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Abstract 

Background Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung struc‑
ture and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance 
of CT‑based whole lung radiomic in discriminating COPD patients and non‑COPD patients.

Methods This retrospective study was performed on 2785 patients who underwent pulmonary function examina‑
tion in 5 hospitals and were divided into non‑COPD group and COPD group. The radiomic features of the whole lung 
volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied 
for feature selection and radiomic signature construction. A radiomic nomogram was established by combining 
the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve 
analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal 
validation, and independent external validation cohorts.

Results Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. 
The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation 
cohorts were 0.888 [95% confidence interval (CI) 0.869–0.906], 0.874 (95%CI 0.844–0.904) and 0.846 (95%CI 0.822–
0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). 
DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking 
status was superior to the clinical factor model.

Conclusions The intuitive nomogram constructed by CT‑based whole‑lung radiomic has shown good performance 
and high accuracy in identifying COPD in this multicenter study.
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Background
Chronic obstructive pulmonary disease (COPD) is a 
chronic inflammatory disorder with high heterogene-
ity and characterized by continuous airflow limitations. 
The current gold standard for diagnosing and evaluat-
ing COPD is the pulmonary function test (PFT) [1], 
which yields the ratio of forced expiratory volume in 1 s 
to forced vital capacity (FEV1/FVC) and the percentage 
of predicted FEV1 (FEV1% predicted). In China, the inci-
dence of COPD in people ≥ 40  years old is 13.7%, how-
ever, the awareness rate of COPD is very low, less than 
1% [2]. Many people have been underdiagnosed because 
the PFT is not widely used for screening in China. 
Based on the survey of PFT performance in people aged 
40  years and above in China, the PFT rate in Chinese 
residents aged ≥ 40  years was 6.7% (95%CI 5.2–8.2%) in 
2019–2020, the overall PFT rate was still at a low level 
[3]. In contrast, the popularity of chest computed tomog-
raphy (CT) is high, especially with large-scale lung can-
cer screening. Meanwhile, the 2023 Global Initiative for 
Chronic Obstructive Lung Disease report emphasized 
the importance of CT in evaluating patients with stable 
COPD, highlighting the role of imaging [4]. This evi-
dence-based suggestion was made due to the limitations 
of PFT, which, despite being the gold standard, cannot be 
used for focal evaluation and does not show the lungs. 
Additionally, due to the high heterogeneity of COPD, 
focal and visual evaluations are considered to play an 
important role in guiding clinical decisions. As the most 
common and powerful imaging technique, CT has great 
potential in COPD with the rapid development of CT-
based artificial intelligence (AI).

Furthermore, CT has a high anatomic resolution and 
can be used to evaluate the changes in lung parenchyma, 
small airway, and pulmonary blood vessels that occur 
with lung function decline and aging. However, it is not 
commonly used to simultaneously assess COPD abnor-
malities. In addition, the subjective evaluation of the lung 
parenchyma and small airway lesions was influenced by 
the experience of the radiologist. Especially as the num-
ber of patients with COPD continues to increase, visual 
assessment of lung lesions by radiologists is becoming 
more expensive and laborious. Therefore, identifying 
a method for quantitatively evaluating the whole lung 
is critical to obtaining a comprehensive evaluation of 
COPD.

Radiomic is a relatively novel approach that can rap-
idly collect quantitative high-throughput features from 
medical images (e.g., CT), such as complex patterns that 
are not easily recognized or quantified by the naked eye 
[5], showing great potential in clinical decision-mak-
ing. At present, radiomic research on COPD is rapidly 
expanding, and several studies have indicated that such a 

method may have particular advantages in patients with 
COPD [6, 7]. The radiomic features are extracted from 
segmented lesions. However, radiologists have found that 
manually segmenting diffuse and heterogeneous lung 
lesions, such as emphysema, interstitial lung disease, and 
coronavirus disease 2019 [8, 9], are difficult and time-
consuming due to unclear boundaries or low contrast on 
CT imaging. Additionally, different radiologists may seg-
ment the lesions differently when evaluating diffuse lung 
diseases [10]. Therefore, it is very important to develop 
a method to automatically segment diffuse lesions. It has 
been reported that the application of an AI-based system 
to detect diseases can reduce the workload of radiologists 
and maintain the accuracy of diagnoses [11]. Because 
COPD is a diffuse chronic lung disease, automatic seg-
mentation of the whole lung region would help to com-
prehensively quantify lung abnormalities and aid clinical 
treatment decision-making. A recent editorial suggests 
that automated detection of COPD based on chest CT 
findings using radiomic or deep learning techniques has 
great potential to reduce the current underdiagnosis of 
COPD, particularly in high-risk cohorts [12]. The pur-
pose of this study was to explore the performance of CT-
based automatic segmentation of whole-lung radiomic in 
differentiating COPD from non-COPD and to assess the 
value of CT-based radiomic in lung function evaluation.

Materials and methods
Patients
A total of 2941 patients who were admitted and under-
went PFT at 5 centers, including the Second Affiliated 
Hospital of Naval Medical University, Tongji Hospital, 
School of Medicine, Tongji University, Zhejiang Prov-
ince People’s Hospital, Sir Run Run Shaw Hospital and 
the First Affiliated Hospital of Nanchang Medical Col-
lege, were retrospectively recruited from February 2013 
to December 2022 in the CSD-COPD cohort. The inclu-
sion criteria were as follows: 1) chest CT and PFT both 
performed in the same hospital; 2) less than two weeks 
between PFT and chest CT; and 3) complete thin-slice 
(< 2 mm) chest CT images. The exclusion criteria were 
as follows: 1) other comorbid thoracic diseases (e.g., 
pneumonia, pulmonary atelectasis, lung nodules larger 
than 6 mm or masses, asthma, and pleural effusion); 2) 
malignant tumors; and 3) spine implants or substantial 
image artifacts. Finally, 2785 patients were included in 
this study. Among them, 1714 patients from the Tongji 
Hospital, School of Medicine, Tongji University, Zhe-
jiang Province People’s Hospital, Sir Run Run Shaw 
Hospital, and the First Affiliated Hospital of Nanchang 
Medical College were randomly assigned to the train-
ing cohort (n = 1200) and the internal validation cohort 
(n = 514) in a ratio of 7:3. Patients from the Second 
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Affiliated Hospital of Naval Medical University were 
assigned to an independent external validation cohort 
(n = 1071). Figure  1 shows the workflow for patient 
inclusion and exclusion. The basic clinical information 
of the patients, including age, sex, weight, height, body 
mass index, and smoking status, was collected through 
the electronic medical records system.

Pulmonary function parameters (FEV1, FVC) were 
measured with PFT apparatus (CHEST Multifunc-
tion Spirometer HI-801, Japan; Ganshorn Medizin 
Electronic GmbH; Carefusion GmbH, Hoechberg, 
Germany; Masterscreen PFT Pro, Carefusion, Neth-
erlands), as well as CT acquisition parameters in 
Additional file  1: Table  S1. The diagnostic criteria for 
PFT in COPD are as follows: FEV1/FVC < 0.7 with an 
increase of FEV1 < 200  ml after the use of a broncho-
dilator. In contrast, this study included patients with 
FEV1/FVC ≥ 0.7 and the FEV1% predicted ≥ 80% after 
bronchodilation as the non-COPD group. Participants 
in the training, internal validation, and independent 
external validation cohorts were divided into COPD 
and non-COPD groups according to these criteria.

This study was approved by the institutional review 
boards at 5 centers, and informed consent was 
waived due to the retrospective nature of this study 
(ChiCTR2300069929).

Whole‑lung CT image segmentation and CT image 
preprocessing
Using a deep-learning model of open access U-net (R231) 
(https:// github. com/ JoHof/ lungm ask) for the automatic 
segmentations, which has been trained using different 
large-scale datasets covering a wide range of visual vari-
ability, the reliability of this method has been proved [13]. 
First, the right and left lungs were automatically seg-
mented. Then, we merged the right and left lungs into a 
combined region of interest (ROI) (Fig. 2).

Since manual segmentation is often regarded as the 
ground truth, we assessed the consistency between man-
ual and fully automatic segmentation in 20 randomly 
selected patients across the cohort. CT images of 20 
patients were exported to ITK-SNAP software (version 
3.8.0, www. itksn ap. org) for manual segmentation. The 
consistency between manual and fully automatic seg-
mentation was assessed using the Dice index, an objec-
tive measure that quantifies the spatial overlap between 
two contours. The remaining cases were then automati-
cally segmented.

Before extracting the radiomic features, the images 
were preprocessed, which consisted of three steps. First, 
we used linear interpolation to resample the images to 
1  mm × 1  mm × 1  mm. Second, we used gray-level dis-
cretization to convert continuous images into discrete 

Fig. 1 Diagram showing the patient inclusion and exclusion process. Center 1: Tongji Hospital, School of Medicine, Tongji University; Center 2: 
Zhejiang Province People’s Hospital; Center 3: Sir Run Run Shaw Hospital; Center 4: the First Affiliated Hospital of Nanchang Medical College; Center 
5: the Second Affiliated Hospital of Naval Medical University. COPD chronic obstructive pulmonary disease, PFT pulmonary function disease, CT 
computed tomography

https://github.com/JoHof/lungmask
http://www.itksnap.org
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integer values. Finally, log and wavelet image filters were 
used to eliminate the mixed noise in the process of image 
digitization and obtain low-frequency or high-frequency 
features.

Radiomic feature extraction and selection
A total of 1218 lung radiomic features were extracted 
from each volume of interest using the open-source 
package PyRadiomics (version 3.0.1, https:// pyrad iom-
ics. readt hedocs. io/ en/ latest/), including first-order, gray 
level co-occurrence matrix, gray level run length matrix, 
gray level size zone matrix, gray level dependence matrix, 
and shape features. The radiomic features extracted by 
this software are in accordance with the image biomarker 
standardization initiative. The Z score method was used 
to normalize the features and eliminate the difference in 
numerical scale.

The following three steps were used to select the best 
radiomic features. First, redundant features whose cor-
relation coefficient with other features is greater than 

0.90 were removed. Second, the maximal redundancy-
minimal relevance algorithm was used to eliminate the 
redundant and irrelevant features. Minimal redundancy 
maximal relevance has been proven to be an effective 
and reliable feature selection method for radiomic, 
which can consider both the importance of features and 
the correlation between features to find the optimal fea-
ture subset [14, 15]. Finally, the least absolute shrinkage 
and selection operator (LASSO) regression algorithm 
and penalty parameter adjustment were used for ten-
fold cross-validation. The optimal feature dataset with 
the smallest cross-validation binomial deviation was 
selected, and the non-zero coefficients were defined 
as the weight of the selected feature, representing the 
correlation between the feature and COPD. LASSO is 
a widely used embedded method for radiomic feature 
selection in high-dimensional data [16]. Finally, the 
Radscore of each patient was calculated by a linear 
combination of the selected feature and coefficient vec-
tors, and the radiomic model was constructed.

Fig. 2 Original chest HRCT images (a–c) and segmentation results (d–f) of typical lung regions in transverse, coronal, and sagittal planes based 
on the original chest HRCT images, respectively. The red mask is the right lung parenchyma, and the green one is the left lung parenchyma. HRCT 
high‑resolution computed tomography

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Model construction, radiomic nomogram, 
and performance evaluation
Three models were constructed, including the clinical 
model, radiomic model, and combined model. Univariate 
logistic regression analysis was used to obtain statistically 
significant risk variables, and then multivariate analysis 
was performed to establish clinical and combined mod-
els. A radiomic nomogram was generated to visualize the 
combined model, graphically evaluate variable impor-
tance, and calculate prediction accuracy. The DeLong test 
was used to compare the area under the curves (AUCs) 
of the clinical model, radiomic model, and combined 
model. The calibration curves (Hosmer–Lemeshow test) 
were performed to evaluate the calibration of the nomo-
gram. Decision curve analysis (DCA) was applied to eval-
uate the clinical practicability of the nomogram.

Statistical analysis
IBM SPSS Statistics (version 26.0; IBM Corp., New York, 
USA) and R software (version 4.2.2; http:// www. Rproj 
ect. org) were employed for statistical analysis. Meas-
urement variables are expressed as the mean ± standard 
deviation. Normally distributed continuous variables 
were compared using the Student’s unpaired t-test and 
non-normally distributed data were compared using the 
Mann–Whitney U test. Categorical variables were com-
pared by the chi-square test between groups. Independ-
ent predictors were identified from the clinical variables 
by multivariate logistic regression. P < 0.05 indicated sta-
tistical significance. LASSO regression was conducted 
using the “glmnet” package. Additionally, the “rms” 
package was employed for drawing calibration plots and 
conducting multivariate logistic regression. The package 
of receiver operating characteristic (ROC) was utilized 

for drawing the ROC curves of the radiomic signatures, 
while the “rmda” package was utilized for DCA.

Results
Clinical characteristics
In total, 2785 patients (male 1715, female 1070; non-
COPD group 1377, COPD group 1408) with an average 
age of (65.4 ± 11.4) years old were included. Table 1 dis-
plays the basic demographics of all patients studied. In 
the training and internal validation cohorts, the distri-
bution of the patients in the 4 independent centers was 
as follows: 1529 patients from Tongji Hospital, School 
of Medicine, Tongji University, 73 patients from Zheji-
ang Province People’s Hospital, 42 patients from Sir Run 
Run Shaw Hospital and 70 patients from the First Affili-
ated Hospital of Nanchang Medical College. The training 
cohort included 491 non-COPD patients and 709 COPD 
patients, and the internal validation cohort included 218 
non-COPD patients and 296 COPD patients. A total of 
1071 patients from the Second Affiliated Hospital of 
Naval Medical University were assigned to the independ-
ent external validation cohort, consisting of 668 patients 
without COPD and 403 patients with COPD. Significant 
differences were observed in age, sex, height, weight, 
body mass index, and smoking status between the non-
COPD and COPD groups (P < 0.05) in the training, inter-
nal and independent external cohorts. However, in the 
internal validation cohort, the difference between current 
and former smokers was not significant (Table 1).

Consistency assessment between manual and fully 
automatic segmentation
The segmentations were assessed using the Dice 
index, an objective measure that quantifies the spatial 

Table 1 Baseline characteristics of the study population

a P < 0.05 vs. non-smoker, bP < 0.05 vs. former smoker. COPD chronic obstructive pulmonary disease, BMI body mass index, SD standard deviation

Characteristic Training cohort (n = 1200) Internal validation cohort (n = 514) External validation cohort (n = 1071)

Non‑COPD
(n = 491)

COPD
(n = 709)

P‑value Non‑COPD
(n = 218)

COPD
(n = 296)

P‑value Non‑COPD
(n = 668)

COPD
(n = 403)

P‑value

Age (years, mean ± SD) 63.9 ± 0.5 70.0 ± 0.4  < 0.001 64.1 ± 0.7 69.2 ± 0.6  < 0.001 58.9 ± 0.5 67.5 ± 0.5  < 0.001

Sex [n (%)]  < 0.001  < 0.001  < 0.001

 Male 232 (47.3) 509 (71.8) 104 (47.7) 214 (72.3) 326 (48.8) 330 (81.9)

 Female 259 (52.7) 200 (28.2) 114 (52.3) 82 (27.7) 342 (51.2) 73 (18.1)

Height (cm, mean ± SD) 160.9 ± 0.5 163.9 ± 0.3  < 0.001 160.9 ± 0.6 163.9 ± 0.5  < 0.001 161.2 ± 0.3 163.3 ± 0.4  < 0.001

Weight (kg, mean ± SD) 63.7 ± 0.5 65.4 ± 0.4     0.003 63.5 ± 0.8 64.6 ± 0.7     0.270 62.4 ± 0.4 63.6 ± 0.6     0.132

BMI (kg/m2, mean ± SD) 25.3 ± 0.6 24.3 ± 0.2     0.462 24.5 ± 0.3 24.0 ± 0.2     0.153 24.0 ± 0.1 23.8 ± 0.2     0.251

Smoking status [n (%)]  < 0.001  < 0.001  < 0.001

 Non‑smoker 397 (80.9) 416 (58.7) 176 (80.7) 183 (61.8) 527 (78.9) 207 (51.4)

 Former smoker 13 (2.6)a 90 (12.7)a 10 (4.6)a 35 (11.8)a 44 (6.6)a 88 (21.8)a

 Current smoker 81 (16.5)a,b 203 (28.6)a,b 32 (14.7)a 78 (26.4)a 97 (14.5)a,b 108 (26.8)a,b

http://www.Rproject.org
http://www.Rproject.org
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overlap between two contours. The mean Dice coeffi-
cient between manual and automatic segmentation was 
(0.97 ± 0.06) (Additional file 1: Fig. S1).

Feature screening and radiomic signatures establishment
A total of 1218 radiomic features were normalized with 
the Z score method. After Pearson’s correlation analy-
sis, 935 radiomic features (absolute value of Pearson 

correlation coefficients > 0.9) were eliminated. There-
fore, a total of 283 features were retained. Finally, 18 
radiomic features with non-zero coefficients were 
selected by LASSO regression (Fig.  3a–c). By linearly 
combining those features after weighting by their cor-
responding coefficients, we constructed the radiomic 
signature. The Radscore calculation formula is provided 
in the Additional file 1.

Fig. 3 LASSO coefficients of radiomic features. a The LASSO coefficient profiles of the 283 radiomics features. A vertical line was generated 
at the log (λ) value by using tenfold cross‑validation, where the optimal λ value resulted in 18 radiomics features. The optimal λ value of 0.00057 
was selected. The X‑axis on the top indicates the number of nonzero coefficient features in the model. b The black vertical line was drawn 
at the value selected using tenfold cross‑validation in (a). The X‑axis on the top indicates the number of nonzero coefficient features in the model. c 
Histogram of the Radscore: the Y‑axis indicates the selected 18 radiomic features, and the X‑axis represents the coefficient of the radiomic features. 
LASSO least absolute shrinkage and selection operator
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Performance comparison of radiomic model, clinical 
model, and combined model
The boxed scatter plots for the Radscore are shown in 
the Additional file  1: Fig. S2. As revealed by the Wil-
coxon test, the Radscore exhibited significant differences 
between the COPD group and the non-COPD group 
(P < 0.001). In addition, according to univariate and mul-
tivariate regression analysis, the Radscore was indepen-
dently associated with COPD. Moreover, age, sex, height, 
and smoking status were identified as independent pre-
dictors of COPD by multivariate regression and included 
in the construction of the clinical model (Table 2). Last, 
the Radscore was integrated with these independent pre-
dictive factors to construct the combined model. The 
combined model calculation formula is described in 
Additional file 1.

Figure  4 and Table  3 showed the performances of 
the radiomic, clinical, and combined models. The con-
structed radiomic model contains 18 screened features 
and had a good degree of differentiation, with AUCs of 
0.888 (95%CI 0.869–0.906), 0.874 (95%CI 0.844–0.904) 
and 0.846 (95%CI 0.822–0.870) in the training, internal 
and external validation cohorts, respectively. According 

to the DeLong test, there was a significant difference in 
the AUCs between the combined model and the clini-
cal model (P < 0.001 in the three cohorts). The DeLong 
test also showed that the AUC of the combined model 
and the radiomic model in the training cohort was sig-
nificantly different [AUC = 0.893 (95%CI 0.875–0.911) vs. 
AUC = 0.888 (95%CI 0.869–0.906); P = 0.02] and in the 
external validation cohort [AUC = 0.853 (95%CI 0.830–
0.877) vs. AUC = 0.846 (95%CI 0.822–0.870); P = 0.04], 
but there was no significant difference in the internal 
validation cohort [AUC = 0.873 (95%CI 0.843–0.903) vs. 
AUC = 0.874 (95%CI 0.844–0.904); P = 0.71].

Development and performance of the nomogram
The visualization of the nomogram and the combination 
of radiomic and common clinical factors are helpful for 
doctors to conduct health education consultations for 
patients. The combined model was converted into a nom-
ogram, and the total score obtained from the nomogram 
was used to predict the risk of COPD (Fig. 5a). The Hos-
mer–Lemeshow test showed that the calibration curves 
of the combined model for predicting COPD in the train-
ing, internal and external validation cohorts matched the 

Table 2 Univariable and multivariable logistic regression analysis

BMI body mass index, OR odds ratios, CI confidence interval

Variable Univariable analysis Multivariable analysis (clinical model 
parameters)

Multivariable analysis (combined 
model parameters)

OR (95%CI) P‑value OR (95%CI) P‑value OR (95%CI) P‑value

Age 1.059 (1.046–1.072)  < 0.001 1.074 (1.059–1.089)  < 0.001 1.025 (1.007–1.043) 0.007

Sex 0.352 (0.276–0.447)  < 0.001 0.663 (0.459–0.957)     0.028 1.839 (1.151–2.937) 0.011

Height 1.034 (1.021–1.047)  < 0.001 1.029 (1.010–1.050)     0.003 1.022 (0.999–1.045) 0.061

Weight 1.012 (1.002–1.022)     0.014 – – – –
BMI 0.986 (0.967–1.006)     0.166 – – – –
Smoking 0.599 (0.516–0.695)  < 0.001 0.660 (0.554–0.785)  < 0.001 0.662 (0.531–0.826)  < 0.001

Radscore 2.862 (2.511–3.263)  < 0.001 – – 2.789 (2.410–3.227)  < 0.001

Fig. 4 ROC curves of the radiomic model, clinical model, and combined model in predicting COPD in the training cohort (a), internal validation 
cohort (b), and external validation cohort (c). ROC receiver operating characteristic, COPD chronic obstructive pulmonary disease
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actual data very well (P = 0.972, 0.149 and 0.06, respec-
tively) (Fig.  5b). According to DCA (Fig.  5c), the com-
bined model showed a greater benefit than the clinical 
model in predicting COPD risk in the training cohort 
when the probability threshold in the clinical decision of 
the patient or physician was greater than 0.1. The nom-
ogram showed the highest clinical net benefit across all 
threshold probability ranges in the training cohort, sug-
gesting that the nomogram is a reliable tool for clinically 
predicting COPD. An example of the nomogram in use 
is shown in Fig. 6. Similar to the points scoring system, 
we assigned points for each predictor of COPD and then 
equated these predictors with the risk of COPD. We can 
read the top score scale upward from the predictors to 
determine the points score associated with patient age, 
height, smoking status, sex, and the Radscore. Once a 
score has been assigned to each predictor, an overall 
score is calculated. Then, the total score is converted to 
the probability of COPD by reading the associated prob-
ability of COPD from the total point scale.

Discussion
COPD is a heterogeneous disease that causes a series of 
abnormalities, including small airway remodeling, lung 
vessel remodeling, and the formation of emphysema. 
The ability to comprehensively evaluate the disease is 
very important. Although PFT is the current clinical gold 
standard, CT plays an important role in the manage-
ment of COPD due to its advantages of focal, accurate, 
and visual evaluations. In our large multicenter cohort 
of participants, we innovatively proposed the construc-
tion of a CT-based whole lung radiomic nomogram 
to identify COPD. The AUCs of the model were 0.893, 
0.873, and 0.853 in the training, the internal validation, 

and the independent external validation cohorts, respec-
tively. The subsequently constructed nomogram is intui-
tive, which can improve the value of CT in evaluating 
lung function and help to detect more underdiagnosis of 
COPD in clinical routine work.

The incidence and disease burden of COPD is high in 
China, the overall pulmonary function detection rate is 
still at a low level, and many people have been underdi-
agnosed. In contrast, the popularity of chest CT is very 
high, especially with the large-scale chest CT screening 
for lung cancer. Moreover, more and more community 
health service centers will be equipped with CT. There-
fore, the most important clinical scenario is for the large-
scale lung cancer screening population that usually does 
not perform PFT, and many underdiagnosed COPD can 
be found through our model prediction, which can help 
enhance the detection and early intervention of COPD, 
reduce the socioeconomic burden and improve the 
patient’s life quality. A recent study revealed that CT-
based radiomic features extracted only from inspiratory 
CT scans outperformed existing advanced methods in 
detecting COPD on both standard- and low-dose CT 
scans. The model was constructed with the standard-
dose CT radiomic feature [17].

Radiomic has great potential in obtaining useful medi-
cal information and enhancing the accuracy of clinical 
differential diagnosis. A previous study has identified the 
value of lung radiomic features based on CT imaging and 
clinical manifestations in the assessment of COPD [7]. 
CT finding of COPD patterns might be obscure and dif-
fuse, making it difficult to accurately delineate abnormal 
areas. Li et  al. [18] randomly selected 42 non-overlap-
ping ROIs from 11 axial CT sections of every patient to 
extract radiomic features, with an AUC of 0.97. However, 

Table 3 Comparison of diagnostic performance of the radiomic model, clinical model, and combined model in the training and 
internal and external validation cohorts

AUC  area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value

Model AUC (95%CI) Accuracy (95%CI) (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Radiomic model

 Training cohort 0.888 (0.869 – 0.906) 81.3 (78.9 – 83.4) 85.5 75.2 83.2 78.2

 Internal validation cohort 0.874 (0.844 – 0.904) 78.8 (75.0 – 82.3) 81.1 75.7 81.9 74.7

 External validation cohort 0.846 (0.822 – 0.870) 76.9 (74.3 – 79.4) 54.3 90.6 77.7 76.7

Clinical model

 Training cohort 0.732 (0.703 – 0.761) 67.6 (64.9 – 70.2) 65.8 70.1 76.1 58.7

 Internal validation cohort 0.714 (0.669 – 0.759) 65.4 (61.1 – 69.5) 62.5 69.3 73.4 57.6

 External validation cohort 0.777 (0.746 – 0.806) 72.6 (69.9 – 75.3) 62.7 78.5 63.8 77.7

Combined model

 Training cohort 0.893 (0.875 – 0.911) 81.7 (79.4 – 83.8) 84.7 77.2 84.3 77.8

 Internal validation cohort 0.873 (0.843 – 0.903) 78.0 (74.2 – 81.5) 81.8 73.1 79.4 76.2

 External validation cohort 0.853 (0.830 – 0.877) 78.3 (75.7 – 80.7) 88.5 61.5 79.2 76.3
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the approach they used could not comprehensively evalu-
ate the disease in the whole lung. In contrast, the auto-
matic segmentation of the whole lung into the whole ROI 
allows a comprehensive evaluation of the lung, with an 
AUC of 0.893 in this study. Automatic segmentation can 
improve efficiency and reduce inter- and intra-observer 
differences. However, the AUC of COPD identified in 

our study was lower than that of Li et al. [18], which may 
be related to the fact that they applied machine learning 
technologies for further radiomic feature selection based 
on LASSO regression. Nam et  al. [19] trained and vali-
dated a deep learning method to predict the prognosis 
of COPD patients based on chest radiography, with an 
AUC of 0.76. Notably, a significant proportion of patients 

Fig. 5 Development and performance of radiomic nomogram. a Radiomic nomogram developed to predict COPD. b Calibration curve 
between the predicted and actual incidences of COPD. c Decision curve analysis compares the net benefits of four scenarios in predicting the risk 
of COPD: Combined model (red line), Clinical model (blue line), All (green line, refers to the assumption that all patients have COPD) and None 
(horizontal solid black line, represents the assumption that no patient has COPD). COPD chronic obstructive pulmonary disease
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with COPD had normal chest X-rays based on subjective 
evaluations. Compared to chest X-ray images, chest CT 
scans are more sensitive to changes in COPD. Therefore, 
chest CT was used to evaluate COPD in this study. The 
greatest characteristic of radiomic in this study was that 
the whole lung was combined into one ROI to extract the 
radiomic features. Because COPD is a diffuse and hetero-
geneous disease involving the pulmonary parenchyma, 
small airway, and lung blood vessels, focal ROIs cannot 
fully represent the pathological changes induced by the 
disease. Moreover, we used the deep convolutional neu-
ral network extension based on the U-net architecture 
for lung segmentation [13, 20].

According to our results, 283 potential radiomic fea-
tures were selected on CT images, of which the LASSO 
regression model ultimately identified 18 predictors for 
constructing radiomic signatures. The radiomic features 
we screened were divided into four types (first-order, 
morphologic features, texture features, and wavelet fea-
tures), which were significantly different between the 
non-COPD and COPD groups. These features essentially 
reflect information from the distribution of pixel inten-
sity and texture morphology that radiologists cannot 
detect manually [21]. Morphologic features describe the 
size, volume, and shape of the volume of interest, while 

first-order features mainly reflect the internal texture of 
the lesions. Textural features, including the gray level 
co-occurrence matrix and gray level dependence matrix, 
describe the spatial relationship between each pixel and 
its neighbors. Wavelet features mainly reflect the time-
frequency domain within the lesion [22]. Among the 
selected radiomic features, Wavelet LLL gldm LowG-
rayLevelEmphasis and wavelet LHL glcm ClusterShade 
have the highest significance and robustness in identi-
fying COPD. They represent the intensity and textural 
features of lesions in high-intensity CT voxels. To some 
extent, radiomic is a quantitative method. Conventional 
quantitative CT evaluation has been applied in COPD 
diagnosis, severity evaluation, prognosis, and many 
other aspects. Cho et  al. [23] reported the performance 
of an integrated model of quantitative features, such as 
emphysema, airway remodeling, pulmonary vascular dis-
eases, and air trapping, extracted by fully automated in-
house software (AVIEW) with a radiomic approach as a 
predictor of survival in COPD patients, and they found 
that their integrated model outperformed a model con-
structed using only a single quantitative parameter. In 
our research, we established a whole-lung radiomic sig-
nature describing airways, blood vessels, and emphy-
sema, similar to Cho et al. [23]. We found the radiomic 

Fig. 6 The risk scores of COPD in two patients were calculated by using the nomogram. a Thin‑slice chest CT images of non‑COPD in a 45‑year‑old 
woman with height 152 cm, non‑smoker, Radscore ‑2.08. b Lung density analysis diagram showed no emphysema area in both lungs. c The 
nomogram shows that the total score was 44.8 points, corresponding to the probability of developing COPD is approximately 8.0%. Lung function 
examination showed that FEV1/FVC = 0.8. d Thin‑slice chest CT image of COPD in an 82‑year‑old female subject. She is 152 cm tall, non‑smoker, 
and has a Radscore of 3.17. e Lung density analysis diagram showed that both lungs are mostly scattered in the emphysema area (red). f The total 
score of the nomogram was 48.2, corresponding to the probability of developing COPD of approximately 96.9%. Pulmonary function examination 
showed that FEV1/FVC = 0.6. COPD chronic obstructive pulmonary disease, CT computed tomography, FEV1/FVC ratio of forced expiratory volume 
in 1 s to forced vital capacity
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model outperformed the clinical model, which is similar 
to a recent study by Amudala Puchakayala et al. [17].

In our model, age, sex, height, and smoking status 
were selected as independent risk factors for identify-
ing COPD. Smoking is one of the most common clinical 
risk factors, but a significant proportion of patients with 
COPD have never smoked [24]. Therefore, the model 
used smoking status as a surrogate for total smoking 
exposure in our study. Additionally, as in previous stud-
ies, age, sex, and height were independent predictors of 
COPD [2, 25, 26].

The AUC of the combined model with clinical and radi-
omic features was 0.893, 0.873, and 0.853 respectively, 
which was superior to the clinical model in the three 
cohorts, and slightly better than the radiomic model in 
the training and external validation cohorts. These find-
ings are similar to the recent study published in Radiol-
ogy [17], which indicated radiomic alone is a potent tool 
for identifying COPD. However, to provide a predicting 
tool for the probability of COPD occurrence at the indi-
vidual level, we still constructed a nomogram based on 
the combined model. Compared with traditional meth-
ods, the nomogram can predict more quickly, conveni-
ently, and accurately, especially it can help the physician 
to consult patients for health education.

Additionally, the diagnostic accuracy of the differ-
ent models was assessed using an external validation 
cohort. The combined model showed slightly better than 
the radiomic model in the external validation cohort 
(P = 0.04), demonstrating that the model has good accu-
racy for this population. The results indicated the model 
has good predictive performance for new, unfitted data, 
as well as its high prediction capability and robustness. 
These findings are consistent with others utilizing radi-
omic to predict COPD survival [23, 27], spirometry-
based evaluation of emphysema and severity [28], COPD 
exacerbations [29], COPD stage classification [30, 31], 
and analysis of COPD and resting heart rate [32].

Some limitations should be noted in this study. First, 
selection bias was inevitable due to its retrospective 
nature. The number of patients in the 5 centers was 
imbalanced, but the performance of the nomogram was 
good, confirming the universal applicability of our model. 
Second, only the CT radiomic features were evaluated, 
not common CT quantitative and qualitative parameters 
that are valuable in evaluating COPD. In future stud-
ies, we will extract common quantitative and qualita-
tive parameters from paired inspiratory and expiratory 
CT images into our prediction model. Third, regarding 
the clinical variables, we only considered those that are 
most common and easy to acquire from CT scans. To 
more objectively evaluate the performance of the clinical 
model, future studies should incorporate more clinical 

variables, including symptoms. Fourth, the non-COPD 
patients in this study were defined as FEV1/FVC ≥ 0.7 
and an FEV1% predicted ≥ 80% after bronchodilation, the 
preserved ratios of impaired spirometry (PRISm, FEV1/
FVC ≥ 0.7 and an FEV1% predicted < 80%) were not 
included. PRISm is considered to be a high-risk factor 
for COPD, so it is very important to distinguish it from 
COPD. Our team will perform a tri-classification study.

Conclusions
In conclusion, whole-lung CT radiomic can be used as a 
good biomarker for the identification of COPD, not only 
for the lung cancer screening population but also for 
all the patients who performed chest CT examinations. 
With the gradual development of AI technology, the 
quantitative and intuitive nomogram based on whole-
lung CT radiomic may have wide clinical application 
value and more research should be performed toward 
automatic detection of COPD.
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