velocity and diving direc-
tion of Ulva zoospores near glass surfaces were statisti-
cally analyzed [184]. Additionally, 3D trajectories of Ulva
zoospores were monitored over various surfaces, such as
polyethylene glycol coating, acid-washed glass, and tride-
cafluorooctyl-triethoxysilane-coated glass surfaces [185].
Underwater DIHM was utilized to observe a diverse
range of microorganisms in oceans or lakes, such as Par-
amecium species, Ciliate species, Didinium species, and
Coscinodiscus wailesii (diatom) [26]. The 3D motility of
blood-parasite Trypanosoma brucei was quantified under
various external conditions to investigate the mechanism
of immune evasion [186]. Optimal chemotactic behaviors
of Haloarchaea (Haloferax species and Haloarcula spe-
cies) were examined to reveal the survival strategies of
archaea under extreme, nutrient-poor conditions [187].
The 3D trajectory analysis unveiled the active diving
motion exhibited by a neuroblastoma cell [177]. Infec-
tive and non-infective intracellular parasites (Leishma-
nia mexicana) displayed distinctive swimming patterns
and chemotaxis towards human cells [188]. Furthermore,
DIHM technique was utilized for measuring size distri-
butions and trajectories of airborne virus-laden drop-
lets and aerosols, such as MS2 bacteriophage and severe
acute respiratory syndrome coronavirus 2 [189]. These
previous studies underscore the immense potential of
DIHM technique for in situ, real-time, and non-invasive
measurements of 3D dynamic behaviors across various
biological cells. A summary table containing these studies
on 4D tracking is presented in Table 5 [26, 134, 177-189].
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Label-free identification of biological cells

Holographic images of biological cells can be usefully
utilized for label-free cell identification. A lens-free
holographic imaging platform was developed for on-
chip cytometry to automatically characterize erythro-
cytes, yeast cells, E. coli, and micro-particles of various
sizes [190]. A custom-made decision algorithm was
introduced to match the detected hologram textures of
arbitrary objects with hologram datasets. The lens-free
holographic on-chip imaging platform was employed
for enumeration and volume measurement of human
blood cells, as well as differentiation between vari-
ous types of white blood cells, including granulocytes,
monocytes, and lymphocytes [191]. The three different
types of unlabeled leukocytes were classified by evalu-
ating their cellular size and internal complexity [192].
The focal lengths of real focus and virtual focus were
determined from light-intensity profiles obtained from
reconstructed holographic images of erythrocytes
[193]. The real focal length of erythrocytes decreased
after the morphological transition from discocytes to
echinocytes and spherocytes with the lapse of duration
time of blood storage. Breast cancer cells and ovarian
cancer cells were enumerated and characterized based
on the in-focus scattered light intensity and cell diam-
eter obtained from their holographic images [194]. Bac-
terial colonies of E. coli and Staphylococcus intermedius
were classified using principal components analysis
applied to optical signatures, such as reconstructed
amplitude and phase maps [195]. The growth charac-
teristics of Haematococcus pluvialis were experimen-
tally analyzed by measuring the variation in cell size
under different levels of light stress [196].

With the rapid advancements of AI, a variety of
machine learning and deep learning algorithms have
been employed for label-free cell classification. A deci-
sion tree was employed to classify 3 distinct types
of erythrocytes, including discocytes, echinocytes,
and spherocytes [197]. To train a machine learning
algorithm, numerous features of erythrocytes were
quantified, including morphological traits, intensity
distributions of holograms, and optical focusing char-
acteristics. The classification of healthy and unstained
malaria-infected erythrocytes was achieved by using
a support vector machine (SVM) algorithm trained
with morphological and light scattering characteristics
[198]. Similarly, the SVM algorithm with a linear kernel
trained on various features such as basic morphologies,
optical characteristics, and translational and rotational
invariants was used to classify different types of leuko-
cytes [199].

Label-free classification techniques were developed
using a decision tree algorithm trained with characteristic
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metrics of cell size and intensity values of holograms to
enumerate erythrocytes, peripheral blood mononuclear
cells, and breast cancer cells [200]. A CNN consisting
of 5 convolutional layers was utilized to classify human
mammary gland epithelial cells, breast cancer cells, and
esophageal cancer cells [201]. In-flow enumeration of
breast cancer cells and ovarian cancer cells from lysed
blood samples containing white blood cells was per-
formed using a custom-built shallow network [202]. The
viability and concentration of yeast cells were evaluated
by employing the SVM algorithm trained with spatial
features extracted from the reconstructed amplitude and
phase maps [203]. A deep-learning-based architecture
named You Only Look Once version 5 was employed to
directly predict the viability of yeast cells from denoised
holograms without a hologram reconstruction process
[204]. Diatom phytoplankton, diatom pennate, Navicula
species, and Selenastrum species were classified by a ran-
dom forest algorithm trained with various features, such
as optical volume, coefficient of variation, mean optical
path length, projected area, cell skewness, and cell kur-
tosis [205]. The death rate of algal cells in the East China
Sea was assessed using the SVM algorithm trained with
features collected from reconstructed amplitude and
phase maps obtained from holographic images of Proro-
centrum lima algae [206]. A 3D CNN model was utilized
to measure the number of clustered algae Phaeodacty-
lum tricornutum [207]. With the assistance of Al-based
DIHM technique, most biological cells can be detected
and enumerated with high throughput. These studies on
Al-based label-free identification methods for biological
cell analysis are summarized in Table 6 [197-207].

Comparison with other 3D imaging techniques
Comparison with off-axis digital holographic microscopy
(DHM)

Off-axis DHM has been extensively investigated for
measuring 3D phase information in various biological
samples [28]. In the off-axis DHM systems, there exists
a slight difference in the propagating directions of refer-
ence and object waves. A band-pass filter is commonly
employed to separate real, twin, and zero-order images
in the frequency domain of a recorded hologram. The
off-axis DHM systems have been utilized for quantita-
tive phase imaging [208-210], holographic tomography
[211, 212], and dynamic analysis of biological samples
[213-216]. On the contrary, obtaining clear real images
from holograms recorded by DIHM systems is chal-
lenging due to the twin-image problem. To address this
issue during the hologram reconstruction process, itera-
tive phase retrieval methods [100, 101, 105] and deep
learning techniques [104, 217, 218] have been devel-
oped. However, sparse test samples with weak phase
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Table 6 Summary of previous studies on artificial intelligence (Al)-based label-free identification of biological cells using digital in-line

holographic microscopy

Year Object Content Al algorithm References
2018  Erythrocyte Classification of discocytes, echinocytes, and spherocytes Decision tree [197]
2018  Erythrocyte Classification of healthy and malaria-infected erythrocytes Support vector machine (SVM) [198]
2018  Leukocyte Classification of lymphocytes, granulocytes, and monocytes  SVM with a linear kernel [199]
2017 Tumor cell Screening and enumeration of erythrocytes, peripheral Decision tree [200]
blood mononuclear cells, and breast cancer cells
2021 Tumor cell Classification of human mammary gland epithelial cells, Convolutional neural network (CNN)  [201]
breast cancer cells, and esophageal cancer cells
2023 Tumor cell Enumeration of breast cancer cells and ovarian cancer cells ~ Custom-built shallow network [202]
2016 Yeast cell Evaluation of viability and concentration of yeast cells SVM [203]
2023 Yeast cell Evaluation of viability of yeast cells You Only Look Once version 5 [204]
2018  Diatoms and algae Automatic identification of various biological cells Random forest [205]
2021 Prorocentrum lima (P lima) ~ Evaluation of death rate of algae P lima SVM [206]
2022 Phaeodactylum tricornutum Enumeration of clustered algae P, tricornutum Three-dimensional CNN [207]

(P tricornutum)

fluctuations are prerequisites to ensure high precision in
phase retrieval using DIHM systems. Therefore, off-axis
DHM is suitable for analyzing detailed 3D morphology of
biological samples.

On the other hand, the space bandwidth product (SBP)
of reconstructed holograms obtained from an off-axis
DHM system is somewhat limited compared to DIHM
[219]. The SBP of reconstructed holograms is deter-
mined by multiplying the FOV and spatial frequency
bandwidth. In comparison, the SBP values for DIHM
are approximately three times larger for Fresnel holo-
grams and two times larger for Fourier holograms, com-
pared to those of off-axis DHM. Assuming a fixed FOV
in the reconstructed holograms, DIHM has a higher
maximum spatial frequency than off-axis DHM. There-
fore, the resolvable details of an object in reconstructed
holograms from DIHM are finer than those from off-
axis DHM. Additionally, high-frequency components in
reconstructed holograms from off-axis DHM undergo
partial filtration during the extraction process of real
images. To determine the depth position of biologi-
cal samples, an autofocusing function is usually utilized
to search for an in-focus image with the highest sharp-
ness or GRA among the reconstructed holograms. Given
that the SBP of reconstructed holograms from DIHM is
higher than that of off-axis DHM, adopting a DIHM sys-
tem is advantageous for reconstructing edge structures
with high-frequency components and accurately deter-
mining their 3D positional information.

The NA of off-axis DHM systems is also limited due
to the requirement for a minimum recording distance to
distinguish between real, twin, and zero-order images. To
overcome this limitation in spatial resolution for off-axis

DHM, it is common practice to employ an objective
lens with a high magnification ratio and NA to acquire
detailed 3D phase information of test samples. However,
increasing the magnification ratio of the objective lens
leads to a decrease in the FOV of off-axis DHM. On the
other hand, DIHM systems typically utilize an objective
lens with a relatively lower magnification ratio and NA
for analyzing 3D locations of microscale particulates
from the reconstructed holograms, while maintaining
sufficient spatial resolution. Thus, 3D dynamics of biolog-
ical samples moving in a wide FOV can be tracked more
precisely compared to off-axis DHM. Additionally, due
to its simpler optical configuration and shorter recording
distance requirements, building up experimental setups
for DIHM systems is easier. Therefore, the DIHM system
is suitable for the 4D tracking of biological cells.

Advantages of DIHM over other microscopic imaging
techniques

Various microscopic imaging techniques have been
developed to visualize the 3D structures of biological
samples with high lateral and axial resolutions. Fluores-
cence microscopy techniques, including confocal micros-
copy [20], two-photon microscopy [220], multi-photon
fluorescence microscopy [221], and structured illumina-
tion microscopy [222], enable the reconstruction of 3D
morphology by stacking fluorescent images at different
focal planes or scanning fluorescence point-by-point
across the samples. Light-sheet microscopy is utilized
to scan a test sample by irradiating a light sheet at dif-
ferent depths and angles [223]. Spatial light interference
microscopy is used to measure nanoscale phase informa-
tion and dynamics of live cells over periods ranging from
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seconds to days [224]. Differential-interference-contrast
microscopy collects a set of 2D images of a thick sample
by moving it through the direction of focus to obtain its
3D image [225]. These advanced 3D imaging techniques
effectively visualize the 3D structures and long-term vari-
ations of biological samples. However, real-time moni-
toring of rapidly changing cell dynamics is somewhat
limited due to the shallow DOF and the long scanning
time associated with these 3D imaging techniques.

Compared to other 3D imaging techniques, DIHM ena-
bles simultaneous measurement of multiple biological cells
located at different depth-wise positions. It can analyze not
only unicellular organisms but also multicellular organisms,
including marine plankton [27, 49, 50, 226, 227], embryos
[228], and stem cells [229, 230]. Additionally, DIHM allows
visualization of transparent thin tissue structures, such as
human breast carcinoma [231] and human hepatocellular
carcinoma tissues [232]. Unlike the volumetric scanning
process used in other techniques, DIHM records holo-
graphic images of moving cells using a high-speed camera
with a high frame rate. This facilitates effective analysis
of the 3D dynamics of biological cells with high temporal
resolution.

The specialized nature of DIHM in analyzing the 3D
dynamics of individual biological cells makes it a highly
effective tool for studying multicellular interactions and
collective cell migration behaviors. For example, DIHM
has been employed to investigate cell-cell interactions
between intestinal pathogenic bacteria E. sakazakii and
the probiotic Lactobacillus rhamnosus [171]. Addition-
ally, it has been utilized to monitor the morphology
and migration behaviors of cancer cells in large-scale
3D matrix gels [233]. Consequently, DIHM systems can
be effectively used for analyzing cell-cell interactions
and cell migrations in various microenvironments that
are challenging to investigate with other 3D imaging
techniques.

Limitations of DIHM

Nevertheless, DIHM does have certain technical and
experimental limitations. The lateral and axial resolutions
are diffraction-limited due to the optical configuration of
DIHM systems. The FOV is typically limited to hundreds
of microns due to the restricted SBP of DIHM. Moreover,
the shallow depth of focus prevents full reconstruction of
the morphological structure of elongated objects. Over-
lapped holographic signals from highly concentrated
particles reduce the accuracy of their 3D localization
measurements. To avoid unexpected optical aberrations,
it is crucial for the medium containing a test sample to
have a uniform refractive index and for the beam paths
within it to be free from impurities that induce unneces-
sary light scattering. Therefore, meticulous arrangement
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of the experimental setup and cautious execution of
experiments are essential prerequisites for obtaining
clear holographic signals from test samples.

Conclusions and perspectives

In summary, the DIHM technique holds great promise
as a 3D imaging method suitable for label-free identifica-
tion and tracking of various biological cells at the micro-
scale level. It enables quantitative analysis of diverse 3D
dynamics exhibited by biological cells, such as motil-
ity, migration, cell-surface interaction, and chemotactic
behavior. By acquiring statistical information on their
3D location, orientation, and morphology over time with
the aid of DIHM, it is possible to gain insights into these
dynamic behaviors. Recent advancements in hologram
handling techniques have significantly improved meas-
urement accuracy in characterizing 3D dynamic behav-
iors of different species of cells under varying conditions
such as diseases, external stimuli, and surrounding
environments. Notably, rapid progress in Al technol-
ogy has greatly enhanced the processing speed during
reconstruction and autofocusing stages for precise 3D
localization, while improving image quality through
super-resolution algorithms and twin-image suppression
methods. The reconstructed amplitude and phase maps
derived from biological cells provide morphological and
optical features that can be used for label-free detection,
classification, and enumeration.

On the contrary, the majority of reconstruction and
autofocusing methods that utilize AI techniques exhibit
diminished generalization performance due to the lim-
ited availability of training datasets. Although AI tech-
niques can effectively reduce the computational time
required for reconstruction and autofocusing procedures,
only a few studies have applied them to 3D PTV analysis
of biological cells. Given the importance of demonstrat-
ing distinct differences in experimental samples and con-
trol groups in biological research, it is crucial to rapidly
process numerous holographic images to obtain reliable
statistical results. Conventional numerical reconstruction
equations have been used for decades, as they are capable
of reconstructing the amplitude and phase maps at dif-
ferent depth-wise locations from holographic signals of
any unknown particles. If an innovative AI model with
superior generalization performance were developed to
replace conventional reconstruction methods, it would
greatly accelerate the time-consuming digital image pro-
cessing routines for cell tracking and facilitate related
biological research.

The lateral and axial resolutions of DIHM are primarily
determined by the NA of the DIHM setup and the wave-
length of the light source, resulting in minor differences
in resolutions among different DIHM systems. These
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slight variations depend on their specific optical configu-
rations and numerical reconstruction methods. Rayleigh-
Sommerfeld back-propagation and angular spectrum
method would offer slightly more accurate holograms
reconstructed from an original hologram recorded by
DIHM systems using plane waves, as they do not require
any approximation. Additionally, other numerical recon-
struction equations using approximations can be utilized
to reduce computational costs.

The main source of measurement errors in the 3D
localization of biological cells is primarily associated with
the autofocusing process. Although several autofocus-
ing methods have demonstrated excellent performance
for their own optical setup in DHM, it should be noted
that the optimal focus function may depend on various
factors, such as sample type, optical configuration, and
post-image-processing method involving denoising and
reconstruction algorithms. Therefore, selecting the most
suitable autofocusing method for a specific experimental
setup often requires trial and error. With the exception
of highly concentrated particles, all PTV algorithms gen-
erally provide sufficient accuracy in the tracking process.
It is recommended to refer to other studies that success-
fully analyzed similar biological cells to identify an opti-
mal experimental setup and adapt it accordingly to suit
specific experimental conditions. Several commercial
DIHM platforms, including 4-Deep in-line holographic
microscopes (NanoAndMore, USA), HO-DIHM-HTO01
(Holmarc Opto-Mechatronics, India), and LISST-Holo2
(Sequoia Scientific, USA), are available for various
applications.

By integrating the compact optical configurations of
DIHM with state-of-the-art Al algorithms, it is pos-
sible to develop user-friendly devices for real-time
and in situ analysis of biological cells. Portable smart-
phones or tablet computers equipped with DIHM and
Al techniques can be effectively utilized for the facile
diagnosis of hematologic diseases characterized by
morphological disorders in human blood cells, as well
as for continuous monitoring of hazardous microscale
particulates, such as toxic contaminants, bacteria,
and viruses in airborne or submersible environments.
The ongoing advancements in DIHM and AI tech-
niques hold great potential to significantly enhance
the measurement performance related to translational
and rotational behaviors, cell deformations, as well as
cell-cell and cell-surface interactions. While previous
studies on hemodynamics have primarily focused on
the translational motions of erythrocytes, innovative
Al-based DIHM techniques can now be employed to
measure the dynamic behaviors of abnormal eryth-
rocytes, thereby shedding light on their unknown
impacts on human health. Furthermore, these advances
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enable simultaneous measurements of rapid variations
in motility, orientation, and morphology of biological
cells under various chemical, optical, and mechanical
stimuli. Such progress offers high measurement accu-
racy along with significant throughput capacity and fast
processing speed for quantitative analyses of biologi-
cal cells. By fostering collaboration between engineers
utilizing DIHM technologies and cell biologists pro-
viding expertise in cellular behaviors, a wide range of
new research can be conducted to elucidate previously
undisclosed dynamic characteristics of various bio-
logical cells, and will provide valuable information for
potential applications in the diagnosis and treatment of
associated diseases.

Abbreviations

2D Two-dimensional
3D Three-dimensional
4D Four-dimensional

Al Artificial intelligence

A. punctulata Arbacia punctulata
A. tumefaciens Agrobacterium tumefaciens
CNN Convolutional neural network

C. polykrikoides Cochlodinium polykrikoides
DHM Digital holographic microscopy
DIHM Digital in-line holographic microscopy

DOF Depth of field
D. primolecta Dunaliella primolecta

E. coli Escherichia coli

E. sakazakii Enterobacter sakazakii

FFT Fast Fourier transform

FOV Field of view

GRA Gradient

K. veneficum Karlodinium veneficum

LAP Laplacian

NA Numerical aperture

PDF Probability density function
PTV Particle tracking velocimetry

P aeruginosa Pseudomonas aeruginosa

P lima Prorocentrum lima

P minimum Prorocentrum minimum

P, piscicida Pfiesteria piscicida

P tricornutum Phaeodactylum tricornutum
P-value Probability value

SBP Space bandwidth product
SPEC Weighted spectral

SVM Support vector machine

S. putrefaciens Shewanella putrefaciens

TC Tamura coefficient

TTLL
THI3™~TtlI8~/~ mouse

Tubulin-tyrosine ligase-like

A double-knockout mouse for two initiating glyc-
ylases TTLL3 and TTLL8

VAR Variance
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