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Abstract 

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secre‑
tory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP‑NENs) are the most 
common subtype of NENs. Historically, GEP‑NENs have been regarded as infrequent and slow‑growing malignancies; 
however, recent data have demonstrated that the worldwide prevalence and incidence of GEP‑NENs have increased 
exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP‑NENs 
result in a limited life expectancy. These findings suggested that the natural biology of GEP‑NENs is more aggres‑
sive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis 
and management of patients with GEP‑NENs. In this review, we have summarized the limitations and recent advance‑
ments in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, 
and treatment of GEP‑NETs to identify factors contributing to delays in diagnosis and timely treatment of these 
patients.
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Background
Neuroendocrine neoplasms (NENs) originate from spe-
cialized secretory cells within the diffuse neuroendocrine 
system, with approximately two-thirds manifesting in 
the gastroenteropancreatic system [1–3]. Although they 
are uncommon, gastroenteropancreatic neuroendocrine 
neoplasms (GEP-NENs) have significantly increased in 

global prevalence and incidence over the past three dec-
ades. This class of tumors exhibits a wide range of diver-
sity and complexity, varying from indolent to aggressive. 
Furthermore, due to their rarity, there is a lack of under-
standing regarding diagnosis and treatment among clini-
cians, patients, and the general public. Genetic variations 
further complicate our understanding of disease biol-
ogy and hinder the development of targeted therapies 
[4, 5]. Consequently, effective strategies for diagnos-
ing and treating these tumors are lacking. Moreover, 
the prognosis of GEP-NENs is uncertain due to the 
absence of reliable prognostic markers, often leading to 
delayed diagnoses at advanced stages [4–7]. Therefore, 
it is crucial to conduct advanced research and develop 
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innovative treatment approaches to improve the diagno-
sis and management of GEP-NENs. This review provides 
a comprehensive overview of the epidemiology, clinical 
presentation, diagnosis, management, challenges, and 
future perspectives of GEP-NENs. The insights derived 
from this review aim to inform and guide the develop-
ment of diagnostic and therapeutic strategies for these 
rare neoplasms.

Epidemiology
NENs are generally considered rare diseases. However, 
recent reports have shown a remarkable increase in the 
incidence of GEP-NENs worldwide [8, 9]. An analysis 
according to National Cancer Data in the United States 
indicated that the age-adjusted incidence of GEP-NENs 
increased from 1.05 per 100,000 persons in 1975 to 5.45 per 
100,000 persons in 2015, which is quite alarming [2]. There 
are also similar trends in European populations [10–14]. 
Korse et  al. [10] evaluated epidemiological data from the 
Netherlands and reported that the age-standardized inci-
dence of GEP-NENs increased from 2.1 per 100,000 per-
sons in 1990 to 4.9 per 100,000 persons in 2010. Despite the 
lower incidence in Asia compared with that in the United 
States and Europe [15, 16], it also increased from 0.244 per 
100,000 in 1996 to 3.162 per 100,000 in 2015 [16]. Several 
factors may account for the lower incidence of GEP-NENs 
in Asia. First, due to the variations in healthcare infrastruc-
ture and resources between Asia and the United States, 
access to and utilization of services for early screening of 
cancer are more common in North America than in Asia. 
Second, detection technologies, including multiphase con-
trast-enhanced computed tomography (CT), magnetic res-
onance imaging (MRI), nuclear medicine, and biomarker 
assessment, are more readily available in the United States 
than in Asia. This may hinder early detection and timely 
intervention in Asian patients. Third, the data gathered 
from cancer registries in Asia could contribute to the lower 
incidence of NENs, given that the registries are not yet fully 
established [5]. Interestingly, several studies have shown 
that sex plays an essential role in the incidence and prog-
nosis of GEP-NENs. Leoncini et al. [17] systematically ana-
lyzed 11 studies involving 72,048 patients and reported that 
males exhibit a greater incidence of high-grade NENs. This 
finding was supported by other studies, which also dem-
onstrated that males are more likely to develop malignant 
NENs [1, 18, 19]. Differences in dietary habits may contrib-
ute to differences in the incidence of GEP-NENs between 
males and females [20, 21]. Usually, males tend to have a 
preference for consuming significant quantities of red meat, 
which can increase the risk of cancer development. In con-
trast, females are more inclined to consume fruits and veg-
etables, which are rich in antioxidants and other beneficial 
nutrients that may have the potential to reduce the risk of 

GEP-NENs [20, 21]. Furthermore, there are notable varia-
tions in hormone levels between males and females, with 
certain female hormones potentially influencing the occur-
rence of GEP-NENs. This hypothesis is substantiated by 
the consensus of multiple experts and research findings 
[22, 23]. However, the impact of sex on the incidence and 
response to specific drugs remains poorly understood. 
Therefore, further research is necessary to address the fol-
lowing questions: do female hormones impact the occur-
rence of GEP-NENs and treatment efficacy?

Clinical presentations
The clinical manifestations of GEP-NENs vary widely, 
primarily depending on the tumor’s capacity to store 
and secrete biologically active hormones. Certain hor-
mones are associated with specific clinical syndromes, 
while others are not. Based on these findings, the clini-
cal presentations of NENs can be categorized into func-
tional and non-functional manifestations, as outlined 
in Table  1 [3, 9, 16]. Typically, functional GEP-NENs 
secrete hormones, resulting in the development of a 
clinical condition characterized by hormone overpro-
duction. For example, insulinomas are insulin-secreting 
tumors associated with hypoglycemia symptoms, includ-
ing palpitations, diaphoresis, and altered mental status. 
Gastrinomas secrete gastrin, leading to excessive acid 
production and esophagitis, which can cause severe pep-
tic ulcer disease, gastroesophageal reflux disease, and 
chronic diarrhea. Glucagonomas are characterized by 
symptoms such as necrolytic migratory erythema, hyper-
glycemia, diabetes mellitus, weight loss, and diarrhea. 
VIPomas autonomously secrete vasoactive intestinal 
polypeptide, resulting in watery diarrhea, hypokalemia, 
and achlorohydria. Classic carcinoid syndrome manifests 
as flushing, wheezing, and diarrhea due to the hyperse-
cretion of serotonin and other vasoactive amines, such 
as histamine, tachykinins, and prostaglandins. However, 
non-functional GEP-NENs do not exhibit any hormone-
related clinical symptoms; instead, their primary symp-
toms are tumor growth and metastasis. Thus, the clinical 
presentation of non-functional NENs can be asympto-
matic or accompanied by abdominal pain, weight loss, or 
fatigue.

Pathology and grading system
The histological features of GEP-NENs corroborate their 
anatomical site and endocrine cell origin. GEP-NENs are 
characterized by the loss of epithelial tubular gland struc-
tures and relatively diffuse expression of neuroendocrine 
markers such as chromogranin A (CgA) [24]. The nuclear 
protein Ki-67 is expressed during the active phases of the 
cell cycle and plays a crucial role in dispersing mitotic chro-
mosomes [25]. Therefore, the current classification systems 
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proposed by the World Health Organization (WHO) 
and European Neuroendocrine Tumor Society (ENETS) 
are based on the Ki-67 index and cytological analyses of 
mitoses in histological material (Table 2) [5, 6]. Several clin-
ical studies have shown that patients with grade 3 tumors 
exhibit significantly lower survival rates than those with 
grade 1 or grade 2 tumors. Furthermore, patients at the 
grade 2 stage experience notably worse survival outcomes 
than those at the grade 1 stage [1, 2, 4].

Recently, several novel classifications have been pro-
posed that may be considered superior to the current 
classification for predicting malignant tumor biology and 
patient prognosis. For example, La Rosa et  al. [26] pro-
posed a new global histological grading system based on 
the WHO 2000 and ENETS-WHO 2010 grading systems 
combined with histological features to improve tumor 
prognostic stratification (grade 1 vs. grade 2, P = 0.007; 
grade 1 vs. grade 3, P < 0.001; grade 2 vs. grade 3, 
P = 0.001). The current classifications, although no longer 
reliant on anatomical location or histology, thereby 
reducing the inconsistencies of GEP-NEN diagnosis, 
still possess certain limitations. As previously indicated, 

NETs are classified into three grades, namely, grade 1, 
grade 2, or grade 3, which are determined based on the 
mitotic count and/or Ki-67 labeling index. To remove any 
ambiguity in the classification (2 – 3%), the grade cutoffs 
were gradually adjusted from grade 1 to grade 2 [27]. Fur-
thermore, there has been a recent focus on the assess-
ment of Ki-67 levels, as the reliability of these methods 
varies among different approaches. These findings sug-
gest that the grade of NETs for the same patient may vary 
across different hospitals.

Biological profiles and genetic differences 
in neuroendocrine tumors (NETs)
The origin of neuroendocrine cells can be traced back to 
gastrointestinal stem cells rather than neurocrest cells. In 
recent years, extensive efforts have been made to eluci-
date the biology of NETs. The protein synthesis, hormone 
secretion, and proliferation of these tumors primarily rely 
on interactions between somatostatin receptors (SSTRs) 
and their associated molecules. The induction of angio-
genesis, survival, and metabolic acceleration in NENs 

Table 1 Comparison of functional and non‑functional NENs

CT computed tomography, MRI magnetic resonance imaging, NENs neuroendocrine neoplasms, SSAs somatostatin analogs

Items Functional NENs Non-functional NENs

Hormones Secrete bioactive substances;
Clinical manifestations are related to the specific hormones’ 
secretion

Do not secrete bioactive substances;
They may produce hormones, but the levels are usually not high 
enough to cause noticeable symptoms

Sign and symptoms It depends on the hormone being produced;
Examples and associated symptoms:
 Insulinoma: hypoglycemia, palpitations, diaphoresis, 
and confusion;
 Gastrinoma: esophagitis, peptic ulcer disease, gastroesopha‑
geal reflux disease, and diarrhea;
 Carcinoid syndrome: flushing, diarrhea, secretion of vasoac‑
tive mines, and bronchospasm

Related to the tumor size, location, and invasion of nearby 
structures;
Symptoms may include abdominal pain, weight loss, fatigue, 
and other non‑specific symptoms

Diagnostic methods Hormone levels were measured and imaging tests were per‑
formed to locate the tumor;
Hormonal assays (serotonin, insulin, gastrin, etc.)

Imaging studies (CT, MRI, positron emission tomography 
scans) and biopsies are to confirm the presence of the tumor 
and assess its characteristics;
Biomarkers such as chromogranin A and others were assessed, 
but the elevation is not as prominent as in functional NENs

Treatment Designed to control hormone secretion and manage associ‑
ated symptoms;
Surgical resection, targeted therapy, and SSAs may be used 
based on the type and stage of the tumors

If feasible, the focus is on surgical resection and may also include 
chemotherapy, targeted therapy, and SSAs;
Prognosis usually depends on the stage and grade of the tumor, 
as well as the response to treatment

Table 2 WHO classification and grading criteria for GEP‑NENs

WHO World Health Organization, GEP-NENs gastroenteropancreatic neuroendocrine neoplasms, NET neuroendocrine tumor, NEC neuroendocrine carcinoma

Classification Differentiation Grade Mitotic rate (mitoses/2  mm2) Ki-67 index

NETs Well‑differentiated Grade 1  < 2  < 3%

Grade 2 2 – 20 3 – 20%

Grade 3  > 20  > 20%

NECs Poorly‑differentiated Grade 3  > 20  > 20%
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depends on the upregulation of the mammalian target 
of rapamycin (mTOR). Proangiogenic factors, includ-
ing platelet-derived growth factor, vascular endothelial 
growth factor, angiopoietin, semaphorins, and fibroblast 
growth factor, are involved in the tumorigenesis of NETs 
[28]. The tumor microenvironment, which consists of the 
extracellular matrix and various cellular components, 
such as stromal, inflammatory, and endothelial cells, 
plays a crucial role in influencing the biological behav-
ior, proliferation, response to therapy, and propensity 
for developing fibrotic complications of tumors [29]. The 
degradation of the extracellular matrix can accelerate 
the carcinogenesis and progression of NETs. Moreover, 
NETs can secrete and utilize a diverse range of mediators, 
including platelet-derived growth factor and serotonin, 
to stimulate and enhance the proliferation of fibroblasts, 
ultimately leading to fibrosis. Furthermore, the upregu-
lation of hypoxia-inducible factor 1-α can induces the 
secretion of proangiogenic factors, thereby accounting 
for the heightened vascular density observed in NETs 
[30]. The infiltration of immune-related cells can also 
establish an immunosuppressive microenvironment for 
the progression of NETs [31].

In addition to their distinct biological characteristics, 
NETs have a unique genetic profile. The genomic, epig-
enomic, and transcriptomic profiles of GEP-NETs vary 
based on the primary site and degree of differentiation. 
Genomic deletion is more prevalent in pancreatic NETs 
(pNETs) than chromosomal gain. Somatic mutations in 
multiple endocrine neoplasia type 1 and death domain 
associated protein/α-thalassemia, mental retardation, 
X-linked have been identified in 44% and 43% of pNETs, 
respectively, while 14% of tumor samples exhibited muta-
tions in mTOR and related pathways, including phos-
phatase and tensin homolog, tuberous sclerosis complex 
2, phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha [32]. An investigation involving 102 
primary pNETs demonstrated that 4 principal pathways, 
including DNA damage repair, chromatin remodeling, 
telomere maintenance, and mTOR induction, were aber-
rantly activated in cancers. Additionally, germline muta-
tions have been observed in clinically sporadic pNETs, 
with genetic mutations identified in MUTYH, CHEK2, 
and BRCA2 [33]. Compared with pNETs, insulino-
mas present distinct characteristics. Mutations in the 
YY1 gene have been detected in 30% of samples from a 
cohort of 113 Asian patients with insulinoma [34]. How-
ever, mutations and genetic alterations are less com-
mon in gastrointestinal NETs than in pNETs. It has 
been observed that 60 – 90% of small bowel NETs lack 
chromosome 18, but these chromosomal changes do not 
result in significant biological effects [35]. In intestinal 
NETs, there is a low mutational rate, with CDKN1B gene 

mutations or deletions identified in only 8% of patients 
[36, 37]. However, it should be noted that CDKN1B 
mutation is not associated with disease progression, clin-
ical course, or prognosis but is linked to heterogeneity 
within and between tumors [38]. In addition, small bowel 
carcinoids exhibit widespread DNA hypomethylation, 
and clinically aggressive behavior may be linked to a high 
methylation index [39]. The presence of substantial DNA 
methylation alterations in primary and metastatic tumors 
confirms the potential function of epigenetic dysregula-
tion in the malignancy of small bowel NETs [40].

Diagnosis of GEP‑NENs
Biomarkers
Numerous studies and guidelines have demonstrated 
that the serum concentration of CgA serves as a reliable 
biomarker for the detection of GEP-NENs [24, 41–45]. 
Notably, elevated levels of CgA have also been observed 
in several non-neuroendocrine carcinomas (NECs), such 
as lung, breast, and prostate carcinomas [46]. Moreover, 
multiple studies have proposed that diagnostic models 
incorporating CgA and other factors are more effective in 
diagnosing GEP-NENs than those relying solely on CgA. 
For example, it has been reported that the combined 
utilization of CgA and SSTR scintigraphy yields notably 
higher sensitivity and specificity than the use of CgA in 
isolation [47].

Recently, a range of novel biomarkers have been evalu-
ated and demonstrated potential as future therapeutic 
tools for the management of NENs (Table  3) [48–64]. 
Kidess et  al. [65] investigated the diagnostic value of 
secreted phosphoprotein 1 (SPP1) in NEN. This study 
revealed a significant correlation between SPP1 and the 
grade of NENs, while no correlation was found between 
CgA and SPP1. These results suggested that SPP1 can be 
utilized independently of CgA in the diagnostic assess-
ment of NENs. Furthermore, CgA, rather than SPP1, 
serves as an indicator of tumor aggressiveness. There-
fore, the combined use of CgA (a broad indicator of neu-
roendocrine cell activity and tumor burden) and SPP1 
(associated with aggressive tumor behavior and metasta-
sis) may provide additional benefits for the diagnosis of 
GEP-NENs. Additionally, a notably greater level of SPP1 
was detected in patients with grade 3 NENs than in those 
with grade 1 or 2 NENs, with elevated baseline SPP1 
levels predicting an unfavorable outcome characterized 
by poor progression-free survival (PFS). Thus, cura-
tive resection is recommended for these patients. These 
findings underscore the potential of SPP1 as a promis-
ing biomarker with significant diagnostic utility in GEP-
NENs, as well as its potential role as a predictive tool for 
distinguishing grade 3 tumors from grade 1 or 2 tumors, 
thereby informing surgical decisions.
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Table 3 New biomarkers for the diagnosis of gastroenteropancreatic neuroendocrine neoplasms (GEP‑NENs)

Name Description NENs References

PNMA2 The PNMA2 can be utilized as a biomarker 
for detecting the recurrence and relapse 
of small intestine neuroendocrine tumors 
(SI‑NETs);
The low levels of Ma2 autoantibody did 
not show progression and recurrence‑free 
survival;
The higher levels of Ma2 antibodies were 
detected in the blood samples of TLC 
and ALC patients compared with healthy 
patients

Gastrointestinal neuroendocrine carcinomas 
(NECs);
SI‑NETs

 [48, 49]

SERPINA10 The poor expression of PMP22 and upregu‑
lation of SERPINA10 and SYT13 can cause 
invasion and metastasis of tumor cells

SI‑NETs  [50]

SMARCA4, MLH1, TSC1, ATRX, and ATR They are major molecular‑related pathways 
that determine the cytolytic activity

GFP‑NETs  [50, 51]

GRIA2, GPR112, OR51E1, CXCL14 and NKX2‑3 GRIA2 shows specific expression by the neu‑
roendocrine carcinoma cells;
GPR112 and OR51E1 have the ability 
to encode proteins with plasma membrane 
association and are targets for the diagnosis 
and treatment of cancer. Moreover, OR51E1 
demonstrates no mutation in the SI‑NEC 
patients in the various stages of progression;
CXCL14 and NKX2‑3 demonstrate poor 
expression in liver metastases compared 
to the primary tumors;
The general expression of OR51E1 and OMP 
is found in SI‑NETs

Gastrointestinal NECs;
SI‑NECs

 [48, 52, 53]

DcR3, TFF3 and Midkine Utilization as biomarkers in cancer diag‑
nosis and their expression is observed 
in the tumor samples
DcR3 shows overexpression in stage IV 
of the disease;
Upregulation of DcR3 and TFF3 mediates 
the unfavorable prognosis;
High serum levels of DcR3, TFF3, and Mid‑
kine are found in SI‑NET patients

SI‑NETs  [54]

UCH‑L1 and α‑internexin Demethylation of UCH‑L1 promoter can 
increase its expression in tumor samples;
The upregulation of UCH‑L1 
along with α‑internexin provides better 
prognosis and survival of patients

Pancreatic NETs  [55]

Pancreatic polypeptide (PP) and CgA Elevation in the serum levels of CgA (nor‑
mal < 98 μg/L) and PP (normal < 100 pmol/L) 
has been found in 69% and 31% of patients, 
respectively;
In the metastatic disease, the upregulation 
of PP and CgA was observed;
CgA sensitivity for functioning, non‑
functioning, pancreatic and gastrointes‑
tinal tumors is 96%, 75%, 74%, and 91%, 
respectively;
PP sensitivity for functioning, non‑function‑
ing, pancreatic, and gastrointestinal tumors 
is 54%, 57%, 63%, and 53%, respectively

GEP‑NETs  [56, 57]

Circulating tumor DNA (ctDNA) ctDNA was enriched in 30% of NEN cfDNA 
and 44% of patients possess at least one 
ctDNA‑positive sample;
The CNAs in the cfDNA were sensitive 
and specific for NENs;
The ctDNA evaluation can be utilized 
for understanding the diagnosis and disease 
progression pattern

NENs  [58, 59]
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Moreover, advanced technologies such as “omics” 
analyses offer enhanced opportunities for the diagno-
sis of GEP-NENs. The NETest is a liquid biopsy test for 
NENs that improves the accuracy of cancer molecular 
diagnosis by detecting NET-associated genes, such as Ki-
67, SSTR1, and SSTR2 expression levels through reverse 
transcription polymerase chain reaction [66, 67]. Cur-
rently, 5 experiments have evaluated the diagnostic value 
of NETs in GEP-NENs and reported them to be surro-
gate biomarkers for CgA in the diagnosis and screening 
of NENs [67–71]. In addition to liquid biopsy technology, 
biosensors are another promising approach for accessing 
GEP-NENs. To this end, an electrochemical immunosen-
sor was developed for the clinical detection of Ki-67. The 
established method can detect Ki-67 within the range of 

4.0 – 800 pg/ml, with a remarkably low detection limit as 
low as 1.7 pg/ml. To assess practical feasibility, the immu-
nosensor was compared with the conventional immuno-
histochemical staining method in the analysis of 8 rabbit 
tumor model samples. A minor discrepancy of less than 
2.51% was observed, indicating a high level of concord-
ance between the two methodologies [72]. Nonetheless, 
the real-time assessment of tumors was not deemed feasi-
ble using this approach. Further investigations focusing on 
innovative biosensor designs have the potential to estab-
lish correlations between Ki-67 levels, thereby offering 
valuable insights for clinical applications. Furthermore, 
an extended-gated organic field-effect transistor-based 
immunosensor was devised for the identification of CgA. 
This method enabled the detection of CgA in artificial 

Table 3 (continued)

Name Description NENs References

PD‑L1 PD‑L1 and PD‑1 demonstrated expression 
in 6% and 1% of tumor samples, respec‑
tively and 8% of peritumoral tissue samples 
demonstrated expression for both of these 
biomarkers;
The expression of PD‑1 causes the metasta‑
sis of the tumor during diagnosis;
The presence of circulating PD‑1+ PBMCs 
caused the progressive disease;
The circulating PD‑1+ PBMCs increased 
the expression of PD‑L1 in the tumor cells

GEP‑NETs  [60]

INSM1 All the primary GEP‑NENs and 94% of meta‑
static GEP‑NENs demonstrate the upregula‑
tion of INSM1;
The sensitivity of INSM1 was similar to SYN 
and it showed higher sensitivity com‑
pared with CgA in primary and metastatic 
neoplasms;
The specificity of INSM1 was compara‑
ble to CgA and it had higher specificity 
than SYN

Primary and metastatic NENs of the gastro‑
intestinal and pancreaticobiliary tracts

 [61, 62]

DLL3 DLL3 demonstrates expression in the 5 well‑
differentiated GEP‑NETs;
DLL3 was present in 76.9% of poorly‑differ‑
entiated NECs;
The upregulation of DLL3 mediates RB1‑loss 
and, causes the poor clinical outcome

GEP‑NENs  [63]

miR‑7‑5p The overexpression of miR‑7‑5p is observed 
in tumor samples;
The sera of all SI‑NEN patients demonstrated 
overexpression of miR‑7‑5p;
There was no association with the age, 
gender, and tumor stage

NENs of the small intestine  [64]

PNMA2 paraneoplastic antigen Ma2, SERPINA10 serpin family A member 10, SMARCA4 SWI/SNF related, matrix associated, actin-dependent regulator of chromatin, 
subfamily a, member 4, MLH1 mutL homolog 1, TSC1 TSC complex subunit 1, ATRX ATRX chromatin remodeler, ATR  ATR serine/threonine kinase, GRIA2 glutamate 
ionotropic receptor AMPA type subunit 2, ADGRG4 (GPR112) adhesion G protein-coupled receptor G4, OR51E1 olfactory receptor family 51 subfamily E member 
1, CXCL14 C-X-C motif chemokine ligand 14, NKX2-3 NK2 homeobox 3, DcR3 decoy receptor 3, TFF3 trefoil factor 3, mdk. S (MIDKINE) midkine S homeolog, UCHL1 
ubiquitin C-terminal hydrolase L1, CgA chromogranin A INSM1 INSM transcriptional repressor 1, DLL3 delta-like canonical Notch ligand 3, mir-7 (miR-7-5p) miR-7 
stem-loop, NET neuroendocrine tumor, NEC neuroendocrine carcinoma, NEN neuroendocrine neoplasm, SI-NEC small intestine neuroendocrine carcinoma, SI-NEN 
small intestine neuroendocrine neoplasm, TLC typical lung carcinoids, ALC atypical lung carcinoids, PMP22 peripheral myelin protein 22, SYT13 synaptotagmin-13, 
OMP olfactory marker protein, cfDNA circulating free DNA, CNAs copy number alterations, PD-1 programmed cell death protein-1, PD-L1 programmed death-ligand 1, 
PBMCs peripheral blood mononuclear cells, SYN synaptophysin
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saliva samples with a detection threshold of 0.11  µg/ml, 
showing promise for future clinical applications in cancer 
patients [73]. Moreover, surface-enhanced Raman spec-
troscopy (SERS) utilizing an anti-CgA antibody-capturing 
probe was employed for CgA analysis. The CgA-SERS 
probe technique yielded results comparable to those of 
Western blotting and superior outcomes compared to 
those of traditional immunohistochemistry [74].

Endoscopy
Endoscopy has emerged as a promising strategy for the 
diagnosis of gastric, duodenal, and colorectal NENs, 
and it can detect asymptomatic early-stage gastrointes-
tinal tract NENs [75, 76]. James et al. [77] reported that 
endoscopic ultrasound (EUS) could detect 26% of pNETs, 
while the results obtained from CT and other radiologic 
examinations were negative.

EUS-fine needle aspiration (EUS-FNA) was performed 
based on the principles of EUS. This strategy provides 
histological and cytological information on the lesions 
and helps medical professionals develop personalized 
treatments for these patients [78]. Despite its utility, 
EUS-FNA encounters challenges such as inadequate core 
tissue acquisition and sampling limitations. To overcome 
these limitations, EUS-fine needle biopsy (EUS-FNB) 
has been developed, in which cutting needles are used to 
obtain core samples and enhance diagnostic accuracy, as 
supported by various studies [78, 79].

Compared to traditional endoscopy, video capsule 
endoscopy or wireless video endoscopy is a novel and 
non-invasive procedure for diagnosing gastrointestinal 
tract carcinomas. This approach involves swallowing a 
capsule-sized camera, allowing visualization of the small 
intestine with a light source, a capability not feasible with 
traditional endoscopy. However, routine capsule endos-
copy is limited and is primarily recommended for identi-
fying causes of small intestine bleeding.

Imaging
Although the endoscopic procedure has a very high 
sensitivity for diagnosing NETs, it also depends on 
the operator. Compared with morphological examina-
tion, endoscopy can detect only local lesions. There-
fore, morphological examination using CT and MRI 
has been performed to assess the location and extent of 
GEP-NENs [80]. It has been reported that the diagnos-
tic values of CT and MRI for the detection of primary 
neoplasms are similar; however, CT provides better 
spatial resolution and is an effective technique for the 
diagnosis of small bowel NETs [80, 81]. Therefore, the 
combination of CT and MRI is expected to provide 
combined benefits [82].

Most GEP-NENs express SSTRs [83, 84]. This allows 
for the detection of tumors by molecular imaging of 
SSTRs via radionuclide-labeled somatostatin analogs 
(SSAs), single-photon emission computed tomography 
(SPECT), or positron emission tomography (PET). The 
commonly used radionuclides in SPECT imaging are 
99mTc, 131I, and 111In, and the positron nuclides used in 
PET are 18F and 68Ga. To date, 68Ga-DOTA-DSA PET/
CTs, such as 68Ga-DOTATATE, 68Ga-DOTANOC, and 
68Ga-DOTATOC PET/CTs, have been developed to diag-
nose GEP-NENs [85]. Several studies have proven that 
68Ga-DOTATATE PET/CT has high accuracy and has 
become the preferred strategy for diagnosing GEP-NENs 
[81, 86–89]. In addition, 68Ga-DOTA-DSA PET/CT was 
used to determine whether the uptake of radiotracers 
correlated with the response to peptide receptor radio-
nuclide therapy (PRRT), indicating high potential in the 
treatment of advanced GEP-NENs [90].

18F-FDG PET/CT typically exhibits high accuracy in 
diagnosing aggressive tumors. However, the value of 
18F-FDG PET/CT in the diagnosis of GEP-NENs is still 
controversial since GEP-NENs generally exhibit indo-
lent biological behavior with low glycolytic activity. Sev-
eral studies have reported that 18F-FDG PET/CT has an 
acceptable diagnostic value for aggressive GEP-NENs 
with a Ki-67 index greater than or equal to 10% and 
low expression of SSTRs [91, 92]. Recently, two imag-
ing classifications of NENs were developed based on 
68Ga-DOTATATE and 18F-FDG PET/CTs [93, 94]. Both 
of these classifications are superior to histological grade 
for predicting patient survival. These findings suggested 
that 68Ga-DOTATATE PET/CT combined with 18F-FDG 
PET/CT could improve the accuracy of diagnosing GEP-
NENs. However, this combinational diagnostic strategy 
will increase the cost to patients, and the benefits still 
need to be evaluated in future studies.

Artificial intelligence (AI) diagnostic models
AI is a new field of science that provides human cogni-
tive abilities to perform complex tasks, such as decision-
making, which can be performed only by humans. The 
emergence of AI has enabled the introduction of more 
accurate diagnostic models for determining patient prog-
noses and guiding clinical decision-making [95–101]. 
Bevilacqua et  al. [95] developed a noninvasive model 
based on presurgical 68Ga-DOTANOC PET/CT and con-
ventional diagnostic methods. It was observed that this 
model can accurately predict grade 1 or grade 2 primary 
pNETs, providing valuable clinical insights. Although 
surgical resection is the only therapeutic modality for 
treating pNETs, it can cause significant postoperative 
complications and mortality. Compared to pancreatic 
ductal adenocarcinoma and other malignant diseases, 
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pNETs are indolent tumors. Surgical resection did not 
significantly increase the survival time of patients with 
grade 1 tumors, which are smaller than 1  cm in length. 
Therefore, with the support of the Bevilacqua model and 
other diagnostic models [95, 96, 98, 100], clinicians can 
predict tumor grade and select appropriate personalized 
treatments, follow-up regimens, or surgical resection 
methods for low-grade pNETs. Notably, there are sev-
eral limitations of these studies. One of the most relevant 
drawbacks is that these studies were retrospective and 
had small populations. Thus, the value of these models 
should be evaluated in further larger prospective cohort 
studies.

Management of GEP‑NENs
Active surveillance or endoscopic resection
Patients with small, well-differentiated, and asympto-
matic GEP-NENs positioned in the stomach, duodenum, 
pancreas, and colorectum can be treated conservatively, 
such as through active surveillance or endoscopic resec-
tion. Numerous studies have addressed the benefits of 
conservative treatments for GEP-NENs [44, 102, 103]. 
However, due to the poor prognosis of small bowel NENs 
and the location of the appendix, conservative treatment 
is not recommended for tumors originating from these 
sites.

Surgical resection
Surgical resection is the cornerstone for treating localized 
GEP-NENs. The choice of surgical technique, whether 
radical or palliative, depends on the specific location of 
the primary tumor (Figs. 1 and 2). In cases of grade 1 or 
grade 2 GEP-NENs with resectable or potentially resect-
able liver metastases, curative resection should be con-
sidered [104, 105]. Palliative resection of the primary 
tumor could be considered for unresectable metastases 
or for relieving symptoms of hormonal hypersecretion. 
Furthermore, for local treatment of liver metastases, 
radiofrequency ablation or hepatic artery embolization 
are also included as options in addition to surgical resec-
tion. The selection of these interventions should be based 
on the operator’s experience, the scope and location of 
liver metastases, and the blood supply to the metasta-
ses. The decision between radical and palliative surgical 
approaches is influenced by the location of the primary 
tumor [106].

Medical treatment for advanced GEP-NENs
SSAs
SSAs can be used to control disease symptoms in NEN 
patients by inhibiting the overproduction of hormones 
and tumor growth. There are three main SSAs used in 
NEN treatment, namely, octreotide, lanreotide, and 

pasireotide. SSAs compete with somatostatin for binding 
to SSTRs and relieving symptoms such as diarrhea and 
flushing related to hormone secretion. Therefore, deter-
mining the expression of SSTRs by imaging is required 
before SSA therapy. Hence, the half-life of somatostatin 
is only several minutes, and long-acting SSAs, such as 
octreotide long-acting release (LAR), are widely used. 
However, several challenges still need to be addressed. 
The biological activity of the octreotide LAR fades 
over time, and supplemental therapy with subcutane-
ous immediate-release octreotide is needed. Moreover, 
some studies have reported that SSAs can lead to adverse 
effects, such as nausea, abdominal pain, and flatulence 
[107, 108]. These complications must be treated at the 
same time as the tumor.

The CLARINET trial indicated that lanreotide signifi-
cantly prolonged PFS compared with placebo in patients 
with grade 1 or grade 2 metastatic GEP-NENs [109]. 
Therefore, lanreotide was approved in 2014 by the United 
States Food and Drug Administration (FDA) and is used 
to treat GEP-NENs. Recent European and United States 
guidelines state that increasing the dose of SSA by short-
ening the dosing interval may be an effective strategy for 
controlling the progression of tumors, and this finding 
is supported by the CLARINET FORTE phase II study, 
which proves that increasing the frequency of treatment 
is a valuable strategy before using less well-tolerated 
therapies for treating GEP-NENs [110].

The key distinction between SSA treatment proto-
cols lies in their formulations and dosing regimens. 
Octreotide and lanreotide can be administered in both 
short- and long-acting formulations. Short-acting forms 
are used to manage symptoms immediately, whereas 
long-acting forms provide sustained effects over weeks. 
Octreotide LAR is typically given every 4  weeks, while 
lanreotide autogel is administered every 4 – 6  weeks, 
allowing for extended symptom control and tumor 
growth inhibition.

Pasireotide is different from octreotide and lanreotide 
because it is administered twice daily, which provides a 
continuous blockade of SSTRs. This difference in dosing 
frequency can be considered when tailoring treatment 
to individual patient preferences and optimizing symp-
tom management and treatment of NENs. The choice of 
SSA and regimen was determined based on the specific 
type of NEN, stage of disease, and patient preference. The 
details of the trials on SSAs are mentioned in Table 4.

PRRT 
Like that of SSAs, the therapeutic effect of PRRT also 
depends on the expression of SSTRs. The radiolabeled 
SSAs bind to SSTRs and are then internalized by the 
cells. Subsequently, the radionuclide damages the DNA 
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by emitting α or β radiation. 177Lu-DOTATATE has sev-
eral advantages in its production. Compared with the 
octreotide LAR, 177Lu-DOTATATE markedly enhanced 
PFS [111]. Therefore, 177Lu-DOTATATE is a widely uti-
lized therapeutic strategy for patients with untreatable 
or metastatic GEP-NENs. Furthermore, PRRT is con-
sidered a neoadjuvant therapy for patients with bor-
derline resectable tumors [112]. Several international 
phase III randomized clinical trials and experts have 
confirmed that 177Lu-DOTATATE could also be con-
sidered as a potential therapeutic agent due to its effect 
on the cytoreduction of tumors, which is rare among 
other existing alternative treatments (Table  4) [113]. A 
newly conducted phase III trial reported that the median 
overall survival of patients treated with 177Lu-DOTA-
TATE 7.4 GBq (200 mCi) was 48.0 months, while that of 
patients treated with high-dose long-acting octreotide 

was 36.3  months [114]. This might be because 177Lu-
DOTATATE is a radiation therapy that specifically 
targets SSTR-positive tumor cells using a radioactive 
isotope to directly kill tumor cells. This approach can 
have a more potent impact on tumor cells than high-
dose long-acting octreotide, which is a hormone-based 
therapy that primarily works by inhibiting hormone 
secretion and tumor growth. In addition to the effective-
ness of 225Ac-DOTATATE-targeted alpha therapy (TAT), 
this approach holds promise as a potential treatment for 
patients who lack a response to 177Lu-DOTATATE ther-
apy or who have completed the maximum prescribed 
cycles of 177Lu-DOTATATE treatment [115].

α-emitting radionuclides, such as 212Pb-DOTAMTATE, 
213Bi-DOTATATE, and 225Ac-DOTATATE, were labeled 
with SSAs and radiolabeled with SSTR antagonists. The 
limited soft tissue penetration of α-emitters minimizes 

Fig. 1 The diagnosis and management of GI‑NENs. In different locations of the gastrointestinal tract, including the stomach, colon, and rectum, 
among others, tumors have been observed. Different strategies can be utilized to diagnose these tumors, including biochemical characteristics, 
MRI, biopsy, and endoscopy. According to the size of the tumor and grade, surgical resection can be recommended. Hence, the management 
of these tumors differs based on their origin, tumor size, and tumor grade. EUS endoscopic ultrasound, US ultrasound, CT computed tomography, 
MRI magnetic resonance imaging, SSTR‑PET/CT somatostatin receptor‑positron emission tomography/computed tomography, NE neuroendocrine, 
FUP follow‑up, PPI proton pump inhibitor, LAR long‑acting release, PRRT peptide receptor radionuclide therapy, T tumor, NETs neuroendocrine 
tumors, GI‑NENs gastrointestinal neuroendocrine neoplasms
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radiation exposure to healthy tissues, enabling PRRT to 
be administered on an outpatient basis, thus introducing 
a novel aspect to patient care. α-particle emitters are pre-
ferred to β-particle emitters owing to their potential and 
specificity in sterilizing tumor cells from self-irradiation 
with α-particle emitters, a result that is not possible to 
obtain with β-particle emitters. However, some issues, 
such as clinical indications, and predictive and prognos-
tic markers, need to be addressed in the future [116].

Targeted therapies
Everolimus and sunitinib are the most common tar-
geted therapeutics for NENs lacking expression of 
SSTRs. Everolimus is a specific suppressor of mTOR, 
which controls mammalian cell size by targeting 
ribosomal protein S6 kinase beta-1 and 4E-binding 
protein 1 [117]. Everolimus inhibits the activity of 
mTOR, thereby blocking the proliferation and growth 
of NENs. Currently, everolimus is recommended for 
treating advanced and progressive pancreatic NENs 
and grade 1 or grade 2 non-functional gastrointes-
tinal NENs. This is supported by the findings of two 

international phase III randomized controlled trials, 
RADIANT-3 [118] and RADIANT-4 [119]. The RADI-
ANT-3 trial (NCT00510068), which included patients 
with pNETs, showed that patients treated with everoli-
mus had significantly better median PFS than those 
treated with placebo, with PFS of 11.0  months and 
4.6  months, respectively [118]. The RADIANT-4 trial 
(NCT01524783), which was conducted on patients with 
well-differentiated, non-functional NETs of the lung or 
gastrointestinal tract, revealed that everolimus was sig-
nificantly correlated with improved PFS [119].

Everolimus is the first targeted treatment with a sig-
nificant antitumor effect and acceptable tolerability 
across a broad range of pancreatic and gastrointestinal 
tract NETs [119]. Notably, a previous study showed that 
mTOR inhibitors are involved in adverse events such as 
hyperglycemia and hypercholesterolemia. These adverse 
events led to a non-significant improvement in PFS [120]. 
Recently, a pooled analysis of RADIANT-3 and RADI-
ANT-4 demonstrated that adverse events do not affect 
PFS [121]. However, these results should be interpreted 
with caution due to the low number of adverse events 

Fig. 2 The diagnosis and management of pNENs. The management of functional and non‑functional pNENs differs. However, similar examinations, 
including MRI, chest CT, and biopsy, can be performed for the diagnosis of these tumors. Disease management depends on the disease type, tumor 
size, and functional or non‑functional status. EUS endoscopic ultrasound, US ultrasound, CT computed tomography, MRI magnetic resonance 
imaging, SSTR‑PET/CT somatostatin receptor‑positron emission tomography/computed tomography, PPI proton pump inhibitor, LAR long‑acting 
release, pNEN pancreatic neuroendocrine neoplasm, SSAs somatostatin analogs, RT radiotherapy, PRRT peptide receptor radionuclide therapy, 
CAPTEM capecitabine and temozolomide, VIP vasoactive intestinal polypeptide
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observed, and additional experiments are needed to ver-
ify these findings.

As a suppressor of tyrosine kinase receptors, sunitinib 
inhibits the growth and metastasis of carcinoma. Cur-
rently, it is approved for treating only progressive, locally 
advanced, or metastatic pancreatic NENs [122]. The effi-
cacy of sunitinib in treating other carcinomas needs to 
be addressed by future studies. The updated guideline 
for the treatment of distant metastatic disease caused 
by NENs mentioned that everolimus and sunitinib have 
antiproliferative effects on progressive pNETs. However, 
everolimus and sunitinib are prescribed as first-line ther-
apies if chemotherapy is not clinically needed or if SSA is 
not a good option and cannot be tolerated. This is due to 
the potential toxicity of these target agents [123].

Several studies have evaluated the anticancer function 
of other angiogenic suppressors for treating non-pan-
creatic NENs [124–126]. Surufatinib in advanced pan-
creatic NETs (SANET-p) is a randomized, double-blind, 
placebo-controlled, and phase III study that evaluated the 
antitumor effect of surufatinib in the treatment of pro-
gressive and advanced, well-differentiated pNETs [127]. 
Surufatinib significantly prolongs PFS and has accept-
able adverse effects. In addition, the antitumor effect of 
surufatinib in the treatment of extra pancreatic NENs 
was evaluated in the SANET trial [128]. The authors 
reported that patients treated with surufatinib, a novel 
oral tyrosine kinase inhibitor targeting immune cells and 
angiogenesis had remarkably improved PFS compared 
with patients treated with a placebo. It was found to be a 
therapeutic option for patients with GEP and thymic and 
lung NETs [129].

Chemotherapy
Chemotherapy is used to control tumor growth, allevi-
ate symptoms, and improve overall survival in patients 
with GEP-NENs. There are a variety of chemothera-
peutic strategies available for treating GEP-NENs. For 
example, the combination of streptozotocin-mediated 
chemotherapy and novel targeted drugs is being inves-
tigated for the treatment of grade 1/grade 2 pNETs. 
In the case of grade 1 or grade 2 GEP-NENs, chemo-
therapy is recommended for tumors located in the pan-
creas, and streptozotocin combined with 5-fluorouracil 
or temozolomide is the most commonly used strategy 
[44, 45, 75]. Streptozotocin-mediated chemotherapy is 
typically advised for patients with a substantial tumor 
burden, with or without associated clinical symptoms, 
or those experiencing significant tumorigenesis within 
a 6- to 12-month duration. Although there are lim-
ited results regarding temozolomide chemotherapy, it 
could serve as an alternative to the streptozotocin/5-
fluorouracil regimen in patients for whom the latter is 

unavailable for pNETs. Platinum-based chemotherapy 
is prescribed as a first-line therapy for grade 3 NENs 
[123]. In patients with metastatic pancreatic endocrine 
carcinomas, capecitabine combined with temozolo-
mide yielded a high and durable response. However, 
with extra pancreatic NENs, chemotherapy should only 
be considered when other therapies fail [6].

Patients with advanced, metastatic, or unresectable 
grade 3 GEP-NENs mainly undergo chemotherapy. 
Unfortunately, there are no standard therapeutic strate-
gies for these patients. Although platinum-based chem-
otherapy prolongs the survival time of patients with a 
Ki-67 index of less than 55%, tumors are less responsive 
to these regimens [130]. Interestingly, temozolomide 
increased the response of tumors treated with capecit-
abine [131]. These findings suggested that capecitabine 
plus temozolomide-based chemotherapy might be the 
optimal chemotherapeutic strategy for patients with 
a Ki-67 index lower than 55%. Etoposide in combina-
tion with cisplatin is recommended for patients with a 
Ki-67 index greater than 55% [123]. According to the 
National Cancer Control Network (NCCN) guidelines, 
a clinical trial of well-differentiated grade 3 resectable 
NETs with relatively high Ki-67 index (> 55%) and rapid 
growth is preferred. However, neoadjuvant chemother-
apy can also be given, and the options include temo-
zolomide ± capecitabine, oxaliplatin-based therapy 
(FOLFOX or CAPEOX), cisplatin/etoposide or carbopl-
atin/etoposide. Temozolomide may have a greater effect 
on tumors arising from the pancreas [132]. A recently 
published phase II randomized trial (NCT01824875) 
[133] indicated that the median PFS was 14.4  months 
for temozolomide and 22.7  months for capecitabine/
temozolomide. Additionally, the median overall sur-
vival times for temozolomide and capecitabine/temozo-
lomide were 53.8 months and 58.7 months, respectively 
[133]. Hence, the combination of temozolomide and 
capecitabine significantly improved PFS compared with 
temozolomide alone for advanced pancreatic NENs. 
Moreover, the FOLFOX regimen, folinic acid (FOL) 
plus fluorouracil (F) and oxaliplatin (OX), and the FOL-
FIRI regimen, folinic acid (FOL) plus fluorouracil (F) 
and irinotecan (RI), are recommended after the failure 
of first-line chemotherapy. Due to the unsatisfactory 
therapeutic outcomes of individual chemotherapies, 
some combinatorial therapeutic approaches are being 
evaluated in clinical trials. A randomized phase II par-
allel-group study evaluating the antitumor activity is 
currently recruiting patients. This study utilized 177Lu-
PRRT in combination with capecitabine to treat grade 1 
or grade 2 patients with a Ki-67 index greater than 20% 
or grade 3 patients with a Ki-67 index lower than 50% 
(NCT02736448).
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Recent advancements in chemotherapy regimens have 
shown promise in enhancing treatment outcomes. A sig-
nificant breakthrough involves the integration of targeted 
therapies with chemotherapy, such as the utilization of 
everolimus and sunitinib. These targeted treatments have 
exhibited disease control and prolonged PFS by disrupt-
ing crucial signaling pathways responsible for tumor 
growth and angiogenesis. Additionally, PRRT utilizing 
radiolabeled SSAs has emerged as a promising option, 
particularly for non-resectable or metastatic GEP-NENs 
expressing SSTRs. The evolving landscape of chemo-
therapy for GEP-NENs underscores the importance of a 
multidisciplinary approach, tailored treatment plans, and 
continued research to further refine therapeutic strate-
gies and improve patient outcomes.

Immunotherapy
Immunotherapy has emerged as a novel therapeu-
tic option, and ongoing clinical trials are currently 
evaluating its efficacy in GEP-NENs. Genetic profiling 
also plays a crucial role in predicting immunotherapy 
response [134].

Cancer immunotherapy has made remarkable advance-
ments in recent years, resulting in notable therapeu-
tic benefits across various tumor categories. Current 
approaches in immunotherapy include immune check-
point inhibitors/blockades (ICIs/ICBs) that have shown 
promise in preclinical studies and early-phase clini-
cal trials. Furthermore, adoptive T-cell therapy is being 
explored as a potential avenue for GEP-NENs. The uti-
lization of ICB targeting of programmed cell death pro-
tein-1 (PD-1) and its corresponding ligand, programmed 
death-ligand 1 (PD-L1), represents a highly promis-
ing approach aimed at restoring the immune response 
against tumors. The FDA has approved the treatment of 
multiple tumor types, including melanoma, non-small 
cell lung cancer, head and neck squamous cell carcinoma, 
and urothelial cancer. A previous study has suggested 
that poorly-differentiated gastrointestinal NENs, mis-
match repair deficiency, or microsatellite instability are 
indications for ICB [135].

Surgical resection and systemic chemotherapy are 
commonly used for the treatment of local and non-met-
astatic GEP-NENs [136]. However, the challenge arises 
as patients are often diagnosed at advanced stages with 
metastasis, complicating the efficacy of surgical resection 
and chemotherapy. The 5-year survival rate upon diag-
nosis is 57% for patients with well-differentiated tumors 
and merely 5.2% for those with small cell tumors. Chem-
otherapy is recommended for well-differentiated GEP-
NETs exhibiting a low to moderate proliferation rate. 
Nevertheless, the FDA has suggested employing immu-
notherapy regimens to improve the treatment outcomes 

of these tumors. Several types of tumors can increase the 
levels of PD-1, PD-L1, and cytotoxic T lymphocyte-asso-
ciated antigen-4 (CTLA-4) proteins, which play a role in 
suppressing T cell function and enabling tumors to evade 
the immune system surveillance, thereby facilitating 
uncontrolled growth [137]. For example, in high-grade 
(grade 3) and aggressive tumors, PD-L1 is overexpressed 
[60, 138–140].

Therefore, the application of ICBs and antibod-
ies targeting such molecules for tumor eradication has 
increased. The use of oncolytic viruses to infect and 
destroy tumor cells also presents a promising option. 
Cancer vaccines have been introduced to activate the 
immune system by inducing major histocompatibility 
complex-I signaling on antigen-presenting cells for pre-
senting tumor-associated antigens (TAAs). TAAs used 
for stimulating the immune system can derive from 
various sources, including whole-cell tumor lysates, full-
length tumor proteins, DNA vaccines, or recombinant 
tumor peptides. There are multiple reasons to employ 
immunotherapy in treating NETs since they involve the 
upregulation of pathways related to immune evasion. In 
addition, there are other features associated with immu-
notherapy for the treatment of NETs. ICBs can serve as 
the primary treatment strategy for well-differentiated 
grade 3 NETs, mixed neuroendocrine-non-NENs, and 
poorly-differentiated extrapulmonary NECs. Patients 
with advanced tumors having high mutational burden, 
microsatellite instability-high, or mismatch repair defi-
ciency could be recognized through an FDA-approved 
analysis before receiving pembrolizumab as a PD-1 
inhibitor if no other treatment options exist. Moreover, 
pembrolizumab can be utilized as a primary treatment 
for biologically desirable or locally advanced/metastatic 
grade 3 NETs whose prognosis is undesirable [141, 142]. 
Pembrolizumab is suggested for systemic therapy of 
extrapulmonary, locoregional, unresectable, or meta-
static NECs/mixed neuroendocrine-non-neuroendocrine 
neoplasms [141–143]. Furthermore, dual ICB therapy 
using nivolumab combined with ipilimumab is suggested 
in cases where locally progressed or metastatic grade 3 
NETs exhibit undesirable biological profiles [143, 144].

The current evaluation of clinical trials is primarily 
focused on investigating the efficacy of ICBs in NENs 
originating from various sources, such as the gastroin-
testinal tract, pancreas, and lung [145–148]. The results 
obtained from phase II KEYNOTE-158 research indi-
cated that pembrolizumab, an anti-PD-1 drug, exhib-
its a modest level of effectiveness in treating advanced 
well-differentiated NETs. Among the 107 patients 
included in the study, only 3.7% demonstrated a positive 
response to the treatment as measured by the objective 
response rate (ORR) [146]. Furthermore, findings from 
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a multicohort, phase I KEYNOTE-028 study conducted 
on patients with PD-L1-positive NETs revealed that 
pembrolizumab treatment yielded an ORR of 12.0% for 
those with carcinoid tumors and 6.3% for those with 
well- or moderately-differentiated pNETs [148]. Addi-
tionally, results from a phase II basket trial examining 
blockade therapy involving anti-CTLA-4 (ipilimumab) 
and anti-PD-1 (nivolumab) agents showed that patients 
diagnosed with high-grade NECs exhibited an ORR 
of 44% (8 out of 18 patients), whereas those with low/
intermediate grade NETs had an ORR of 0% (0 out of 
14 patients; P = 0.004) [145]. Moreover, a multi-center 
phase Ib trial involving 40 NEN patients demonstrated 
a comparable response rate between the poorly-differ-
entiated NEC subgroup and well-differentiated NET 
subgroup when treated with anti-PD-1 therapy using 
toripalimab (ORR: 18.7% vs. 25.0%) [147]. However, the 
inclusion of NENs in prior and ongoing clinical trials 
has been limited due to their rare occurrence. Hence, 
it is premature to make any definitive conclusions 
regarding the effectiveness of ICB in T-NEN treatment. 
Nonetheless, the potential use of ICB in treating well-
differentiated NETs continues to generate promising 
outcomes.

Therapeutic diet
The nutritional status of NEN patients is also an impor-
tant parameter to consider in disease management. 
Patients with NETs, particularly those of gastroentero-
pancreatic origin, are expected to have excessive pro-
duction of gastrointestinal hormones, peptides, and 
amines. These elevated levels are associated with mal-
absorption, diarrhea, steatorrhea, and altered gastroin-
testinal motility. Furthermore, the surgical and medical 
management of NENs also involves alterations in gas-
trointestinal secretory, motor, and absorptive functions, 
leading to dietary and nutritional implications. Sev-
eral studies have proposed both Mediterranean and 
ketogenic diets as possible nutritional therapies for 
patients with GEP-NENs [21, 149]. Ketogenic diets 
mimic glucose starvation conditions, which inhibit 
tumor growth by modulating multiple signaling path-
ways, such as the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt) pathway, AMP-activated pro-
tein kinase (AMPK) pathway and mTOR pathway [150]. 
Another study reported the role of vitamin D deficiency 
in the incidence of GEP-NENs [20]. The efficacy of 
vitamin D was linked to high tumor grade and disease 
progression. It was recommended to monitor 25(OH)
D levels in these patients, and vitamin D supplementa-
tion was suggested for the management of GEP-NEN 
patients [19].

Challenges and limitations
GEP-NENs are a diverse group of rare tumors that can 
occur in various locations throughout the gastrointesti-
nal tract and pancreas. Although GEP-NENs are uncom-
mon, they can also pose a significant threat to patients. 
Diagnosis and management of these disorders can be 
challenging due to several factors. (1) Limited knowledge 
and experience. GEP-NENs are relatively rare tumors, 
and many clinicians may not have experience in diag-
nosing and treating them. Hence, this may lead to delays 
in diagnosing these tumors, resulting in their detection 
at advanced stages when the tumors exhibit aggressive 
progression. (2) Limited understanding of the biology 
and prognosis. GEP-NENs are characterized by a high 
degree of genetic diversity and complexity, which poses 
challenges to understanding the underlying biology and 
developing targeted therapies. Furthermore, epigenetic 
alterations control other biological and molecular mech-
anisms of these tumors, but these changes require further 
investigation and clarification. In addition, the prognosis 
of GEP-NENs is unclear, and reliable prognostic mark-
ers are lacking. Future studies should also consider the 
role of extracellular vesicles as minimally invasive fac-
tors. (3) Insidious onset of symptoms. Because of their 
slow growth and slow progression, GEP-NNEs are often 
difficult to detect in the early stages. These patients are 
either asymptomatic in the early stages or have general 
symptoms similar to other diseases. (4) Limited avail-
ability of biomarkers. There are currently no specific bio-
markers for diagnosing GEP-NENs, making it difficult to 
distinguish them from other types of tumors. (5) There 
is currently a lack of consensus on the classification and 
grading of GEP-NENs, which may lead to confusion and 
inconsistent management. (6) Treatment options for 
GEP-NENs are limited, and there is no standard of care 
for advanced disease.

Conclusions and future perspectives
Notably, recent epidemiological studies have shown that the 
incidence of GEP-NENs has significantly increased in the 
last twenty years. However, as GEP-NENs are highly hetero-
geneous malignancies with indolent and aggressive tumor 
biology, they remain orphan diseases, and both their diag-
nosis and treatment have been neglected for a long time. 
Despite recent theoretical and clinical advances showing 
significant improvements in the diagnosis and treatment of 
GEP-NENs, clinical outcomes and survival results remain 
unsatisfactory [151]. Therefore, innovation is needed in the 
diagnosis, prognosis, and treatment of these tumors.

Genetics and molecular factors play crucial roles in 
explaining differences in incidence, pathophysiology, 
clinical signs, and treatment outcomes. Gender differ-
ences in cancer incidence are mainly attributed to genetic 
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and molecular regulation, along with the influence of sex 
hormones on gene expression in various types of cancers, 
although little is known about the impact of these factors 
on GEP-NENs [152–154].

The WHO- and ENETS-based grading systems repre-
sent a milestone in the classification and nomenclature of 
NENs according to cytological and histological scores. The 
discordance between grades assessed by mitotic count-
ing or the Ki-67 index is often contradictory, and grades 
are usually greater when determined by Ki-67. Recently, 
consistency in Ki-67 assessment has been improved by 
the use of AI microscopy [155]. We believe that with the 
advent of several technologies and the incorporation of 
new conceptual approaches, we can lay the groundwork 
for the next generation of NEN classifications that will 
make classifications more consistent in understanding 
how neoplasms from different organ systems are clinically 
and genetically related to each other [151, 155–157].

Regarding the treatment and management of GEP-NENs, 
conservative management is recommended for patients 
with small and asymptomatic GEP-NENs, whereas sur-
gical resection is advised for those with localized tumors. 
However, considering the heterogeneity of GEP-NENs, the 
choice of surgical approach should be based on the location 
and clinicopathological characteristics of the tumor. Cur-
rently, only everolimus, sunitinib, 177Lu-DOTATATE, and 
PRRT are approved treatments for GEP-NENs; however, 
further evaluation is needed to determine the benefits of 
chemotherapy and immunotherapy.

In addition, both medical and surgical treatment of 
NENs can lead to alterations in gastrointestinal func-
tions, with both dietary and nutritional implications. 
In this scenario, tailored nutritional approaches have 
been shown to alleviate multiple clinical conditions in 
NEN patients [158, 159]. It is highly relevant and useful 
to assess the effect of different clinical nutrition nursing 
on perioperative immune status, postoperative bowel 
motility, and complications in patients with GEP-NENs 
[160]. Notably, several studies have proposed both 
Mediterranean and ketogenic diets (with low-fat con-
tent, low carbohydrate content, natural unsaturated fat 
content, high antioxidant content, high chemopreven-
tive phytochemical content, and high fiber content) as 
possible nutritional therapies for GEP-NEN patients 
[29, 149, 160]. Ketogenic diet creates a state similar to 
glucose deprivation where the body produces ketones 
to increase energy and ATP production. The ketogenic 
diet has demonstrated beneficial effects in cancer treat-
ment by regulating insulin/insulin-like growth factor, 
PI3K/Akt/mTOR, and AMP-activated protein kinase 
to suppress cancer progression and proliferation [150]. 
Moreover, they can also serve as adjuvant therapies 
with conventional chemotherapy and radiation therapy.

Finally, to effectively manage patients, healthcare 
professionals and skilled nutritionists must adopt an 
approach based on multidisciplinary decision-making 
and possess a precise comprehension of information 
and communication. The clinicians’ understanding of 
the classification systems and the importance of novel 
markers is highly appreciated and recommended.
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