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Abstract 

Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals 
worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecu‑
lar level has hindered the development of comprehensive treatment options for these disorders. The advent of single‑
cell RNA sequencing (scRNA‑seq) technology has revolutionized biomedical research by enabling detailed exami‑
nation of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single‑cell level in highly 
mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined 
approach to obtaining high‑quality single cells from skeletal tissue and provide an overview of existing scRNA‑seq 
technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these 
methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological 
processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing 
on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA‑seq has pro‑
vided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel 
therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
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Background
Skeletal disorders are a major contributor to disabil-
ity-adjusted life years, affecting 1.7  billion individuals 
worldwide who experience degeneration, fractures, and 
other orthopedic conditions [1–6]. These disorders can 
be attributed to aging, trauma, and immune factors, 
impacting various skeletal components such as bones 
(osteoporosis, osteopenia, etc.), joints [osteoarthri-
tis (OA), rheumatoid arthritis (RA), etc.], spines (disc 
degenerative disease, ankylosing spondylitis, etc.), and 
muscles (sarcopenia, etc.) [7]. Not only do these con-
ditions impair the patients’ work capacity and quality 
of life but they also impose a significant burden on the 
global medical system [8, 9]. In particular, prolonged 
and intense training regimens can significantly con-
tribute to the development of skeletal disorders among 
military personnel, potentially leading to non-combat 
troop reduction [10]. Therefore, there is an urgent need 

for a comprehensive investigation of the pathogenesis 
and treatment approaches for these diseases. High-
resolution research strategies are required to precisely 
elucidate the underlying mechanisms and develop more 
effective therapies for skeletal diseases [11].

Over the past decade, single-cell RNA-sequencing 
(scRNA-seq) technology has emerged as a powerful tool 
for accurately examining the transcriptome at the reso-
lution of individual cells [11–16] (Fig.  1). In contrast to 
bulk RNA sequencing, which provides an average meas-
urement of gene expression across millions of cells, 
scRNA-seq generates sequencing libraries that map the 
transcriptome to individual cells, thereby clarifying the 
biological differences between cells [17, 18]. With its high 
throughput capabilities, scRNA-seq enables extensive 
gene profiling of more than  106 single cells per run, offer-
ing the potential to identify novel cell types and charac-
terize molecular events within cellular subpopulations 
[19]. In recent years, scRNA-seq has been extensively 

Fig. 1 Single‑cell RNA sequencing (scRNA‑seq) reveals the cellular heterogeneity in unprecedented resolution in skeletal research. a scRNA‑seq 
can dissect the cellular composition of specific skeletal tissues in different conditions, providing strategies of prospective isolation for target 
cell populations using fluorescence‑activated cell sorting (FACS). b Differential expression analysis of scRNA‑seq data helps identify both classic 
and novel characteristics of cell clusters. c The fate of cells can be predicted using single‑cell trajectory inference methods, which map 
the developmental pathways of cells based on their gene expression profiles. d The relationships and intercellular communications among different 
cell clusters can be predicted through scRNA‑seq data, which is crucial for understanding tissue function and disease progression
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applied to study skeletal disorders, shedding light on pre-
viously unexplored aspects of the skeletal micro-world 
[11, 20] (Fig. 1). These approaches have allowed research-
ers to examine the skeletal systems at an unprecedented 
resolution, enhancing our understanding of cellular het-
erogeneity and critical cellular events that govern skeletal 
homeostasis and disease [21–24]. Furthermore, scRNA-
seq has facilitated the elucidation of the intricate molecu-
lar network involved in intercellular crosstalk, providing 
crucial insights into the cellular microenvironment that 
often contributes to pathological processes [25–29].

Despite the numerous advantages of scRNA-seq, sev-
eral challenges persist in various aspects. Firstly, it is 
difficult to obtain high-quality single cells from bone 
and cartilage tissues with dense collagen and high min-
eralization, often failing to meet the criteria for scRNA-
seq [30]. Secondly, the diverse cell morphologies within 
the skeletal system necessitates careful selection of an 
appropriate sequencing method [30]. Lastly, inadequate 
bioinformatic analyses without stringent quality con-
trol measures may undermine data mining efforts. This 
review summarizes significant advancements in skel-
etal research, including sampling processing, sequenc-
ing methods, and basic bioinformatic analysis, while also 
presenting illustrative examples that demonstrate the full 
potential of scRNA-seq in skeletal studies. Additionally, 
the integration of scRNA-seq with multi-omic strategies 
may provide benefits for bridging the knowledge gaps.

Single‑cell acquisition approaches in skeletal 
tissues
The emergence of single-cell sequencing technology has 
revolutionized the field of skeletal research, providing 
a powerful tool to explore cellular diversity and unravel 
the intricate molecular mechanisms underlying complex 
diseases.

The success of single-cell sequencing technology heav-
ily relies on high-quality techniques for capturing individ-
ual cells, which have gained significant traction in recent 
years [11, 31]. Numerous single-cell acquisition technolo-
gies are used to acquire high-quality single-cell suspen-
sions from skeletal tissues, which can be divided into 
mechanical dissociation, enzymatic digestion, and cell 
population enrichment including fluorescence-activated 
cell sorting (FACS), magnetic bead sorting (MACS), and 
microfluidics [32–34] (Fig.  2). To obtain a high-qual-
ity single-cell suspension, we recommend following a 
streamlined approach as outlined below: (1) Mechanical 
dissociation. This step involves breaking down the tissue 
to separate the cells and enhance their accessibility for 
enzymatic digestion, facilitating the release of individual 
cells from the tissue matrix. (2) Enzymatic digestion. Fol-
lowing mechanical dissociation, enzymatic digestion is 

performed to degrade the extracellular matrix. This step 
is essential for separating cells from the tissue scaffold 
and ensuring the production of a single-cell suspension. 
(3) Cell population enrichment. This step employs tech-
niques to isolate specific target cells from the heteroge-
neous cell suspension. Methods such as FACS or MACS 
can be utilized to selectively isolate desired cell popula-
tions based on molecular markers or other criteria.

Mechanical dissociation
Mechanical dissociation is a vital technique for single-
cell isolation in skeletal studies [35] (Fig. 2a). It involves 
microdissection to separate tissue structures, mincing 
using tools like razor blades and surgical scissors tai-
lored to specific tissue types, and grinding with digestion 
buffer [36]. This method is crucial for preparing samples 
for single-cell sequencing [37], as seen in studies on bone 
marrow cells where it highlights a dynamic and hetero-
geneous molecular landscape that exhibits high respon-
siveness to stress [38]. Maintaining low temperatures 
throughout the process is essential to preserve cell integ-
rity and protein functionality.

Enzymatic digestion
The enzymatic digestion method uses specific enzymes 
to degrade the extracellular matrix of cells, effectively 
separating cellular components. This technique is highly 
efficient for single-cell separation, cost-effective, easy to 
operate, and minimally impairs cell integrity (Fig.  2b). 
For skeletal tissue with a complex extracellular matrix, 
the combination of collagenase and DNase I can enhance 
the viability of bone cell component and improve the 
efficiency of the separation process [36]. Collagenase 
digestion is the primary method applied for chondrocyte 
isolation by breaking down the cartilaginous extracellular 
matrix (ECM). Typically, three rounds of digestion last-
ing approximately 8 h are required to fully digest the car-
tilage ECM and obtain high-quality chondrocytes [39]. In 
the case of intervertebral discs (IVDs), a recommended 
combination of trypsin, protease, and collagenase is used 
for about 3.5 h (0.5 h for trypsin, 1 h for protease, 2 h for 
collagenase) to effectively break down collagen fibers 
and ECM to yield single cells [23]. Enzyme digestion is 
commonly employed as a method for isolating individual 
muscle or tendon cells. By incubating muscle tissue with 
a combination of collagenase type II, collagenase D, and 
dispase II for 1 h, myocytes can be effectively dissociated 
from other components [40].

Although the enzymatic digestion method holds prom-
ising prospects for single-cell sequencing in the skeletal 
system, careful consideration should be given to tissue 
type, enzyme combination, and enzyme concentration 
to determine the appropriate digestion time and ensure 
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reproducibility and reliability. By utilizing the enzymatic 
digestion method, bone cell components can be obtained 
quickly and efficiently for subsequent analysis using 
scRNA-seq.

Cell population enrichment
FACS is a critical technology for single-cell isolation, ena-
bling precise cell sorting through fluorescence markers 
(Fig.  2c). It’s widely used in fields such as oncology and 
skeletal research, where it aids in single-cell sequencing 
[41–43]. For instance, Mo et al. [25] employed FACS to 
isolate specific skeletal cells for scRNA-seq studies on cell 
maintenance and lineage. However, the use of FACS may 
induce cellular stress that can affect sequencing accu-
racy, and requires specialized equipment and expertise, 

making it expensive and technically demanding [44]. Its 
resolution limitations also pose challenges in distinguish-
ing similar cell types, with results potentially influenced 
by environmental and operational factors.

MACS is another widely utilized technique for single-
cell acquisition, employing magnetic beads that bind to 
cell surface antigens or specific intracellular substances 
for separation in a magnetic field (Fig. 2c). This method 
is highly regarded for its rapidity, efficiency, and mini-
mal cellular damage, making it the preferred choice for 
single-cell sequencing in skeletal research. For instance, 
studies have used MACS to isolate stromal cells from 
murine bone marrow to explore their roles in the hemat-
opoietic stem cell niche and identify distinct subpopu-
lations of bone marrow-derived mononuclear cells for 

Fig. 2 Overview of single‑cell acquisition technologies used to acquire high‑quality single‑cell suspensions from skeletal tissues. a Mechanical 
dissociation involves techniques such as microdissection, sectioning, and grinding to physically separate cells. b Enzymatic digestion is an effective 
method that utilizes enzymes like trypsin and collagenase to break down the extracellular matrix, facilitating cell separation. DNase is also employed 
to extract free DNA from cell clusters. c (i) Fluorescence‑activated cell sorting is a pivotal and precise technology for isolating single cells 
through fluorescence markers. (ii) Magnetic bead sorting employs magnetic beads to acquire single‑cell. (iii) Microfluidic technologies represent 
advanced methods for single‑cell acquisition. These technologies are notable for their compact design, high throughput, and enhanced sensitivity, 
making them indispensable in modern cellular biology
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lineage-specific investigations [45, 46]. Despite offering 
numerous advantages, meticulous sample preparation 
is necessary with MACS to prevent cellular damage and 
ensure precise cell sorting, and the bead binding has the 
potential to alter the biological properties of the cells.

Microfluidic technology is increasingly utilized in sin-
gle-cell sequencing due to its compact size, high through-
put, and sensitivity (Fig.  2c). It excels in the isolation, 
sorting, and sequencing of individual cells, facilitating 
efficient capture and detailed transcriptome analysis. 
The C1 Single-Cell Auto Prep System has been effectively 
employed for SMART-Seq of dendritic cells, highlighting 
its capability to detect transcriptomic variations and rare 
cellular responses [47]. Although microfluidic technology 
has several advantages over other single-cell acquisition 
methods, a critical limitation of Fluidigm microfluidic 
chips is their size restriction on captured cells (the largest 
chip is designed for cells up to 30 μm) that can undergo 
single-cell analysis [48].

The field of skeletal systems has been revolutionized 
by the advent of single-cell acquisition technology, which 
enables the investigation of cellular heterogeneity and 
intricate molecular mechanisms. Through high-quality 
single-cell capture technology, researchers can isolate 
individual cells from various sources such as bone mar-
row, cartilage, bones and joints. However, it is important 
for researchers to carefully consider both the advantages 
and limitations of these techniques such as reliance on 
cell characteristics and potential cell damage to deter-
mine the most appropriate approach for single-cell acqui-
sition in their specific applications.

scRNA‑seq platforms applicable to the skeletal 
system
It is important to choose the appropriate library con-
struction strategy for target tissues [37, 49]. Large-scale 
scRNA-seq methods such as the drop-seq-based 10× 
Genomics Chromium system, microwell-seq-based BD-
Rhapsody system, and the DNBelab C4 system from 

MGI, can efficiently isolate numerous cells from hyper-
cellular tissues [50–52]. For tissue with low-input cells, 
Smart-seq2 and CEL-seq2 are more applicable for cap-
turing the single-cell transcriptome at a high sequencing 
depth using automated micropipettes or FACS [53]. In 
this section, we present the advantages of different strate-
gies in terms of throughput, sequencing depth, and appli-
cation scope (Table 1).

10× Genomics chromium system
The 10× Genomics Chromium system is one of the most 
widely used sequencing platforms. Specifically, cells are 
encapsulated in microfluidic devices and labeled using 
barcoding technology, leading to a significant reduction 
in time and cost [50, 54]. The highly parallelized nature of 
this system allows for the sequencing of up to 80,000 cells 
per sample. Moreover, its exceptional level of automa-
tion enables it to handle all aspects of the cellular suspen-
sion preparation process, single-cell capturing, library 
amplification, and fragment tagging within a matter of 
hours. Therefore, the 10× Genomics Chromium system 
has gained considerable popularity in skeletal research. 
For example, Huang et  al. [55] applied this method to 
decode a staggering number of 102,077 cells from knee 
joint tissues and successfully illustrated the cellular het-
erogeneity associated with OA. Liu et al. [56] performed 
scRNA-seq on 100,987 osteosarcoma cells and revealed 
valuable insights into immune cell functions in recurrent 
and metastatic pulmonary osteosarcoma lesions. How-
ever, probabilistic capture may result in potential loss or 
underrepresentation of rare cell clusters, which should be 
taken into account.

BD‑Rhapsody system
Similar to the 10× Genomics Chromium system, the 
BD-Rhapsody system is also capable of efficiently han-
dling large numbers of cells. The cell capture process 
in the BD-Rhapsody system is carried out using micro-
well precipitation, known as CytoSeq, which has over 

Table 1 Advantages and disadvantages of scRNA‑seq platforms applicable to the skeletal system

Technology Advantages Disadvantages

10× Genomics Chromium Large‑scale;
Time‑effective

Probable cell loss

BD‑Rhapsody High‑throughput;
Tolerant for cell vitality

Limitation in cell size

Smart‑seq2 High sequencing depth;
The superior ability for gene detection

Low‑throughput;
Time and cost‑consuming

CEL‑seq2 High sequencing depth;
Enhanced the efficiency of mRNA level measurement

Low‑throughput;
mRNA 3’ bias;
Failure to detect non‑pol‑
yadenylated transcripts
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200,000 micropores in a single plate [51]. The CytoSeq 
improves the probability of successful cell capture and 
improves the viability tolerance of cells within the BD-
Rhapsody system. Moreover, the cDNAs bound to the 
beads can be stored at 4℃ for up to 3 months, ena-
bling users to pool libraries from multiple samples for 
sequencing. For example, Tu et al. [27] applied the BD-
Rhapsody system to decode human IVDs at different 
degenerative levels. Zhang et al. [57] utilized this tech-
nology to capture cells in bone fractures and elucidated 
the role of B cells in fracture repair processes. However, 
due to the limitation of bead binding efficiency, captur-
ing cells with diameters greater than 20 μm may experi-
ence a significant decrease in efficiency when using the 
BD-Rhapsody system.

Smart‑seq2 and CEL‑seq2
Smart-seq2 and CEL-seq2 are low-throughput strat-
egies that use automated micropipettes or FACS to 
isolate cells into 96-well or 384-well plates [53]. These 
methods improve the sequencing depth of individual 
cells and are typically used for dissecting heterogeneity 
in specific cell populations [53]. Smart-seq2 captures 
the whole transcriptome, while CEL-seq2 only retains 
the sequences from the 3’ end of mRNAs, thus it is also 
subject to limitations due to 3’ bias [58, 59]. In addition, 
CEL-Seq does not detect miRNAs and other nonpoly-
adenylated transcripts. While this can be regarded as 
an advantage for enhancing mRNA level measurement 
efficiency, it also poses a disadvantage by failing to 
detect rRNA [60]. Hedlund et al. [61] employed Smart-
seq2 to investigate the dynamic changes of neural stem 
cells after spinal cord injury based on a population of 
487  GFP+  Nestin+ cells. Mizoguchi et  al. [62] utilized 
Smart-seq2 to analyze the synovium of OA patients 
and identified an invasive fibroblast population located 
in the perivascular area of inflamed synovium. Zhang 
et  al. [26] used CEL-seq2 to examine immune cells in 
the synovium of OA. In contrast to Drop-seq strate-
gies, Smart-seq2 or CEL-seq2 can detect more genes 
in an individual cell. Smart-seq2, in particular, exhibits 
the superior ability to detect gene expression, which is 
particularly advantageous for cell types with low abun-
dance transcripts such as terminally differentiated 
chondrocytes [63].

Given the diversity present in the skeletal tissues, it is 
advisable to first optimize cell isolation procedures and 
disentangle cellular complexity before subsequent analy-
sis. This is especially important when conducting large-
scale transcriptomic profiling and exploring rare but 
significant cells during bone development and related 
disease progression.

Practical scRNA‑seq analysis pipelines of exploring 
cellular heterogeneity in skeletal tissues
The raw reads obtained from Next Generation Sequenc-
ing machines undergo pre-processing, which includes 
data cleaning, adapter trimming, and genome mapping. 
These steps can be performed individually or integrated 
into software such as Cellranger developed by 10× 
Genomics. The final output is a gene matrix that is sub-
jected to well-established analysis workflows, including 
Seurat (implemented in R) [64] and Scanpy (implemented 
in Python) [65]. While these two powerful analytic tools 
can manage most scRNA-seq datasets, customized anal-
yses are required for specific projects involving various 
combination strategies such as differential trajectory sim-
ulation and intercellular communication networks [66, 
67]. Typically, scRNA-seq enables the simultaneous rev-
elation of transcriptomic features across all cell popula-
tions and the comprehensive prediction of their potential 
functions in disease progression. More importantly, tar-
geting signature genes and enriched pathways in key cell 
types provides potential therapeutic targets for clinical 
applications. Here, we introduce the practical bioinfor-
matic analysis steps for scRNA-seq in skeletal research.

Quality control (QC)
QC serves as the initial step in the scRNA-seq analysis 
pipeline, aiming not only to eliminate low-quality data 
that may interfere with downstream analysis but also to 
exclude non-biological factors introduced by experimen-
tal conditions such as RNA degradation, elevated mito-
chondrial gene rates, and digestive stress. Additionally, 
QC can reduce noises induced by the sequencing system, 
such as doublets and multiplets. A rigorous QC process 
is crucial for filtering out low-quality cells. However, 
thresholds for QC should be set carefully when integrat-
ing datasets due to variations in gene expression levels 
among different cell types.

The basic criteria for QC involve gene numbers, count 
numbers, and mitochondrial gene rates. Various pack-
ages implemented in R (e.g., scuttle, DoubletFinder, 
DoubletDecon) and Python (e.g., scrublet, and Doublet-
Detection) are employed to remove potential doublets 
and multiplets [68–71]. After completing the QC process 
successfully, matrices should be normalized to correct 
relative gene expression abundances and facilitate cell 
comparison for further analysis.

Batch effect removal
The use of different timepoint, equipment, reagents for 
cell capture, and even operating personnel can inevita-
bly lead to batch effects among datasets. More than 50 
integration strategies have been reported for benchmark-
ing scRNA-seq datasets [72, 73]. Among them, mutual 
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nearest neighbors (MNN) or FastMNN, Seurat v3 inte-
gration, Harmony, MNN, and scGen are the most com-
monly used methods [74–77]. In our previous scRNA-seq 
datasets of human IVD cells, we compared the perfor-
mances of these methods [23], and found that FastMNN 
and scGen showed a better balance between removing 
batch effect and retaining dimensional structure (Fig. 3). 
Huang et al. [55] applied Seurat v3 to integrate scRNA-
seq datasets derived from 5 OA patients and uncovered 
7 distinct populations. With the rapid increase in single-
cell sequencing data on skeletal maintenance and disor-
ders from different laboratories and platforms, effective 
data integration plays a crucial role in analyzing cellular 
heterogeneity and identifying key clusters responsible for 

the disease. However, it is important to avoid overcorrec-
tion during batch effect removal to preserve the biologi-
cal signatures. Multiple integration methods may need 
to be evaluated to reveal the major features embedded in 
the datasets.

Dimensionality reduction
The first step in reducing the dimensionality of high-
dimensional datasets is to identify the principal com-
ponents by calculating the highly variable features. To 
create informative and visually appealing graphs, several 
well-developed algorithms are used for dimensional-
ity reduction (DR) and visualization, including princi-
pal component analysis (PCA), t-distributed stochastic 

Fig. 3 Performance of different batch effect removal strategies in the integration of scRNA‑seq datasets on human IVD cells. a Evaluation, 
applicable programming language and website of FastMNN, Seurat v3 (CCA), Harmony and scGen methods. b The dimensionality reduction plots 
of raw data, FastMNN, Seurat v3 (CCA), Harmony and scGen contain two rows. In the first row, cells are colored by different sites of intervertebral 
disc, and in the second by cell type. Seurat v3, Harmony are embedded in t‑SNE, and FastMNN, scGen are embedded in UMAP. Each method can 
well eliminate the batch effect while FastMNN and scGen have better performance [23]. Copyright © 2021, Published by Springer Nature. AF 
annulus fibrosus, Chond chondrocyte, CEP cartilaginous endplate, FastMNN fast mutual nearest neighbors, NPPC nucleus pulposus progenitor cells, 
t‑SNE t‑distributed stochastic neighbor embedding, UMAP uniform manifold approximation and projection, PCA principal component analysis, CCA 
canonical correlation analysis, NP nucleus pulposus, IVD intervertebral disc, Noto notochord cell, EC endothelial cell



Page 8 of 24Lin et al. Military Medical Research           (2024) 11:33 

neighbor embedding (t-SNE) [78], and uniform manifold 
approximation and projection (UMAP) [79].

PCA captures the data variance through a linear com-
bination of gene expression levels. Its simplicity and 
efficiency make it usually the initial round of DR in 
scRNA-seq analysis, although explaining the complete 
polynomial relationship among features in large and 
complex datasets may be challenging. t-SNE and UMAP 
are widely used nonlinear dimensionality reduction algo-
rithms that project the high-dimensional structural fea-
tures to low-dimensional space. UMAP displays a more 
realistic global distribution because of its loss function 
and distance algorithm, whereas t-SNE retains complete 
local distribution information. Moreover, the UMAP 
algorithm has lower time consumption than t-SNE, mak-
ing it faster for scaling large datasets. However, a recently 
developed algorithm called FFT-accelerated interpolation 
-based t-SNE can accelerate calculation by over 10-fold 
if high memory consumption on the machine is toler-
able. Finally, t-SNE uses random distribution to initialize 
low-dimensional data, while UMAP employs the Laplace 
transform to assign the initial low-dimensional coordi-
nates, resulting in higher stability of UMAP results. In 
orthopedic research, many studies prefer using the t-SNE 
reduction method to obtain a fuller composition [80–84].

Clustering and annotation
Clustering is a crucial step in customized analysis, ena-
bling the exploration of cellular heterogeneity and the 
identification of novel populations. Among various clus-
tering methods, K-means is widely adopted due to its 
ability to assign each cell to the nearest center point [85]. 
However, being a greedy algorithm, it cannot guarantee 
finding the overall optimal solution, especially for clus-
ters with rare cells [15]. In Seurat and Scanpy workflows, 
Louvain is a default clustering algorithm based on mod-
ularity or network graphs [86, 87]. Nonetheless, it has 
limitations in some situations where cluster portraits are 
influenced by variations in cellular distribution density 
within clusters [88–90]. To address these issues, Traag 
et al. [90] developed an optimized Leiden algorithm that 
offers faster running speed and ensures community con-
nection, thereby rationalizing the process of clustering.

The strategy for defining a cluster should encompass 
comprehensive recognition. Typically, differentially 
expressed genes (DEGs) among clusters serve as sig-
natures for each cluster. Based on this, previous studies 
have successfully identified various cell types in skeletal 
tissues [23]. Conveniently, population definition can be 
performed by automatic annotation packages, such as 
SingleR [91], Cellassign [92], Garnett [93], and scTPA 
[94]. It is recommended to adopt a combined strategy 

that considers identified marker genes and postulated cell 
types from annotation packages.

In many cases, the identification of a cell cluster can-
not be determined by a limited number of the signa-
ture genes. Therefore, biological processes or pathways 
enriched by the DEGs can assist in defining cell iden-
tity. Enrichment analyses including Gene Ontology [95], 
Kyoto Encyclopedia of Genes and Genomes [96], and 
Gene Set Enrichment Analysis (GSEA) [97] are com-
monly employed for cluster annotation purposes. For 
instance, chondrocytes and fibroblasts are always asso-
ciated with extracellular matrix organization, while 
chondrocytes exhibit closely related to the transforming 
growth factor-β (TGF-β) signaling pathway, and osteo-
blasts are linked to ossification and the secreted phos-
phoprotein 1 (SPP1) signaling pathway [20, 98].

Usually, known cell markers in top DEGs for each cell 
type are used for annotating cell clusters. Nevertheless, 
there may be novel genes that show significant expression 
levels, indicating their potential as new molecular mark-
ers for the cell cluster. These potential markers can be 
further validated through rigorous experiments such as 
in  situ hybridization or immunofluorescence staining to 
confirm their efficacy in identifying cell types. Previous 
research has demonstrated that these newly identified 
markers can help identify key cell clusters and facilitate 
prospective isolation of specific cell clusters involved in 
skeletal development, maintenance, and disease progres-
sion [23, 99].

Regulatory network
Gene regulatory networks (GRN) are responsible for 
determining and maintaining the transcriptional state 
of cells, making them an essential step in understanding 
cell states. The computational method single-cell regula-
tory network inference and clustering (SCENIC) is used 
to reconstruct GRN and evaluate their activity in each 
cell for identifying cell states [100]. Compared with other 
co-expression algorithms, SCENIC utilizes RcisTarget 
to identify potential direct-binding targets and exclude 
false positive outcomes [100]. Despite its effectiveness in 
analyzing specific and robust GRN underlying cell states, 
there are certain limitations associated with SCENIC, 
such as increased time-consuming when dealing with 
large datasets. It is advisable to infer the GRN from a sub-
sampled dataset and include all cells during the scoring 
step, or opt for a more efficient algorithm such as GRN-
Boost [100]. Studies using SCENIC have revealed the reg-
ulators involved in enthesis progenitor cell differentiation 
and mineralization including SOX9 and RUNX2 [101], as 
well as common regulatory programs within the patho-
genic subset of both articular and meniscus tissues that 
encompass key members of the CREB family and ZEB1 
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[102]. Additionally, SCENIC has been used to decipher 
the programs governing chondrocytes and the pericyte-
like cell cluster [103]. In our previous study, SCENIC was 
employed to uncover the GRN that determined cell fate 
in the nucleus pulposus progenitor cells (NPPC) sub-
clusters, revealing strong enrichment of SMAD3 in the 
 PROCR+ NPPC-3 cluster [23]. Overall, the usage of SCE-
NIC will provide invaluable biological insights into the 
mechanisms driving cellular heterogeneity.

Differentiation trajectory inference
Pseudotime analysis is used to illustrate the lineage devel-
opment or differentiation processes of specific cell types. 
By identifying the dynamic changes of gene expression 
along the trajectory, the cell state space metric can be 
simulated in silico. Two major tools widely used in pseu-
dotime analysis are Monocle and RNA velocity. Monocle, 
proposed by Cole Trapnell et al. [104] reconstructs linear 
trajectories using a minimum spanning tree (MST) algo-
rithm. RNA velocity, proposed by La Manno et al. [105], 
calculates the derivative of unspliced RNA to spliced 
RNA to obtain the kinetics of mRNA cycles and infer dif-
ferentiation vectors of single cells. Commonly used RNA 
velocity tools include velocyto [105] and scvelo [106].

It is important to note that the MST algorithm has an 
advantage in trajectory construction but depends on 
prior knowledge when specifying the root of differentia-
tion. In contrast, RNA velocity can predict the direction 
of the cell lineage based on real transcript dynamics with-
out the knowledge of the development process. However, 
the result of RNA velocity largely depends on the pre-
vious dimensionality reduction diagram. He et  al. [22] 
utilized RNA velocity to simulate chondrogenesis and 
osteogenesis in human embryonic skeletal development 
and demonstrated a subset of skeletal stem and progeni-
tor cells that play crucial roles in the fate decision of limb 
bud mesenchymal differentiation. Our previous study 
applied Monocle3 to decipher the chondro-osteogenic 
potential of NPPC in human IVDs [23].

Intercellular communications interface
The maintenance of skeletal tissues largely depends 
on the homeostasis of the microenvironment, which 
is regulated by complex intercellular communications. 
Therefore, analyzing these communications is critical for 
uncovering the molecular mechanism underlying disease. 
By examining the co-expression of ligand-receptor genes, 
it becomes possible to predict key pathways involved in 
regulating cell functions and identify potential targets 
for intervention. CellPhoneDB [107] and CellChat [108] 
are widely used tools in skeletal research. Wu et al. [109] 
applied CellPhoneDB to demonstrate that clusters of 
dendritic cells, T cells, and macrophages observed in RA 

patients display enhanced interactions mediated by mol-
ecules such as CD74, and CCL13, which may contribute 
to the abnormal inflammatory responses seen in RA. 
Ling et al. [110], using CellChat, revealed that M2 mac-
rophages can modulate ProNPC function through mac-
rophage migration inhibitory factor (MIF) and TGF-β 
signaling.

Various applications of scRNA‑seq research 
in skeletal health and disease
Crucial cell clusters and molecules guiding 
the development and degeneration in the spine
The process of spinal development initiates with the dif-
ferentiation of the sclerotome from the somite. The first 
pair of somites emerges around day 20 of embryonic 
development, followed by subsequent pairs forming 
at a rate of three pairs per day, which is regulated by a 
molecular oscillator known as the segmentation clock 
[111, 112]. To confirm the presence of a similar oscillator 
in humans, Diaz-Cuadros et al. [113] performed scRNA-
seq on mouse and human pre-somatic mesoderm cells, 
revealing a comparable developmental trajectory and 
supporting the existence of a human segmentation clock. 
However, there is still limited understanding regarding 
gene expression dynamics during spinal development. 
Li et al. [114] conducted scRNA-seq on a pig embryo at 
27-day post-fertilization, equivalent to a human embryo 
at approximately 9 weeks gestation. By using monocle and 
RNA velocity analysis methods, they constructed 2 dis-
tinct trajectories for angiogenesis and osteogenesis, while 
identifying 6 cell clusters. Notably, HOXA10 expression 
was predominantly restricted to lumbar vertebrae clus-
ters, suggesting its role as a determining factor in lumbar 
formation. Yu et al. [115] analyzed the transcriptome of 
human fetal spines from 8 to 17 gestational weeks at sin-
gle-cell resolution and found that HIST1H1A+COL2A1− 
fibroblasts may be regulated by TUBB along with its 
upstream transcription factor HOXA10. Recently, an 
integrated analysis combining spatiotemporal informa-
tion and scRNA-seq was performed on both human and 
mouse spines during embryonic stages. This study also 
incorporated lineage tracing techniques to identify 2 
types of notochord-derived nucleus pulposus (NP) cells 
responsible for IVD formation [116]. Collectively, the 
above studies provide comprehensive insights into cel-
lular heterogeneity and regulatory processes involved in 
spine formation as revealed by scRNA-seq.

Following birth, the spines bear the weight of the body 
and the loads associated with movement. IVDs are cru-
cial for maintaining the mechanical properties of the 
spine due to their elasticity and resilience. Single-cell 
RNA sequencing unveiled distinct cell types including 
progenitor cells and chondrocytes in healthy IVDs and 
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critical biological processes including matrix changes 
and immune activation during degenerative condi-
tions (Fig.  4a). Gao et  al. [99] performed scRNA-seq 
on postnatal mouse IVDs and found UTS2R+ nucleus 
pulposus progenitors (ProNPs) that have trilineage dif-
ferentiation potential ex  vivo. They also discovered the 
specific expression of tenascin-C (TNC) in ProNPs and 

confirmed its role in promoting adhesion and inhibit-
ing apoptosis by ex  vivo studies [99]. In our previous 
study using scRNA-seq, we revealed various cell clus-
ters in healthy IVDs, including chondrocytes, noto-
chord cells, endothelial cells, and pericytes [23]. These 
chondrocytes were further categorized into regulatory, 
homeostatic, and effector subpopulations with distinct 

Fig. 4 Single‑cell RNA sequencing unveiled distinct cell types including progenitor cells and chondrocytes in healthy intervertebral discs (IVDs) 
and critical biological processes including matrix changes and immune activation during degenerative conditions. a In healthy IVDs, a variety 
of cells including progenitor cells, chondrocytes, and notochord cells play crucial roles in maintaining the IVD homeostasis. b In degenerated 
IVDs, there is a notable alteration in the phenotypes of progenitor cells and chondrocytes. The stiffening of the matrix activates YAP/TAZ 
signaling pathways, which in turn promotes chondrocyte proliferation and contributes to IVD fibrosis. Concurrently, macrophages and T cells 
not only proliferate but also engage in active crosstalk, influencing inflammatory responses. Additionally, the number of G‑MDSCs increases, 
which plays a role in inhibiting matrix degeneration and suppressing T cell proliferation. AF annulus fibrosus, AFSC annulus fibrosus stem cell, 
Chond chondrocytes, NPC nucleus pulposus cell, NPPC nucleus pulposus progenitor cells, ProNP nucleus pulposus progenitors, TNC tenascin‑C, 
TGF‑β transforming growth factor‑β, PDGFRA platelet‑derived growth factor receptor alpha, FTL ferritin light chain, Fibro fibrogenic, MMP13 matrix 
metallopeptidase 13, YAP Yes‑associated protein, TAZ tafazzin, TEAD1 TEA domain transcription factor 1, CCNB1 G2/mitotic‑specific cyclin‑B1, CTGF 
connective tissue growth factor, G‑MDSCs granulocyte‑like myeloid derived suppressor cells, UTS2R urotensin‑2 receptor, PROCR protein C receptor, 
LEPR leptin receptor, SFMA/HAMA/FCI methacrylated SF/methacrylated HA/fibrochondrogenic inductive, HO‑1 heme oxygenase‑1
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ECM properties. We also identified PROCR+PDGFRA+ 
NPPCs with potential stemness. Monocle3 analysis dem-
onstrated two differentiation fates towards osteogenesis 
and chondrogenesis, which were subsequently confirmed 
ex vivo. Additionally, we used CellChat analysis to estab-
lish an intercellular communication network and identi-
fied the key regulatory molecules TGF-β and PDGFRA, 
which regulate NPPC chondrogenesis and proliferation. 
Apart from NP cells, Wang et al. [117] found Lepr+ annu-
lus fibrosus (AF) stem cells in the intervertebral stem cell 
niche, expressing stemness markers like CD105. These 
cells differentiated into fibro-chondrocyte-like AF cells 
in  vitro (Fig.  4a). These scRNA-seq studies have pro-
vided evidence for the presence of IVD progenitor cells 
along with their significant functions in maintaining 
homeostasis.

Spine disorders lead to severe back pain and mechani-
cal dysfunction, significantly impairing the quality of 
human life. Degenerative disc disease (DDD) is a preva-
lent cause of low back pain [2], which is associated with 
microenvironmental disorders and alterations in cellular 
heterogeneity. Han et al. [118] conducted scRNA-seq on 
normal, mildly degenerative, and severely degenerative 
NPs, revealing an increasing inflammatory response in 
cartilage progenitor cells following degeneration. Simi-
larly, Ling et al. [110] observed an inflammatory response 
and an increase in fibrocartilaginous NP cells, while met-
abolic and homeostatic NP cells decreased after degen-
eration in humans. Besides the enhanced inflammatory 
response of chondrocytes, scRNA-seq also showed an 
increase in EGNL3+ StressCs, but a decrease in TGFBR3+ 
HomCs and GPRC5A+ RegCs in degenerative goat IVDs, 
which was further validated in vitro [119]. Li et al. [120] 
identified inhibitory calcified chondrocytes, fibrochon-
drocytes, and calcified chondrocytes with high expres-
sion levels of MGP, COL1A1, and FN1 that were more 
abundant within degenerative NP as well. Zhang et  al. 
[121] found upregulated genes that related to the fer-
roptosis pathway in chondrocytes after degeneration. 
The rigid extracellular matrix represents another criti-
cal pathological feature of disc degeneration. Zhou et al. 
[122] revealed that matrix stiffness could activate the 
YAP/TEAD1-Cyclin B1 axis to promote proliferation of 
NP cells and IVD fibrosis, and scRNA-seq shed light on 
YAP+ Fibro NPCs as the key subcluster involved in IVD 
pathological fibrosis (Fig. 4b). These insights into altera-
tions occurring in degenerative chondrocytes provided 
by scRNA-seq contribute to a better understanding of 
the mechanisms underlying function degradation seen in 
DDD.

As degeneration progresses, microvasculature forms 
when immune cells are activated and infiltrate the IVDs 
[123]. This phenomenon has been validated by numerous 

studies [27, 110, 118, 119, 124–128]. Tu et al. [27] iden-
tified granulocytic myeloid-derived suppressor cells 
in degenerative NP and confirmed their role in inhibit-
ing T cells and alleviating matrix degradation in  vitro. 
The interactions between immune cells and IVD cells 
at single-cell resolution have been revealed through 
CellPhoneDB analysis, and the successful reversal of 
NP ossification was achieved by inhibiting TNF-a. This 
was verified by Guo et  al. [128] using a rat coccyx disc 
degeneration model. In addition, the exhaustion of stem/
progenitor cells contributes to DDD. Gao et al. [99] iden-
tified UTS2R+ ProNPs that were found to be exhausted 
in degenerative IVDs; however, their transplantation 
with TNC can attenuate the progression of DDD. Wang 
et al. [117] established an SFMA/HAMA/FCI composite 
hydrogel laden with AFSC, which showed a strong repair 
capacity for injured AF. PROCR+ PC was conserved in 
goat IVDs and exhibited a differentiation program altera-
tion to stemness exhaustion [119] (Fig.  4b). scRNA-seq 
revealed the role of immune cells in stem/progenitor 
cell exhaustion in DDD, providing valuable insights for 
potential therapeutic interventions.

Besides DDD, ankylosing spondylitis (AS) is another 
prevalent spine disease. Approximately 80% of patients 
with AS experience symptoms before the age of 30 years 
[129]. Although the etiology remains unknown, AS is 
widely considered a chronic inflammatory disease [129]. 
Xu et al. [130] compared the heterogeneity of peripheral 
blood mononuclear cells (PBMCs) from healthy indi-
viduals and AS patients, revealing an increase in naïve 
 CD8+ T cells,  CD8+ T cells, memory  CD4+ T cells, and 
memory B cells in AS patients with elevated expression 
of genes associated with the inflammatory pathway. On 
the contrary, Ren et al. [131] observed a decrease in natu-
ral killer (NK) cells and a bias towards  CD56bright NK cells 
in the PBMCs from AS patients. Cribbs et  al. [83] per-
formed scRNA-seq on demethylase inhibited Th17 cells, 
revealing a shift from highly inflammatory cell subsets 
toward a resting state due to the reduced expression of 
key metabolic transcription factors, thereby providing a 
potentially effective therapeutic target for AS and other 
autoimmune diseases. As an autoimmune disease itself, 
there are strong associations between AS and Crohn’s 
disease [132]. Lefferts et al. [133] found that the PBMCs 
from patients suffering from both conditions showed a 
significant increase in granzyme  B+ T cells and greater T 
cell maturity levels were observed. In addition, the patho-
logical mechanism of AS involves Fibroblasts. The study 
by Li et  al. [134] demonstrated that TNC suppressed 
ECM adhesion force by activating the downstream Hippo 
pathway signaling, which subsequently increased chon-
drogenic gene expression, resulting in new bone for-
mation at entheses sites. Using scRNA-seq techniques 
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identified a cluster of FSP1+ fibroblasts secreting TNC, 
thereby facilitating our understanding of AS pathogen-
esis [134].

Despite its advantages in spinal research, scRNA-seq 
has limitations including the potential loss of rare cell 
populations due to the low cell density in IVDs, par-
ticularly the NPs. To address these challenges, further 
improvements in technology and larger tissue samples 
for library constructions are needed.

Cell dysfunctions contribute to the pathogenesis of OA 
and RA in joint
Joints facilitate the movement and flexibility of limbs 
by enabling synovium development, which initiates the 
formation of an intermediate zone. In this zone, the 
Gdf5-expressing lineage actively participates in joint tis-
sue formation and establishes a cohort of progenitor 
cells with co-generation capabilities [135]. To elucidate 
the underlying mechanism, Bian et  al. [24] conducted 
scRNA-seq on mouse embryo knee joints and classified 
three clusters of Gdf5-lineage enriched cells in differ-
ent developmental states through RNA velocity analysis. 
Pseudotime and immunofluorescence analysis further 
revealed the transcriptional profiles of the major devel-
opmental paths for joint progenitors [24]. Combining 
scRNA-seq and lineage tracking, Collins et al. [136] also 
found that chondrocyte injury led to lining hyperpla-
sia, due to the proliferation and differentiation of Prg4-
expressing progenitors into fibroblast-like synoviocytes. 
Further differentiation trajectory analysis demonstrated 
that Sox5 and Foxo1 were the key transcription fac-
tors of fibroblast-like synoviocytes in mice and humans 
[136]. Besides, Gao et al. [137] performed scRNA-seq on 
murine hindlimbs at postnatal day 1, 5, 14, and 28 to sys-
tematically dissect the developmental process. They iden-
tified CD34 and Ly6e-positive candidate progenitors in 
articular cartilage and enthesis, as well as 3 cellular devel-
opmental branches marked by Col10a1, Spp1, and Tnni2 
in the growth plate [137] (Fig. 5a). These results highlight 
the importance of progenitor cells in the joint formation 
and homeostasis.

Over time and with accumulated joint motion load, 
articular degenerative diseases such as OA can develop. 
Single-cell RNA sequencing analysis elucidated criti-
cal alterations during the progression of osteoarthritis 
(Fig. 5). OA is a complex condition that affects the whole 
joint, involving chondrocytes, fibroblasts, and immune 
cells in its pathogenesis [138–141]. Ji et  al. [28] identi-
fied 7 distinct populations of chondrocytes in the human 
OA cartilage. Through GSEA, they revealed 3 novel phe-
notypes, effector chondrocytes (ECs), regulatory chon-
drocytes, and homeostatic chondrocytes, which are 
primarily involved in metabolism, signaling pathways, 

and modulating cellular homeostasis respectively. Pseu-
dotime trajectory analysis determined potential transi-
tion among proliferative chondrocytes, prehypertrophic 
chondrocytes, and hypertrophic chondrocytes [28]. The 
identification of these cell populations greatly enhances 
our understanding of the pathological mechanism under-
lying OA. Chou et  al. [142] found that intact cartilage 
primarily consists of homeostatic and hypertrophic 
chondrocyte subpopulation, while damaged cartilage 
is enriched with prefibrotic- and fibrotic-, regulatory-, 
reparative- and prehypertrophic-chondrocytes. Sub-
sequently, Wang et  al. [143] observed an expansion of 
 CHI3L1+ RegCs in OA, while Li et al. [144] demonstrated 
the regenerative capacity of  CHI3L1+ chondrocytes. Hu 
et al. [145] uncovered that fibrous cartilage degeneration 
is primarily induced by fibrocartilage chondrocytes, and 
ECs were found to predominantly exert immune function 
in OA. Compared to intact cartilage, the intercellular 
communication between different chondrocyte subclus-
ters within damaged cartilage was enhanced thorough 
pleiotrophin (PTN), nicotinamide phosphoribosyltrans-
ferase (NAMPT), SPP1, TGF-β and other signaling path-
ways as indicated by CellChat analysis [146] (Fig. 5b). A 
comprehensive analysis focusing on dysfunction in these 
specific chondrocyte subclusters would significantly 
improve our understanding of the underlying cellular 
events contributing to OA progression.

Researchers also identified abnormal populations in 
OA. Swahn et al. [102] discovered a subset of genes asso-
ciated with senescence that expanded in OA. Through 
cellular interaction analysis using CellChat, it was found 
to play an essential role in connecting with other carti-
lage clusters via ECM, TNC, and TGF-β signaling path-
ways [102]. The dysregulated gene FAP in this cluster was 
shown to contribute to OA pathogenesis, while upregu-
lated ZEB1 contributed to chondrocyte senescence [102]. 
Wijesinghe et  al. [147] identified an obesity-specific 
subset characterized by an inflammatory endotype. Lv 
et  al. [148] revealed a chondrocyte cluster expressing 
ferroptotic hallmarks and genes preferentially. Gene set 
variation analysis demonstrated that TRPV1 promoted 
GPX4 expression to regulate chondrocyte ferroptosis, 
which was verified in  Gpx4+/− mice [148]. However, Wen 
et  al. [149] discovered that although senescent chon-
drocytes hyperactivate ferroptosis, they may overex-
press Solute carrier eamily 1 member 3 (SLC1A3, also 
known as EAAT1) to activate the glutathione system as 
a countermeasure against ferroptosis through metabo-
lomics analysis. These studies suggest a close relation-
ship between chondrocyte senescence and ferroptosis. 
Qu et  al. [150] revealed a  SPP1+ chondrocyte cluster 
exhibiting stronger angiogenic capacity and aging char-
acteristics. Obeidat et  al. [151] identified a subcluster 
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of nociceptors co-expressing Piezo2 and Ntrk1 which is 
highly relevant to pain in OA (Fig. 5b). Synovitis, a com-
mon feature of OA involving active fibroblasts [139], 
was investigated by Nanus et  al. who deciphered fibro-
blasts from different stages of OA at single-cell resolu-
tion [152]. Functional pathway analysis revealed that 
fibroblast subsets from painful sites promoted fibrosis, 
inflammation, and neuronal growth [152]. Knights et al. 
[153] found that Wnt/β-catenin signaling was overac-
tive in post-traumatic OA (PTOA) synovium, with Rspo2 
strongly induced after injury and secreted exclusively by 

 Prg4hi lining fibroblasts, further increasing pathological 
crosstalk and contributing to the inflammation in PTOA. 
Researchers are also working on elucidating the role of 
immune cells in the OA [110, 154–160]. Lu et  al. [159] 
revealed IGF2BP3 as a potential macrophage mediator in 
silico, and verified its function of promoting macrophage 
M1 polarization and inflammation in  vitro. Sebastian 
et al. [154] identified a macrophage population enriched 
for phagocytic genes and growth factors. Meanwhile, 
IL-1β could promote GDF15 expression in OA chondro-
cytes and induce a senescence phenotype [160] (Fig. 5c). 

Fig. 5 Single‑cell RNA sequencing analysis elucidated critical alterations during the progression of osteoarthritis. a Different clusters of progenitor 
cells in distinguish stages of mice joints. b In osteoarthritis, chondrocytes undergo senescence and ferroptosis processes that contribute to cell 
aging and death. This cellular deterioration is associated with increased pain sensitivity in the affected joints. c Fibroblasts, and immune cells are 
triggered in osteoarthritis and improve inflammation, neuronal growth and chondrocyte senescence. OA osteoarthritis, ZEB1 Zinc finger E‑box 
binding homeobox 1, FAP fibroblast activation protein, ECM extracellular matrix, TRPV1 transient receptor potential cation channel subfamily V 
member 1, GPX4 glutathione peroxidase 4, GSSG glutathione disulfide, GSH glutathione, EAAT solute carrier eamily 1 member 3, PIEZO2 piezo‑type 
mechanosensitive ion channel component 2, Ntrk 1 high affinity nerve growth factor receptor, GDF5 growth/differentiation factor 5, CDKN2A 
cyclin‑dependent kinase inhibitor 2 A, SERPINE1 plasminogen activator inhibitor 1, CHI3L1 chitinase‑3‑like protein 1, CD cluster of differentiation, 
RARRES2 retinoic acid receptor responder protein 2, LGALS1 galectin‑1, Ly6e lymphocyte antigen 6E, Prg4 proteoglycan 4, Rspo2 r‑spondin‑2, IL 
interleukin, IGF2BP3 insulin‑like growth factor 2 mRNA binding protein 3
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These findings have significant implications for advanc-
ing research initiatives aimed at developing customized 
treatments to address specific pathological populations 
in OA.

RA is another common joint disease characterized by 
synovial membrane inflammation, leukocyte infiltration, 
and aggressive fibroblasts [4, 161, 162]. Single-cell RNA 
analysis unveiled the intricate roles of immune cells, 
fibroblasts, and fibroblast-like synoviocyte subclusters 
in driving inflammation, bone erosion, and other patho-
logical processes in rheumatoid arthritis (Fig. 6). Orange 
et  al. [163] discovered circulating  CD45−CD31−PDPN+ 

preinflammatory mesenchymal cells that expand before 
an RA flare but decrease during exacerbation. Jonsson 
et  al. [164] revealed that fluid  CD8+ T cells in synovial 
tissue belong to an effector  CD8+ T cell population with 
high expression of granzyme K and low expression of 
granzyme B and perforin. These cells were found to be 
major cytokine producers with low cytotoxic potential 
[164]. Argyriou et al. [165] identified 2 peripheral helper 
T cell states and a cytotoxic  CD4+ T cell subset with a 
common differentiation pathway in the synovial fluid of 
RA patients at single-cell resolution. Besides, SIGIRR, 
preferentially expressed by memory  CD4+ T cells, could 

Fig. 6 Single‑cell RNA analysis unveiled the intricate roles of immune cells, fibroblasts, and fibroblast‑like synoviocyte subclusters in driving 
inflammation, bone erosion, and other pathological processes in rheumatoid arthritis. a Effect  CD8+ T cells are the major cytokine producer 
in RA. IL1 activates C/EBPβ phosphorylation to promote TNF production in Memory  CD4+ T cells while SIGIRR plays an inhibitory role. Ectopic 
lymphoid B cells are activated in RA synovium. Myeloid cells play an important role in joint repairment and destruction. b Fibroblasts promote 
joint inflammation in RA, and FLSs drives long‑term RA and contribute to bone erosion. RA rheumatoid arthritis, pC/EBPβ phosphorylated CCAAT/
enhancer binding protein β, DUSP1 dual specificity protein phosphatase 1, KLF2 krueppel‑like factor 2, EGF epidermal growth factor, THY1 thy‑1 
membrane glycoprotein, TNF tumor necrosis factor, TGF‑β transforming growth factor‑β, FGF10 fibroblast growth factor 10, FLS fibroblast‑like 
synoviocyte, IL interleukin, JAG1 protein jagged‑1, NOTCH3 notch homolog protein 3, CD cluster of differentiation, NR4A1 nuclear receptor 
subfamily 4 immunity group A member 1, RANK receptor activator for nuclear factor‑κB, TLR2 Toll‑like receptor 2, FAP fibroblast activation protein, 
proNGF nerve growth factor precursor, p75NTR p75 neurotrophin receptor, SIGIRR single immunoglobulin IL‑1R‑related receptor
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inversely regulate RA disease activity via IL-1/C/EBPβ/
TNF-α signaling axis [166]. It can be concluded that T 
cells play an essential role in the pathological mecha-
nisms of RA. Moreover,  ACPA+ and  RF+ B cells were 
more abundant in the peripheral blood of RA patients 
and exhibited distinct transcriptional programs, implying 
2 different molecular mechanisms that contribute to the 
increased inflammation in RA [167]. Meednu et al. [168] 
identified an  NR4A+ synovial B cell population that co-
expresses lymphotoxins α, β, and IL-6 and functions in 
ectopic lymphoid aggregation (Fig. 6a).

Myeloid cells are also tightly involved in the develop-
ment of RAs [26, 169–173] (Fig.  6a). Alivernini et  al. 
[169] identified two types of synovial tissue macrophages 
 (MerTKposTREM2high and  MerTKposLYVE1pos) enriched 
with negative regulators of inflammation, whose poten-
tial to induce remission in RA was confirmed by their 
ability to elicit a reparative response in synovial fibro-
blasts. Conversely,  HBEGF+ inflammatory macrophages 
were identified in the synovium, promoting fibroblast 
invasiveness through an epidermal growth factor recep-
tor-dependent manner [170]. Zhang et al. [26] identified 
a cluster of proinflammatory monocytes as the major 
source of IL1B production. In addition, Zhang et al. [173] 
discovered a novel  RANK+  TLR2− monocyte popula-
tion that negatively regulates osteoclast fusion. Although 
these cells can differentiate into a  TRAP+ osteoclast lin-
eage, they fail to undergo fusion and form osteoclasts 
[173] (Fig.  6a). Therefore, myeloid cells also serve as a 
trigger for the occurrence and development of RA.

Aggressive fibroblasts also play an important role in the 
progression of RA (Fig.  6b). Wei et  al. [174] found that 
neurogenic locus notch homolog protein 3 (NOTCH3) 
signaling from vascular endothelial cells drives tran-
scriptional and spatial gradients in fibroblasts. In mice, 
blocking NOTCH3 signaling attenuated inflammation 
and prevented joint damage in RA. Croft et al. [175] clas-
sified FAPα+THY1+ immune effector fibroblasts and 
FAPα+THY1− bone destructive fibroblasts, while Zhang 
et al. [26] identified THY1(CD90)+HLA-DRAhigh sublim-
ing fibroblasts as the potential major source of IL-6 in 
the synovium of RA patients. Chen et al. [176] identified 
 HBEGF+ fibroblasts as being related to RA remission, 
improving our understanding of RA pathogenesis and 
treatment research. Farina et al. [177] discovered that the 
active proNGF/p75NTR axis could promote pro-inflam-
matory responses in synovial fibroblasts and further 
contribute to chronic synovial inflammation. scRNA-seq 
also revealed that fibroblasts are susceptible to ferropto-
sis, but TNF signaling promotes cystine uptake and glu-
tathione biosynthesis to protect them from ferroptosis, as 
validated in  vitro [178]. Thus, fibroblasts primarily con-
tribute to RA pathology through inducing inflammation. 

In addition, fibroblast-like synoviocytes (FLS) are exten-
sively involved in the mechanism underlying RA devel-
opment. Smith et  al. [179] found that myeloid and T 
cell-derived cytokines, such as TNF, IFN-γ, and IL-1β 
can drive 4 distinct states of FLS. Biesemann et al. [180] 
revealed that FLS serves as a receptor for TNF and IL-6 
in OA, and the combination of TNF and IL-6 antibod-
ies can result in sustained long-term remission in mouse 
models. In addition, in relapse RA patients, scRNA-seq 
showed that the fibroblast growth factor pathway was 
highly activated in lining FLS subsets and associated with 
bone erosions [181]. The importance of the fibroblast 
growth factor pathway in relapsed RA has been verified 
in  vitro experiments and RA animal models, providing 
valuable insights into treatment [181] (Fig.  6b). These 
studies illustrated the altered function of fibroblasts, 
improving our understanding of the cellular basis of OA.

scRNA-seq provides a promising approach for inves-
tigating joint health and disease. However, difficulties in 
dissociating articular tissue such as the posterior syn-
ovium, make it challenging to identify specific patho-
logical changes that may play critical roles in particular 
diseases. Therefore, it is necessary to develop more pre-
cise methods for tissue separation or utilize spatial tran-
scriptomic analysis with single-cell accuracy.

The roles of stem cells in bone regeneration and disease
Skeletal stem/progenitor cells are critical for maintain-
ing the homeostatic microenvironment of bones. In 
2014, Zhou et  al. [182] uncovered  LepR+ skeletal stem 
cells (SSCs) in the bone marrow. Moreover, Mo et  al. 
[25] used scRNA-seq to characterize the cellular hetero-
geneity in  LepR+ SSCs, discovering a quiescent  Notch3+ 
subcluster associated with the vasculatures and osteo-
chondrogenic differentiation via Monocle2 analysis, as 
well as a  Sca1+ subcluster with high clonogenic activ-
ity. Chan et al. [183] and Worthley et al. [184] identified 
self-renewal and multipotent SSCs from the growth plate 
of newborn mice. Subsequently, SSCs were also found 
within the periosteum of postnatal long bones and cal-
varia [185]. Correspondingly, Chan et al. [186] identified 
human SSCs in the growth plate of 17-week-old fetal long 
bones. He et al. [22] further explored the emergence and 
features of human embryonic SSCs during early bone 
formation. By comparing human limb buds at 5 weeks 
post conception (WPC) and long bones at 8 WPC, they 
discovered 16 clusters, including  PRRX1+ limb bud mes-
enchymal subsets and osteo-chondrogenic progenitors 
with differentiation potential into osteogenic and chon-
drogenic lineages [22]. Ambrosi et al. [187] revealed that 
the decline of SSCs in aged mice was connected with 
diminished transcriptomic diversity, which could be 
reversed by a combination treatment of BMP2 and the 



Page 16 of 24Lin et al. Military Medical Research           (2024) 11:33 

CSF1 antagonist. Yin et al. [188] revealed a  Scx+Hoxd13+ 
musculoskeletal stem cell population through scRNA-seq 
analysis on E10.5, E12.5, and E15.5 murine limbs, which 
is indispensable for bone development. Meanwhile, Hao 
et  al. [189] analyzed mouse hindlimb buds, postnatal 
long bones, and fractured long bones at single-cell reso-
lution, and identified  Cd168+ skeletal stem/progenitor 
cells (SSPCs) with highly replicating capacity and osteo-
chondrogenic potential in embryonic and postnatal long 
bones. Additionally, Sivaraj et  al. [80] investigated the 
differences between bone marrow stromal cells (BMSCs) 
from the metaphysis and diaphysis and demonstrated 
the regulatory effect of PDGFR-β signaling and the tran-
scription factor Jun-B on BMSCs fates. The bone marrow 
microenvironment also plays a crucial role in regulating 
hematopoiesis [190]. Tikhonova et  al. [38] revealed cel-
lular heterogeneity within the bone marrow niche using 
scRNA-seq under stress conditions and showed an adi-
pocytic skewing of perivascular cells. Baccin et  al. [21] 
identified 2 Cxcl12-abundant-reticular (CAR) cell sub-
sets (Adipo-CAR and Osteo-CAR) localized to sinusoidal 
and arteriolar surfaces, respectively. These subsets act as 
potential cytokine-secreting clusters and maintain the 
perivascular microenvironment.

Fractures are the most common type of bone injury, 
and immune cells actively participate in the process of 
fracture healing [191]. Zhang et  al. [57] analyzed fresh 
and aged fracture bones of mice by scRNA-seq and iden-
tified 13 clusters. Among these clusters, B cells exhib-
ited significant variations. Moreover, progenitor cells 
are essential in fracture repair. Julien et  al. [192] dem-
onstrated that skeletal muscle progenitors adopt a fibro-
genic fate before engaging in chondrogenesis following a 
fracture. They subsequently integrated the dataset from 
healthy and fractured mice for 3 d post-injury, reveal-
ing a cluster of fibrochondro progenitor (FCP) primarily 
located at the periosteum in injured tissues [193]. Pseu-
dotime analysis using Monocle3 uncovered FCP pro-
cessing with both fibrotic and chondrogenic trajectories, 
highlighting the important role of FCP in fracture repair 
[193]. Serowoky et al. [194] found that deficient Hedge-
hog signaling probably leads to failed recruitment of 
Cxcl12-expressing SSPCs, emphasizing the importance 
of Shh in large-scale bone regeneration.  Cxcl12+ BMSCs 
undergo identity conversion into a skeletal stem cell-like 
state in response to injury, which was associated with the 
Wnt signaling pathway [195]. On the other hand, skeletal 
muscle mesenchymal progenitors adopt a fibrogenic fate 
before engaging in chondrogenesis after fracture, which 
elucidates the central role played by skeletal muscle in 
bone regeneration [192]. Additionally, fractures can be 
complications arising from osteoporosis, particularly 
among elderly individuals [5]. Abnormal activation of 

osteoclasts has been closely associated with osteopo-
rosis, and Gingival tissue-derived MSCs (GMSCs) have 
been found to inhibit osteoclast activity [196, 197]. Based 
on this finding, Wu et al. conducted scRNA-seq analysis 
of GMSCs and identified a  CD39+ subcluster that spe-
cifically expressed osteogenic genes such as BMP2 and 
RUNX2, exerting its osteogenic capacity via the Wnt/β-
catenin pathway [198]. These studies provide novel 
insights into the mechanism of fractures and potential 
therapeutic targets.

Osteosarcoma (OS) is one of the most common bone 
malignancies worldwide, with an estimated global inci-
dence rate of approximately 4.8/1,000,000 [199]. Guo 
et  al. [200] found a cluster of osteosarcoma cells exhib-
iting highly expressing levels of collagen type VI alpha 1 
chain (COL6A1), collagen type VI α 3 chain (COL6A3), 
and MIF, which were closely associated with lung metas-
tasis. In recurrent OS cases, a subcluster of cancer-asso-
ciated fibroblasts exhibited increased infiltration and 
enrichment in the epithelial-mesenchymal transition 
pathway [201]. Apart from OS, giant cell tumor of bone 
(GCTB) represents another common bone tumor that 
rarely leads to mortality but significantly elevates the 
risk of bone fractures and even disability [202]. The pres-
ence of osteoclasts and other immune cells in the tumor 
microenvironment plays a crucial role in these complica-
tions. Zhou et al. [203] used scRNA-seq to compare the 
transcriptome profiles between primary tumors, recur-
rent lesions, and pulmonary metastatic sites in osteosar-
coma patients. They found a distinct cluster consisting 
of  FABP4+ macrophages infiltrating in lung metastatic 
osteosarcoma lesions while observing heightened infil-
tration levels of osteoclast across all patients [203]. Feng 
et al. [204] characterized major clusters of macrophages, 
osteoclasts, and NK/T cells from GCTB patients and 
resolved the intracellular communication networks of 
immune cells via CellPhoneDB analysis, highlighting the 
role of RANK-RANKL signaling in inducing migration of 
osteoclasts to osteoblasts.

Despite the exceptional resolution provided by scRNA-
seq, which greatly enhances our understanding of skeletal 
biology, certain limitations persist. Bones are primarily 
composed of multiple lamellar layers, resulting in a highly 
dense tissue structure, which may impede the effective-
ness of scRNA-seq in capturing cells if the matrix is not 
fully disassembled. As a result, it is imperative to employ 
proper grinding methods and allocate sufficient time for 
enzymatic hydrolysis before cell separation to ensure pre-
cise and reliable outcomes.

Regeneration of muscle and tendon in skeletal disorders
Skeletal muscle regeneration following injury relies on 
microsatellite cells, also known as muscle stem cells, to 
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restore the muscular microenvironment [205]. Giordani 
et  al. [206] depicted the cellular landscape of adult 
mouse hindlimb muscles and demonstrated that  Scx+ 
cell clusters give rise to tenocytes, while  Itga7+Vcam1− 
cell clusters exhibit myogenic potential and enhance 
muscle stem cell (MuSC) engraftment following trans-
plantation [206]. Andre portrayed the atlas of injured 
muscle and identified a novel cluster of satellite cells 
that might function as sensors for muscle infection or 
injury via the antiviral interferon pathway [207]. These 
atlas studies have enhanced the comprehensive under-
standing of the muscular ecosystem during hemostasis 
and repair. Penaloza et al. [208] revealed the heterogene-
ity of  Mesp1+ lineage cells, which contribute to cardiac, 
hematopoietic, and skeletal myogenic development, and 
demonstrated potential differential trajectories in single-
cell resolution. Moreover, Yang et  al. [209] discovered 
a Pax3-expressing melanocyte population with robust 
myogenic potential, which was induced from the skin 
by a novel small-molecule cocktail. Although myosatel-
lite cells are indispensable for muscle regeneration, it 
is also dependent on the crosstalk between MuSCs and 
components within their niches [210]. De Micheli et  al. 
[211] analyzed the scRNA-seq data from hindlimb mus-
cles of myotoxin-induced models and found that FGF2, 
TGF-β1, and RSPO3 regulate proliferation of myogenic 
stem/progenitor cell through a Syndecan-dependent 
mechanism. This proposed interaction network suggests 
a potential role for Syndecans in regulating myogenic dif-
ferentiation [211]. In addition, Xi et  al. [212] employed 
scRNA-seq to delineate the “roadmap” of human skeletal 
muscle and revealed the co-regulated gene networks and 
transcription factors that are present at distinct myo-
genic stages. Guo et al. [213] discovered that SRSF2 is a 
key regulator governing the entry of Myf5 cells into the 
myogenic program, ensuring their survival by prevent-
ing premature differentiation and apoptosis. Scott et  al. 
[214] unveiled that HIC1 regulates tissue-resident mes-
enchymal progenitors to maintain quiescence and facili-
tate muscle regeneration. Epigenetically, circular RNAs 
also exert significant influence on muscle regeneration, 
as demonstrated by Yan et  al. [215], who revealed that 
circFgfr2 regulates myogenesis and muscle regeneration 
through the activation of the JNK/MAPK pathway across 
27 developmental stages in pig skeletal muscle.

Similar to muscle, tendons also possess the capacity to 
undergo self-repair. Given the importance of regulating 
tendon differentiation for effective self-repair, Kaji et  al. 
[216] established directed differentiation models based 
on developmental cues and scRNA-seq analysis. These 
models successfully generated tendon and fibrocarti-
lage cells from mouse embryonic stem cells by activat-
ing TGF-β and hedgehog pathways. They also identified 

retinoic acid signaling as a critical regulator of the cell 
fate switch between TGF-β-induced tendon and fibro-
cartilage lineages [216]. Moreover, tissue-resident tendon 
stem cells are also indispensable for tendon repair. Har-
vay et al. [217] revealed a cluster of Tppp3+ cells as the 
potential tendon stem cells, which were shown to gener-
ate new tenocytes and self-renew upon injury through 
lineage tracing. Fan et  al. [218] found  Cd9+Cd271+ 
tendon stem/progenitor cells characterized by nerve 
growth factor secretion primarily involved in the con-
version from neonate to adult tendon. Fang et  al. [101] 
demonstrated the clonogenicity and multipotency of 
Gli1-expressing progenitors, which function as stem cells 
during tendon regeneration, while Harvey et  al. [217] 
found that PDGFRA-expressing Tppp3+ tendon stem 
cells were regulated by PDGFR-AA to produce new teno-
cytes. By combining single-cell gene regulatory network 
analysis, in vitro inhibitor identification, and in vivo dele-
tion of specific genes related to tendons, Fan et al. [218] 
verified that the SHP2 signaling pathway is a crucial reg-
ulator for tendon maturation. Furthermore, the tendon 
microenvironment plays a crucial role in influencing ten-
don repair. Muscat et al. [219] identified the presence of 
macrophages and T cells in adult tendons using scRNA-
seq, which contributes to the homeostasis in tendons. 
Following the knockout of chemokine C-C-motif recep-
tor 2 (CCR2), a key molecule for macrophage recruit-
ment, there was an observed decrease in myofibroblast 
and impaired functional recovery during the later stages 
of healing [219].

Challenges and prospects
In the developing field of musculoskeletal research, the 
advent of scRNA-seq has ushered in a new era, enabling 
researchers to delve into the intricacies of the transcrip-
tome with unprecedented precision at the single-cell 
resolution. This powerful tool has made significant con-
tribution to elucidating the underlying mechanism of 
various diseases. Nevertheless, scRNA-seq faces several 
challenges that must be addressed when applied in skel-
etal system research.

Firstly, the sheer volume of data generated by scRNA-
seq poses a formidable challenge, as it produces vast 
amounts of high-dimensional data that complicates the 
extraction of information with biological importance. 
Advanced bioinformatic analysis can help pinpoint key 
factors amidst the data explosion. For example, Cell 
BLAST, developed by Cao et  al. [220], empowers the 
precise and swift retrieval and annotation of newly gen-
erated single-cell data within existing databases, thereby 
enhancing the overall accuracy and efficiency of the 
annotation process. To tackle the challenge posed by 
high-dimensional data processing, it becomes imperative 
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to delve deeper into the intricacies of this issue. The 
future may witness the development of more sophisti-
cated machine learning algorithms for constructing more 
accurate prediction models and innovative dimensional-
ity reduction techniques to select more vital factors for 
analysis. These developments will empower researchers 
to extract biologically significant information from com-
plex datasets more efficiently. It is essential to recognize 
that these findings must be verified by rigorous biological 
experiments to clarify their biological validity and clinical 
relevance.

Secondly, the lack of comparability among study out-
comes in skeletal research arises from the heterogene-
ity in sampling standards, sequencing methods, and 
analysis approaches that have been widely employed in 
scRNA-seq.  Moreover, difficulties in data integration 
due to negative data-sharing behaviors greatly diminish 
the value of resources in studies. This challenge can be 
attributed to the absence of standardized practices across 
laboratories. To overcome this obstacle, future endeavors 
should focus on establishing clear standards and speci-
fications that ensure data consistency across different 
research settings. Initiatives aimed at creating universally 
accepted standardization processes and fostering shared 
data principles are essential milestones for advancing the 
field. Encouraging multi-center collaborations emerges 
as another paramount strategy to enhance the reliability 
of scRNA-seq applications in skeletal research. By pro-
moting a collective commitment to standardized prac-
tices, researchers can not only ensure the reproducibility 
of their findings but also facilitate robust data sharing. 
Such collaborative efforts are pivotal for realizing the full 
potential of scRNA-seq by enabling more reliable, com-
parable, and impactful results that transcend individual 
research boundaries. Ultimately, the establishment of a 
shared framework will amplify the collective impact of 
research endeavors and accelerate progress in musculo-
skeletal studies.

In addition to scRNA-seq, a plethora of emerging sin-
gle-cell sequencing technologies are poised to revolu-
tionize our understanding of skeletal research, offering 
more nuanced insights into cellular dynamics and molec-
ular mechanisms. Single-cell ATAC-seq, for instance, 
presents a groundbreaking approach by unraveling chro-
matin accessibility profiles at the single-cell level [221]. 
The approach that uses transposase to capture chroma-
tin openness provides researchers with the opportunity 
to employ high-throughput sequencing for an in-depth 
examination of chromatin accessibility and epigenetic 
properties [221]. Not only does this technique pro-
vide intricate details about the accessibility of genomic 
regions but also sheds light on the complex landscape 
of transcriptional regulation within individual cells. The 

ability to discern chromatin accessibility offers a valuable 
complement to scRNA-seq, enabling researchers to delve 
deeper into the epigenetic underpinnings of skeletal pro-
cesses. Spatial transcriptome, another emerging frontier, 
addresses a critical limitation of scRNA-seq by restor-
ing spatial context to gene expression patterns [222]. It 
employs either gene chips or image-based technologies 
to transform the gene expression information from sam-
pled sites into digital signals [222]. By visualizing gene 
expression and distribution within tissue sections, spa-
tial transcriptomics enables researchers to discern how 
cells interact in their native microenvironment. This 
capability provides a more holistic understanding of the 
spatial organization of cell populations within skeletal tis-
sues. Multi-omics approaches that integrate genomics, 
metagenomics, transcriptomics, proteomics, and metab-
olomics offer a more comprehensive and insightful per-
spective on the pathological mechanism in orthopedic 
diseases [223]. Furthermore, scRNA-seq brings plenty of 
clues for the theoretical basis of utilizing genetic models 
and allows for the integration of clonal relationships into 
these molecular landscapes [224]. Sarah Bowling et  al. 
[225] introduced the CRISPR array repair lineage trac-
ing mouse line and accompanying analysis tools, which 
enable the simultaneous investigation of lineage and 
transcriptomic information in individual cells in  vivo. 
A novel sequencing approach called Camellia-seq has 
recently emerged, allowing for the concurrent measure-
ment of chromatin accessibility, DNA methylation, gene 
expression, and lineage information within individual 
cells [226]. Coupled with Cas9-TdT CRISPR array repair 
lineage tracing (DARLIN), Li et al. [226] designed a sta-
ble inducible lineage-labeling genetic mouse model capa-
ble of labeling approximately  1018 gene sites, and used 
Camellia-seq to systematically unveil unprecedented 
insights into the cellular fate decision process at the sin-
gle-cell level. As we embrace these advancements, the 
combined application of scRNA-seq with these emerg-
ing technologies promises to unveil a more detailed 
and interconnected landscape of skeletal biology. These 
innovative tools not only complement the limitations of 
scRNA-seq but also pave the way for a more holistic and 
integrative exploration of the complexities inherent in 
musculoskeletal research.

Conclusions
In this review, we outlined the essential steps for 
acquiring high-quality single-cell suspensions from 
skeletal tissues, discussed the commonly employed 
scRNA-seq platforms in skeletal system research, and 
elucidated the indispensable bioinformatic analysis 
pipelines crucial for deciphering cellular heterogene-
ity and responses in skeletal homeostasis and diseases. 



Page 19 of 24Lin et al. Military Medical Research           (2024) 11:33  

These cutting-edge technologies hold promise in our 
pursuit of a comprehensive understanding and effec-
tive management of skeletal disorders. By harnessing 
the power of scRNA-seq technology, we can effectively 
address current challenges in skeletal research, enhance 
our understanding of the underlying mechanisms 
driving relevant diseases, propel precision medicine 
advancements in this field, and ultimately contribute 
to the prevention and treatment of skeletal disorders in 
military medicine.
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