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Targeting the epigenome to reinvigorate T 
cells for cancer immunotherapy
Dian Xiong1, Lu Zhang1* and Zhi‑Jun Sun1,2*   

Abstract 

Cancer immunotherapy using immune‑checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; 
however, ICI efficacy is constrained by progressive dysfunction of  CD8+ tumor‑infiltrating lymphocytes (TILs), which 
is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune 
microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, 
potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor 
microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regu‑
lators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment 
paradigms involving immunostimulatory agents and epigenetic therapies.
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Background
The success of immune checkpoint blockade (ICB), now 
established as the fourth pillar of anticancer therapy, 
hinges on the concept that immune tolerance of cancer 
is orchestrated through immune checkpoint-mediated 
T cell exhaustion. Thus, the removal of such restraint 
promises to activate cytolytic tumor-specific T cells 
(TSTs) and bolster anticancer immunity. T cell exhaus-
tion is characterized by transcriptional [1, 2], metabolic 
[3] and epigenetic programs [4], along with thymocyte 

selection-associated HMG box (TOX)-dependency [5, 
6] and sustained expression of inhibitory receptors [e.g., 
programmed death-1 (PD-1) [7] and T cell immunoglob-
ulin domain and mucin domain-3 (TIM-3) [8, 9]]. This 
state is also marked by a hierarchical loss of effector func-
tion and proliferative potential, compromising immune 
surveillance efficacy. Therefore, T cell exhaustion may be 
exploited by cancer cells for immune evasion, with PD-1 
expression on tumor-infiltrating lymphocytes (TILs) 
indicating poor patient survival in diverse tumor types 
[10–15]. While T cell-based immunotherapies such as 
ICB, show clinical successes, disparities in patient out-
comes underscore the imperative for investigating ICB 
resistance mechanisms [16].

The intricate mechanisms of T cell exhaustion in can-
cer immunotherapy, including emerging roles of epi-
genetic reprogramming, have been discussed in recent 
seminal reviews [17–19]. Epigenetic therapy, also known 
as epitherapy, utilizes epigenetic-modifying compounds 
(EMCs) (Fig.  1) or CRISPR-based epigenome editing 
[20–22] to modulate epigenetic machineries, includ-
ing DNA methylation, histone methylation, acetylation 
and acylation [collectively known as post-translational 
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modifications (PTMs)], as well as chromatin-remodel-
ers and non-coding RNAs (ncRNAs). This regulates the 
activity of epigenetic enzymes termed “writers”, “readers”, 
and “erasers” that deposit, remove, or bind to epigenetic 
marks, respectively. Thus far, certain inhibitors of DNA 
methyltransferases (DNMTs) and histone deacetylases 
(HDACs), either alone or in combination, have been 
approved by the Food and Drug Adminstration (FDA) for 
the treatment of various malignancies [23], while selec-
tive inhibitors of the acetyl-lysine reader–bromodomain 
and extra-terminal domain (BET) proteins are being 
tested in clinical trials [24]. Fully understanding the epi-
genetic regulatory mechanisms underlying T cell exhaus-
tion is critical to harness the potential of epitherapies.

Recent studies on ICB mechanisms identify tumor-
draining lymph node (TdLN) as the primary site of 
action for immune-checkpoint inhibitors (ICIs) [25–
27], which refocuses attention on the role of systemic 
T cells and the immune macroenvironment [28, 29]. 
Meanwhile, epitherapy could reshape both the tumor 
immune microenvironment (TIME) and the immune 
macroenvironment through modulating spatial 
immune organization, tumor immunogenicity, immu-
nosuppressive cell populations, cancer microbiome, 

and immunometabolism. This approach offers poten-
tial in reinstating endogenous antitumor immunity as 
validated by pre-clinical and clinical studies [26–33]. 
Therefore, elucidating how epigenetic mechanisms 
modulate the TIME and immune macroenvironment is 
pivotal for advancing ICI-based combinational thera-
peutic paradigms.

In this review, we summarize the epigenetic regula-
tion of environmental cues driving T cell exhaustion 
and their therapeutic targeting through ICI-epigenetic 
therapies. We integrate findings from the latest stud-
ies on the spatiotemporal dynamics of T cell exhaus-
tion during ICI treatment, demonstrating that the main 
site of action for ICIs extends beyond the TIME. Con-
sequently, targeting potent immunosuppressive factors 
in both the immune macroenvironment and the TIME 
is critical to surmounting ICI resistance. Building on 
this, we detail the epigenetic machineries involved in 
resistance mechanisms. Finally, we discuss recent clini-
cal trial advancements and offer perspectives for guid-
ing the development of combinatorial strategies that 
include epigenetic modulators, ICIs, and other immu-
nostimulatory agents.

Fig. 1 Therapeutic targeting of the epigenetic regulators with specific and multi‑target small molecule inhibitors. *as part of the polycomb 
repressive complex 2 (PRC2) epigenetic complex; ‘+’ indicates inhibitor‑enzyme selectivity, and for EMCs with multiple substrates their highest 
selectivity is listed. PRMTs protein arginine methyltransferases, HKMTs histone lysine methyltransferases, HAT histone acetyltransferase, BETs 
bromodomain and extra‑terminal domains, EZH1 enhancer of zeste homolog 1, EZH2 enhancer of zeste homolog 2, METTL3 methyltransferase 
like‑3, BRD bromodomain‑containing protein, KDMs lysine demethylases
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Exhausted T cells in cancer immunity
Subsets of TILs with an “exhaustion profile” have been 
recognized, akin to those in chronic lymphocytic cho-
riomeningitis virus (LCMV) infection models [34–38], 
positioning T cell exhaustion as a significant concern in 
the field of onco-immunology. Immune checkpoint pro-
teins programmed death-ligand 1 (PD-L1), cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4), alongside 
arginase 1 (ARG1), TIM-3, and estrogen receptor-bind-
ing fragment-associated antigen 9 (EBAG9), potentially 
encapsulated in exosomes, mediate systemic immune 
suppression and local tumor progression [39]. The line-
age relationship between T cell populations induced by 
viral infection or cancer is being revealed by single-cell 
technologies pairing transcriptomics and epigenomics 
with T cell receptor (TCR) sequencing and clonotyping 
analysis [40, 41]. A plethora of studies have character-
ized several TST subtypes, each with a varying degree of 
resemblance to memory T  (TMEM) cells, effector T  (TEFF) 
cells, and terminally exhausted T  (TEX) cells [42–44], pre-
sent both inside and outside the TIME.

Adding to the complexity, migration of fresh TSTs 
external to the TIME in response to ICB could replace 
exhausted TILs. This process, termed "clonal replace-
ment" [40], is supported by the clinical observation 
that only a minimal overlap of TCR clonotypes exists 
between TILs derived from pre- and post-ICI treatment 
tumor samples: 84% TCRs in the post-treatment group 
are clonotypes highlighting the expansion of systemic 
TSTs responding to ICB [40]. This replenishment of ICB-
responsive TIME  CD8+ T-cell pool from the periphery 
(i.e., normal adjacent tissue, peripheral blood [45], and 
TdLN [26]) has been observed in multiple tumors [46–
48] and credited with the successful prediction of ICI 
clinical response for PD-L1 inhibitors [31]. A subset of T 
cell factor 1 (TCF1)+TOX− TSTs in TdLNs (accounting 
for around 40% of total TSTs in TdLNs at 8 weeks post-
tumor induction) displays an epigenome distinct from 
their  TCF1+TOX+ precursor exhausted T  (TPEX) cells 
[27]. These  TCF1+TOX− TSTs are featured with accessi-
ble chromatin regions (ACRs) in binding sites of several 
members of the E26 transformation-specific (ETS) and 
runt-related (Runx) transcription factors (TFs) families, 
mirroring canonical  TMEM; hence this subset is termed 
TdLN-derived tumor-specific memory cells or TdLN-
TTSM. This TdLN-TTSM cell population exhibits a more 
memory-like phenotype with about 150-fold expansion 
vs. 40-fold for  TPEX cells upon antigen re-encounter and 
heightened responsiveness to ICB, hence being regarded 
as bona fide responders to ICB.

Therefore, within the immune macroenvironment, 
TdLN-TTSM cells undergo ICB-induced differentiation 
into TdLN-TPEX cells, which subsequently clonally sup-
plant the terminally exhausted  CD69+Ly108−  TEX cells in 
the TIME [27, 43]. This model highlights the role of both 
the systemic and local immune environment in fostering 
and deploying ICB-induced cytolytic TSTs.

Epigenetic machineries and T cell exhaustion
We have outlined the cellular and molecular progression 
of T cell exhaustion programs in the context of cancer 
immunotherapy. T cell exhaustion is both established 
and maintained by finely tuned transcriptional programs 
that are governed by the “epigenetic landscape” (Fig. 2).

To establish a cell-state specific epigenetic landscape, a 
DNA sequence-specific deployment of TFs is regulated 
by their physical access to chromatinized DNA—the 
chromatin accessibility [49]. The accessibility to chro-
matin (the core structural component of which is the 
nucleosome) is further modulated by epigenetic modi-
fications such as DNA methylation, histones PTMs, the 
composition (e.g., the acidic patch [50]) of nucleosomes, 
and the competition between TFs and nucleosomes 
for open DNA sequences (i.e., nucleosome occupancy 
[51]). Moreover, higher-order chromatin conformations, 
molded by chromatin remodelers [52], provide an extra 
level of epigenetic control beyond chromatin accessibil-
ity, as certain DNA regulatory elements are positioned 
hundreds of kilobases away from their target genes and 
require three-dimensional (3D) chromatin folding to 
be brought together [53]. Additional epigenetic control 
can be introduced by the presence of multiple PTMs 
within one nucleosome, and when both activating (e.g., 
H3K27ac and H3K4me3) and repressive PTMs (e.g., 
H3K27me3 and H3K9me3) are present, such an epige-
netic mark is called "bivalent". Bivalent gene loci signify 
a transcriptionally poised state [54], accounting for the 
rapid initiation of gene expression in naïve T cell activa-
tion and  TMEM cells upon antigen re-encounter. Multiva-
lent histone marks also exist, and together with all forms 
of PTMs constitute the "histone code" [50], as part of 
the larger "epigenetic code" [55, 56]. This genetic model 
reflects how epigenetic information can be encoded in 
the form of epigenetic modifications that can be main-
tained and recognized by reader enzymes.

DNA methylation
DNA methylation at the promoter region represents one 
of the best-understood epigenetic silencing pathways, 
involving the transfer of a methyl group from S-adenosyl 
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Fig. 2 (See legend on next page.)
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methionine to the cytosine residue of DNA, particularly 
at CpG dinucleotides. Its maintenance is dependent upon 
"writer" DNMTs, "eraser" TETs, and "reader" methyl-
CpG binding domain proteins (MBDs).

Small molecule inhibitors targeting enzymes regulat-
ing DNA methylation are widely available, with azaciti-
dine (AZA) and decitabine (DAC) being FDA-approved 
DNMT inhibitors (DNMTi) for treating myelodysplastic 
syndromes (MDS) [57]. Other DNMTis include RG108 
and SGI-1027 which block DNMT’s binding to DNA. 
As for TET inhibitors, 5-carboxy-8-hydroxyquinoline 
(5-CHQ), corticosterone methyl oxidase-like protein 
1 (CMO1) inhibitors, and pyridine-2,4-dicarboxylic 
acid derivatives are in development, targeting the TET 
enzymatic site or inhibiting the conversion of 5-methyl-
cytosine to 5-hydroxymethylcytosine (5hmC). Opti-
mizing TET inhibitors for clinical efficacy and safety 
remains a research focus. Notably, isocitrate dehydro-
genase 1 (IDH1) and IDH2 mutations could lead to 
α-ketoglutarate (α-KG)-derived oncometabolite two-
hydroxyglutarate (2HG) which antagonizes the TET and 
the Jumanji family of histone demethylases. Therefore, 
IDH1 and IDH2 inhibitors (ivosidenib and enasidenib) 
would regulate both DNA and histone demethylation, 
and have been approved by the FDA for the treatment 
of relapsed or refractory acute myeloid leukemia (AML) 
[58].

Histone acetylation
Histone acetylation, entails adding an acetyl group to 
lysine residues on histone tails, a key mechanism for 

regulating gene expression in eukaryotic cells. The bal-
ance between histone acetyltransferases (HATs) "writers" 
and HDACs "erasers" plays a critical role in maintain-
ing proper gene expression levels and cellular function, 
modulating chromatin structure by neutralizing histone 
charges and opening the chromatin structure, making the 
DNA more accessible for TFs as the cis-acting effects of 
histone PTMs. On the other hand, HDACs extract acetyl 
groups from lysine residues on histone tails, leading to 
compact chromatin structure and decreased gene expres-
sion. There are several HAT families, including general 
control non-repressed 5 protein-related N-acetyltrans-
ferases (GNAT), MYST (MOZ, Ybf2/Sas3, Sas2, and 
TIP60) and p300/cAMP-response element binding pro-
tein-binding proteins (CBP). For HDACs, they are classi-
fied into four classes based on phylogenetic relationship, 
protein structure, and subcellular localization: Class I 
(HDAC1, 2, 3, and 8), Class II [Class IIa (HDAC4, 5, 7, 
and 9) and Class IIb (HDAC6 and 10)], Class III (also 
known as sirtuins), and Class IV (HDAC11) [59].

Several small molecule inhibitors of histone dea-
cetylases (HDACi) have been approved by the FDA for 
the treatment of various blood malignancies, such as 
cutaneous and peripheral T-cell lymphoma and multi-
ple myeloma. These HDACis are vorinostat, romidep-
sin, belinostat, and panobinostat [60]. Other potent 
HDACis, including entinostat (MS-275), mocetinostat 
(MGCD0103), abexinostat (PCI-24781), and resminostat 
(4SC-201), are currently undergoing clinical trials for the 
treatment of breast cancer, Hodgkin’s lymphoma, lym-
phoma, hepatocellular carcinoma (HCC), and colorectal 

Fig. 2 Epigenetic modifications can occur at different levels, including chromatin remodeling, histone modification, DNA methylation, 
transcription factor binding, and epitranscriptomic regulation of mRNAs and ncRNAs. a Chromatin remodeling is mediated by ATP‑dependent 
complexes, such as brahma‑associated factor (BAF), inositol requiring 80 (INO80), and imitation switch (ISWI), which could alter DNA accessibility. 
b Histone acetylation is balanced between "writer" enzymes, such as MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60), cAMP‑response element binding 
protein‑binding proteins (CBP), general control non‑repressed 5 protein‑related N‑acetyltransferases (GNAT), and proto‑oncogene tyrosine‑protein 
kinase Src (SRC) protein families, and "erasers", such as HDAC and silent mating type information regulation 2 homolog 1 (SIRT) family proteins. 
Histone acetylation can be recognized by "readers", such as the BET family, which are associated with transcriptional activation. c Histone 
methylation is maintained by writers, such as SET, disruptor of telomeric silencing 1‑like (DOT1L), and myeloid/lymphoid leukemia (MLL) protein 
families, and erasers such as lysine‑specific demethylase (LSD) and Jumonji C domain‑containing (JMJD) families. Histone methylation could be 
recognized by readers, such as plant homeodomain (PHD) finger proteins. d DNA methylation is regulated by DNMT and ten‑eleven translocation 
(TET) proteins and can be recognized by readers such as methyl‑CpG‑binding domain protein 2 (MDB) and methyl CpG binding protein (MeCP). 
e Transcription factors (TFs) compete with nucleosomes for DNA access and could be recruited by various epigenetic modifiers. The interplay 
between transcription factors and epigenetic regulators is highly dynamic and complex, with TFs often working in concert with epigenetic 
modifiers to regulate gene expression. f Epitranscriptomic regulation of mRNAs and non‑coding RNAs (ncRNAs), such as  N6‑methyladenosine 
 (m6A) and 5‑methylcytosine  (m5C) modification, play crucial roles in gene expression and cellular differentiation. RNA modifications can be 
recognized by reader proteins, such as YTH domain‑containing proteins, which regulate mRNA stability, translation, and splicing. miRNP 
miRNA ribonucleoprotein complex, pre‑miRNA precursor miRNA, pri‑miRNA primary miRNA, HDAC histone deacetylase, BET bromodomain 
and extra‑terminal motif protein, PCNA proliferating cell nuclear antigen, UHRF ubiquitin‑like with PHD and ring finger domains, DNMT DNA 
methyltransferase, EZH2 enhancer of zeste homolog 2, SETDB SET domain bifurcated histone lysine methyltransferase, TCF‑1 transcription factor 1, 
TOX thymocyte selection‑associated high mobility group box, EOMES eomesodermin, NR4A nuclear receptor subfamily 4 group A, M nucleotide 
methylation, Me histone methylation, METLL methyltransferase‑like family proteins, eIF3 eukaryotic translation initiation factor 3, YTHDC YTH 
domain containing, FTO fat mass and obesity‑associated protein, ALKBH AlkB homolog, MEB methyl‑CpG binding protein, Ago argonaute proteins

(See figure on previous page.)
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cancer [60]. Furthermore, trichostatin A and valproic 
acid (VPA) are also utilized for treating other diseases. 
CUDCs are a class of bifunctional inhibitors that target 
HDAC and other proteins, and they have shown prom-
ising antitumor effects in preclinical models and clinical 
trials for various solid tumors and hematologic malig-
nancies. Examples include CUDC-101, which inhibits 
HDAC1, epidermal growth factor receptor (EGFR), and 
human epidermal growth factor receptor 2 (HER2) and 
has been effective in preclinical models of lymphoma and 
solid tumors, and CUDC-907, which has demonstrated 
a significant response rate in relapsed/refractory diffuse 
large B-cell lymphoma patients [61, 62].

The use of proteolysis-targeting chimeras (PROTACs) 
represents promising avenue for achieving sustained 
inhibition and degradation of HDACs. PROTACs com-
prise a ligand that binds to the target protein, an E3 ligase 
recognition moiety, and a connecting linker. Once the 
ligand binds to the target protein, the E3 ligase mediates 
ubiquitination and subsequent degradation of the target 
protein. Several HDAC-targeted PROTACs have been 
developed, including those targeting HDAC6, which 
utilizes a selective HDAC6 inhibitor, nexturastat A, con-
jugated to pomalidomide as cereblon (CRBN)128 [63]. 
Notably, the PROTACs NP8 and NH2 degraded HDAC6 
without impacting other HDAC types. The reversible 
degradation of HDAC6 by PROTACs was demonstrated 
by the recovery of HDAC6 three hours after removal of 
the PROTACs [64].

Histone methylation
Histone methylation on lysine and arginine residues in 
the N-terminal tails is regulated by histone methylation 
transferases (HMTs) and "eraser" lysine demethylases 
(KDMs), similar to histone acetylation. HMTs, which 
acquire methyl groups from S-adenosylmethionine 
(SAM) like DNMTs, could be classified into several 
families including the SET domain-containing proteins 
[e.g., enhancer of zeste homolog 2 (EZH2), SET domain 
bifurcated histone lysine methyltransferase 1 (SETDB1), 
and Su(Var)3–9 homolog 1 (SUV39H1)], DOT1L, and 
PR domain-containing proteins (e.g., PRMT1-8 and 
G9a [65]). These enzymes may target different sites 
and catalyze distinct methylation modification pat-
terns, either activating [e.g., H3K4me1/2/3 by SET1A/B, 
H3K36me2/3 by SET domain containing 2 (SETD2), 
and H3K79me1/2/3 by DOT1L] or repressive (e.g., 
H3K9me1/2/3 by SUV39H1/2, G9a and SETDB1, and 
H3K27me1/2/3 by EZH1/2 and MLL2/3). On the other 
hand, lysine-specific KDMs are epigenetic enzymes that 
catalyze the removal of methylation marks from histone 

lysine and arginine residue respectively. Different sub-
families of KDMs (KDM1-7) can be categorized into 
flavin adenine dinucleotide (FAD)-dependent lysine-spe-
cific demethylases (LSDs) and α-KG-dependent Jumonji 
C domain-containing (JMJD) families [66]. Selective 
KDM small molecule inhibitors including KDM1A 
(LSD1) inhibitor ORY-1001 for acute lymphoblastic leu-
kemia (ALL) and small-cell lung cancer, KDM4 inhibi-
tor IOX1 for glioblastoma, KDM5 inhibitor CPI-455 for 
ALL, and KDM6 inhibitor GSK-J4 for various malignan-
cies, are under clinical evaluation.

Chromatin binding factors
The differentiation of cell types (e.g.,  TEFF and  TMEM) 
and cell states (e.g., exhaustion) hinges on the com-
plex interactions between chromatin-binding factors 
and nucleosomes that cooperatively regulate chromatin 
accessibility and 3D conformation. An in  vivo Perturb-
seq study revealed that chromatin remodeling complexes 
INO80 and brahma-associated factor (BAF) are crucial 
to an early commitment to exhaustion in T cells [67]. 
In exhausted chimeric antigen receptor (CAR)-T cells, 
chromatin conformation capture coupled with Hi-C 
chromatin immunoprecipitation (HiChIP) revealed that 
chromatin loopings are anchored at the promoter region 
of key exhaustion genes (i.e., PDCD1, HAVCR2, LAG3, 
TIGIT, and TOX), suggesting that extensive chromatin 
remodeling may occur in the development of CAR  TEX 
cells [68].

Targeting strategies against chromatin remodeling 
complexes include PROTACs developed as degraders 
of the BAF adenosine triphosphatase (ATPase) subunits 
SMARCA2 (SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily A, member 
2) and SMARCA4. Detailed biophysical investigation and 
high-resolution ternary complex crystal structures ena-
bled rational and optimized design of ACBI1, a potent 
and cooperative degrader of SMARCA2, SMARCA4 
and PBRM1 [69]. ACBI1 demonstrated anti-prolifera-
tive effects and induced cell death caused by SMARCA2 
depletion in SMARCA4 mutant cancer cells, along with 
impacts in AML cells reliant on SMARCA4 ATPase 
activity.

Additional approaches include macrolactams like 
BD-98 that dissociate AT-rich interaction domain 1A 
(ARID1A)-containing BAF complexes from chromatin 
and inhibitors like BI-9564 that disrupt the bromodo-
main-containing protein 9 (BRD9) subunit [70, 71]. Tar-
geting strategies have also been identified against other 
chromatin remodeling complexes. For example, the imi-
tation switch (ISWI) ATPase can be inhibited by flavonol 
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ignorin to disrupt nucleosome spacing [72]. Clinically 
available inhibitors exist against chromatin reader pro-
teins like BET bromodomains (JQ1, iBET, CPI-0610) and 
plant homeodomain (PHD) fingers (I-CBP112). Overall, 
major advances have been made in targeting chromatin 
remodeling complexes to subtly yet precisely manipulate 
the regulatory chromatin landscape.

ncRNAs
Small ncRNAs and long ncRNAs (lncRNAs) have 
emerged as key contributors to genome stability and 
epigenetic memory [73]. RNA-mediated gene silenc-
ing involves an RNA scaffold, serving as platform for 
recruiting histone lysine methyltransferase (HKMT) and 
DNMT complexes [i.e., polycomb and ubiquitin-like with 
PHD and RING finger domains 1 (UHRF1)-DNMT1] to 
mediate heterochromatin formation. In particular, small 
ncRNAs such as the endogenous miRNA or exogenous 
small interfering RNA (siRNA) assemble with the Argo-
naute (Ago) protein to form an RNA–protein complex 
(RISC) central to RNA interference (RNAi) mechanisms 
[74]. RNAi has been shown to perform gene silencing 
both on the translational level (TGS) targeting histones 
or on the post-translational level (PTGS), targeting 
mRNAs [75]. Specific miRNAs facilitate PTGS in T cell 
exhaustion: miR-31 enforces a sustained expression of 
type I interferon by antagonizing mRNA Ppp6c which 
is a negative regulator of interferon signaling, thereby 
increasing PD-1 surface expression on T cells [76]; 
miR-155 promotes the expansion of  TEX subset through 
inhibiting AP-1 family TF FOS-like antigen 2 (FOSL2) 
[77]; further, miR-29a ameliorates T cell exhaustion by 

inhibiting translational circuits including inflammatory 
and TCR signaling, as well as ribosomal biogenesis [78]. 
Apart from small ncRNAs and lncRNAs, circular RNAs 
(circRNAs) represent another class of ncRNAs capable 
of post-translational gene regulation [79, 80], through 
modulating the alternative splicing of pre-mRNAs or 
"sponging" certain families of miRNAs. circRNAs includ-
ing circHMGB2, circ_0020710, and circTRPS1 have been 
identified as mediators of T cell exhaustion via respective 
sponging of miR-181a-5p, miR-370-3p, and miR-141-3p, 
leading to  TEX biology [81–88] (Table 1).

Similar to the covalent modifications of histones and 
DNA, RNA modifications such as  N6-methyladenosine 
 (m6A),  N1-methyladenosine  (m1A), pseudouridine (Ψ) 
and adenosine-to-inosine (A-to-I) editing have regula-
tory roles in immune and cancer cell biology, as excel-
lently reviewed in these articles [89, 90]. T cell activation 
is accompanied by the upregulation of tRNA methyl-
transferase 6 (TRMT6), which modifies a specific subset 
of early-expressed transfer RNAs (tRNAs) to enhance 
translation efficiency and synthesis of MYC and other 
functional proteins that promote T cell activation and 
proliferation [91].

Strategies for targeting ncRNAs include direct oligo-
nucleotide-based inhibitors and miRNA mimics [92]. 
Antisense oligonucleotides (ASOs) can redirect splic-
ing by binding intronic regulatory sequences, while also 
targeting expanded repetitive sequences in diseases like 
myotonic dystrophy [93]. lncRNAs present challenges for 
small molecule targeting due to poor conservation and 
unknown mechanisms, however they can be targeted 
by ASOs and RNAi [94]. Recent advances demonstrate 

Table 1 circRNAs associated with  CD8+ T cell exhaustion and immunosuppression

a Available as exosome-derived circRNAs; bFurther regulated by  m6A modification; NSCLC non-small-cell lung cancer, NPC nasopharyngeal carcinoma, PC pancreatic 
cancer, BCa bladder cancer, PKP3 plakophilin 3, RIG iretinoic acid-inducible gene I, IRF3 interferon regulatory factor 3, NF-κB nuclear factor kappa-B, CXCL10 C-X-C motif 
chemokine ligand 10, GLS1 glutaminase 1, HCC hepatocellular carcinoma, PD-L1 programmed death-ligand 1, PRMT4 protein arginine methyltransferases 4

Cancer type circRNA Mechanism References

NSCLC circIGF2BP3a, circHMGB2 Increases PKP3 expression via miR‑328‑3p and miR‑3173‑5p sponging, upregulating PD‑L1 
in tumor cells and inactivating the type I interferon response by inhibition of PRMT4 via miR‑
181a‑5p sponging

[81]

circRNA‑002178a Upregulates PD‑L1 expression in tumor cells and PD‑1 expression in T cells respectively via miR‑
34a and miR‑28‑5p sponging

[84]

circIGF2BP3b Increases PKP3 expression via miR‑328‑3p and miR‑3173‑5p sponging, upregulating PD‑L1 
in tumor cells

[85]

NPC circBART2.2 Promotes transcription of PD‑L1 through binding to the helicase domain of RIG‑I, thereby 
activating transcription factors IRF3 and NF‑κB

[86]

PC circ_0046523 Upregulates PD‑L1 expression in PC cells via miR‑148a‑3p sponging [87]

HCC circMET Upregulates CXCL10 level through miR‑30‑5p sponging to abrogate Snail/DPP4‑mediated 
immunosuppression

[88]

Melanoma circ_0020710 Upregulates CXCL12 level via miR‑370‑3p sponging [82]

BCa circTRPS1b Upregulates PD‑1 expression through enhancing GLS1‑mediated glutamine metabolism 
via miR‑141‑3p sponging

[83]
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targeting miRNA precursors, including a neomycin-
nucleobase-amino acid conjugate inhibiting pre-miR-21 
processing [95]. Likewise, a ribonuclease targeting chi-
mera (RIBOTAC) recruiting RNase L achieved selec-
tive degradation of pre-miR-21, inhibiting breast cancer 
metastasis in mice [96]. Conjugating the RNA-binding 
drug dovitinib to this RIBOTAC scaffold enhanced inher-
ent RNA-targeting activity while decreasing protein tar-
get effects [97]. Overall, these oligonucleotide-centered 
techniques and conjugates demonstrate potential for 
modulating regulatory ncRNAs.

Taken together, the establishment and maintenance of 
an epigenetic landscape that define the cellular state and 
identity of exhausted  CD8+ T cells are enforced by spe-
cialized epigenetic regulators such as writers, erasers and 
readers of PTMs, DNMTs, chromatin remodelers, het-
erochromatin-associated complexes as well as ncRNAs. 
Fueled by technological advancements in single-cell tran-
scriptomics, clonotyping, and epigenomics, further dis-
coveries regarding the role of epigenetics in the diverse 
array of T cell states and subtypes hold great potential for 
the development of epitherapies aimed at preventing or 
reversing T cell exhaustion.

Epigenetic regulation of T cell exhaustion drivers
Cancer has been increasingly recognized as a systemic 
disease with global immune ramifications [28, 98]. 
In tumor-burdened host, extensive reorganization of 
the "immune macroenvironment" is observed, with a 
peripheral expansion of immunosuppressive cell types 
such as myeloid-derived suppressor cells (MDSCs), 
tolerogenic dendritic cells (DCs) and Treg cells [29, 99, 
100]. This further leads to intratumoral accumulation 
of immunosuppressive cells in the TIME, exacerbating 
the TIL exhaustion and conferring resistance to T cell-
based immunotherapies [101].

Moreover, tumor-induced perturbations in TdLN-
DCs could hamper cross-presentation of tumor anti-
gen and CD28 co-stimulation of T cells [102]. This has 
profound implications for ICB therapies, as the sys-
temic nature of ICI-elicited anticancer response has 
been unveiled by mass spectrometry-based profiling of 
global immune dynamics [103, 104]. The critical inter-
action of PD-1+ TSTs and PD-L1+CD103+cDC1 in the 
TdLNs is both a mediator and indicator of ICB efficacy 
[17], and the enhancement of TdLN-T cell priming 
with CD40 agonist also enhances ICB-driven de novo 
TSTs response in pre-clinical studies and clinical trials 
[105]. Therefore, the simultaneous reversal of tumor-
driven systemic immune perturbations is critical to 
unleashing ICI-induced anticancer immunity. This sec-
tion will delve into how epitherapies might address this 
need, with a summary on the epigenetic regulation of 

systemic immune macroenvironment and the spatial 
coordination of antitumor immunity between TIME 
and TdLNs. Further, we summarize other factors con-
tributing to TIL exhaustion, from dampened tumor 
immunogenicity to immunosuppressive cells in the 
systemic immune environment and the TIME, and con-
sider the role of epigenetic reprogramming in confer-
ring the effects of immunometabolism and microbiome 
on anticancer immunity (Fig. 3).

Epigenetic modulation of the immune macroenvironment
Chemokines
Stimulator of interferon genes (STING) upregulation 
in tumor APCs triggers chemokine expression, notably 
C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 
by DCs, and CXCL10 and CXCL11 by tumor-associated 
macrophages (TAMs), folstering intratumoral T cell traf-
ficking [106, 107]. Chemokines orchestrates immune 
cell migration and localization in tissues. In the cancer-
immunity cycle, the C–C motif chemokine receptor 7 
(CCR7)-CCL19/CCL21 axis governs the entry of cDC1 
and  TN into the TdLN, while the C-X-C motif chemokine 
receptor 3 (CXCR3)-CXCL9/CXCL10 axis regulates the 
egress of T helper 1 (Th1) cells and  CD8+ TSTs from 
the TdLN into the TIME. The Th1-type chemokines 
CXCL9/CXCL10 can be silenced by DNMT and EZH2 
via increased methylation at the promoter region [32]. 
This silencing leads to T cell exclusion and immune 
evasion, echoing similar findings [108, 109]. Moreo-
ver, other subunits of the polycomb complex apart from 
EZH2 [i.e., suz12 polycomb repressive complex 2 subunit 
(SUZ12), and embryonic ectoderm development (EED)] 
are also inversely associated with Th1-type chemokines 
and patient survival in colon cancer [110], and similarly 
HDAC in lung adenocarcinoma [111]. The recruitment of 
 CD8+ TSTs can be further mediated by the CCR5-CCL5 
axis, which can be increased by sequential use of DNMTi 
and HDACi which result in MYC depletion [112]. As 
MYC is a key TF regulating early T cell exhaustion, its 
inhibition improves T cell trafficking into the TIME and 
augment tumor immunogenicity by promoting endog-
enous retroviruse (ERV) transcription [113]. In parallel, 
circMET and circ_0020710 contribute to T cell exhaus-
tion by upregulating CXCL10 and CXCL12 respectively 
via sponging tumor suppressive miRNAs [82, 97]. There-
fore, targeting regulatory circRNAs along with modula-
tion of MYC hold promise for relieving T cell exhaustion 
by tuning chemokine-mediated cell trafficking and 
immunosuppression.

Immune contexture
The "immune contexture" within tumors is characterized 
by the chemokine milieu which regulates the phenotype 
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Fig. 3 (See legend on next page.)
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and function of immune cells by dictating their locali-
zation and cellular communications in the TIME [114]. 
Advances in spatial transcriptomics and imaging tech-
nologies have highlighted the dynamic interplay of 
immune cells in the tumor setting [115, 116] Chemokines 
have emerged as important cues for the establishment 
of intratumoral immune niches and TLSs, which con-
tribute to the housing of stem-like  TCF1+ TSTs and the 
recruitment of functional TSTs. In particular, a group of 
 CXCL13+CD8+ T cell subset could initiate TLS forma-
tion through CXCL13-dependent recruitment of B cells 
and follicular helper T cells  (TFH). This subset is further 
correlated with effective responses to PD-1/PD-L1 ICB 
therapies [117]. The expression of CXCL13 can also be 
epigenetically tuned by the combined application of the 
HDACi entinostat with tumor-targeted delivery of inter-
leukin-12 (IL-12), which achieved an elevated level of 
CXCL13 and CXCL9. This strategy succeeded in over-
coming resistance to PD-1/PD-L1 ICB in tumors harbor-
ing MHC-I and interferon γ (IFN-γ) deficiencies [118]. 
Nonetheless, the role of epigenetic mechanism in the 
formation of TLS is less well understood, arguing for 
the design of precise single-cell transcriptomic and epig-
enomic studies to elucidate TLS biology [119].

In addition to TLS, other immune niches are observed 
in both tumors and TdLNs. In tumor tissue, perivascu-
lar niches [120] and intra-epithelial niches [121] have 
been identified, sharing the common characteristic of 
a clustering of stem-like or effector TSTs with APCs. 
Such localization of TSTs in close proximity with APCs 
benefits T cell response to ICB and is regulated by the 
CCR5-CCL5 axis, which recruits naïve  CD8+ TSTs to 
tumor antigen-loading cDC1s. Epigenetic regulation 
of the CCR5-CCL5 axis is mediated by ATP-dependent 

chromatin remodeling complexes, including SWI/SNF 
and HATs such as p300 and CBP [101]. Furthermore, the 
CXCR3-CXCL9/CXCL10 axis regulates the spatial par-
titioning of  CCR7+ stem-like T cells vs.  CXCR3+  TEFF 
cells. In head and neck tumor tissues,  CCR7+TCF1+ 
stem-like TSTs preferentially occupy stomal areas, while 
the  CXCR3+PD1+ intermediate TST subsets with effec-
tor function and dysfunctional TSTs infiltrate the tumor 
parenchyma [122]. Conversely, in draining lymph nodes 
(dLNs)  CXCR3+  TEFF cells chemotaxis to the peripheral 
cortex while  CCR7+ stem-like TSTs home to the T cell 
zone (TCZ) in dLN medulla [123]. Therefore, the inter-
actions between chemokines and their cognate receptors 
coordinate effective systemic antitumor immunity at the 
spatial and cellular level, presenting therapeutic targets 
for epigenetic interventions.

Epigenetic modulation of tumor immunogenicity
While PD-1/PD-L1 inhibitors do not exclusively target 
the TIME, their reactivation effects on resident TSTs 
occur alongside the emergence of TST clones. Clini-
cally, the dual contribution of TSTs is unique per indi-
vidual [43], explaining the variability in ICI treatment 
responses. For patients with severe intratumoral T cell 
exhaustion, ICI therapy likely depends on systemic 
immune responses for tumor elimination [27]. To initiate 
a systemic antitumor response, a cancer-immunity cycle 
is essential: tumor APCs, such as cDC1 cells, must pre-
sent tumor neoantigens in the dLNs, where TST priming 
and activation occur [28]. Activated TSTs then infiltrate 
the TIME, leading to tumor destruction by effective TILs. 
Epigenetic modulation dynamically regulates this cycle, 
offering chances for EMCs to enhance immune response 
and tumor targeting in combination with various 

(See figure on previous page.)
Fig. 3 Targeting the epigenetic regulation of extrinsic drivers of T cell exhaustion via epidrugs and CRISPR‑based epigenome editing. a Epigenetic 
modulation of chemokines could direct the formation and coordination of spatial immune contexture.  TN and DCs migrate into the TdLN 
via CCR7‑CCL19/21 chemokine axis as part of the cancer‑immunity cycle, together with CXCL9/10‑dependent trafficking of  TEFF and  TPEX cells 
from the TdLN to the TIME. Within TdLN CCL5 gradient mediates homing of TN cells to the T cell zone (TCZ) in the medulla for priming by antigen 
presenting cells (APCs), while similar APC niches exist in the stromal compartments of the TIME, crucial to ICI‑elicited antitumor immunity. Within 
the TIME tertiary lymphoid structures (TLSs) consist of follicular dendritic cells (FDCs), B cells, follicular T helper  (TFH) cells and  CXCL13+ dysfunctional 
T cells. This subset is speculated to mediate the formation of TLSs via releasing CXCL13, which could be enhanced by epigenetic therapies. b 
Epigenetic upregulation of tumor immunogenicity could be achieved via increased expression of endogenous retroviruses (ERVs) and their 
transcription to produce double‑strand RNAs (dsRNAs), which are sensed by pattern recognition receptors such as the cGAS (cyclic guanosine 
monophosphate‑adenosine monophosphate synthase)‑STING (stimulator of interferon genes) pathways, eventually resulting in upregulation 
of antigen processing and presentation machineries (AgPPM) and release of type I interferon. c Epigenetic reprogramming of immunosuppressive 
cells in the TIME and the immune macroenvironment could revitalize antitumor immunity. d Level of extracellular metabolites in the TIME could 
impact histone modifications (Kla, lysine lactylation; Kme, lysine methylation; Kac, lysine acetylation) through providing cofactors and donor groups 
to epigenetic enzymes. e Epigenetic reprogramming mediates the microbiomic modulation of anticancer immunity. CAF cancer‑associated 
fibroblast, CCL19 C–C motif chemokine ligand 19, CCR7 C–C motif chemokine receptor 7, EPC erythroid progenitor cells, mregDC mature DC 
enriched in immunoregulatory molecules, TAM tumor‑associated macrophage, acetyl‑CoA acetyl coenzyme A,  TN naive T cells,  TPEX precursor 
exhausted T cells, TCZ T cell zone, SAM S‑adenosylmethionine, HIF‑1α hypoxia‑inducible factor 1‑alpha, CXCL9/10 C‑X‑C motif chemokine ligand 
9/10
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therapies. Mechanistic studies suggest that DNMTi, 
EZH2i, and HDACi upregulate tumor antigens and anti-
gen presentation pathways [124, 125], enhancing the syn-
ergy between ICIs, cancer vaccines [126], and CAR T/NK 
cells [127, 128]. Furthermore, tumor cell surface receptor 
expression, like elevated PD-L1 and reduced Fas—which 
modulate immune suppression and resistance to T cell 
cytotoxicity—is epigenetically alterable [129]. Specific 
circular RNAs in various cancers are known to upregu-
late PD-L1, thereby reducing tumor immunogenicity 
[93–96]. Intracellularly, the cyclic guanosine monophos-
phate-adenosine monophosphate (cGAS)-STING signal-
ing pathway is repressed via promoter hypermethylation 
of the cGAS and STING genes, and can be rescued by 
KDM5i and AZA, leading to pro-inflammatory cytokine 
production, enhanced antigen presentation and tumor 
immunogenicity [130–132].

Epigenetic modulation of immunosuppressive cells
In addition to chronic stimulation of TCR signaling, 
stems from the immunosuppression within the TIME, 
enforced by cell populations such as TAMs, MDSCs, 
regulatory DCs, Treg cells, as well as cancer-associated 
fibroblasts (CAFs) and erythroid progenitor cells (EPCs). 
These cells diminish T cell function and confer resistance 
to ICIs, characterized by high surface expression of inhib-
itory molecules, including PD-L1 for myeloid cells (i.e., 
TAMs, MDSCs) and CTLA-4 for Treg cells, along with 
suppressive cytokines including IL-10 and transforming 
growth factor-beta (TGF-β) [133, 134]. Epigenetic mech-
anisms are key in determining the differentiation and 
activity of these immunosuppressive groups.

Myeloid suppressive cells: MDSCs, TAMs, and mature DC 
enriched in immunoregulatory molecules (mregDCs)
The cyclooxygenase-2 (COX2)/microsomal prostaglandin 
E synthase-1 (mPGES1)/prostaglandin E2 (PGE2) signal-
ing pathway influences PD-L1 expression via DNMT3A 
[135]. Moreover, signal transducer and activator of tran-
scription (STAT)-dependent expression of the enzymes 
arginase 1 and inducible nitric oxide synthase (iNOS) 
as MDSC hallmarks can be attenuated by inhibition of 
BET-H3K27 acetylation [136]. Transcriptomic profiling 
of MDSCs indicates DNMT and polycomb gene silenc-
ing machineries contribute to immunosuppression [137]. 
However, the EZH2i GSK126 drives MDSC differentia-
tion in the TIME and resistance to EZH2i treatment in 
lymphoma, highlighting the need for developing targeted 
EZH2i, potentially conjugated with cell-specific anti-
bodies [138]. Obesity-related cancer study showed that 
adipose tissue macrophages, central to obesity-linked 

inflammation and tumor progression, are reprogrammed 
in an obesity-associated milieu through altered metabo-
lite exchange, cytokine production, extracellular vesicle 
content, and gut microbiota metabolites [139]. In TAMs, 
M1/M2 polarization is regulated by a lineage-determin-
ing TF PU.1 which displaces nucleosomes to establish 
the activating H3K4me1 marks on DNA sequences that 
guide macrophage polarization [140].

Another recently characterized group of mregDCs, 
along with immature DCs in the TIME, contribute to 
immune tolerance and TIL exhaustion [141, 142]. This 
group of  CCR7+PD-L1+ DCs exhibit dual functional-
ity: they are immunosuppressive through PD-L1 expres-
sion and pro-inflammatory via IL-12 secretion, although 
IL-4 signaling can inhibit the latter mechanism. Notably, 
blocking IL-4 augments IL-12 production by mregDCs 
and enlarges the TIL repertoire [141]. The impact of 
IL-4 on DCs is mediated by TET-dependent DNA dem-
ethylation. Consequently, TET enzymes, together with 
SETD1A—an H3K4 methylation "writer"—are regula-
tors of DC differentiation. The TF early growth response 
2 (EGR2) could recruit and interact with TET, trigger-
ing the differentiation of monocyte-derived DCs [143]. 
Interestingly, time-course data on DNA methylation and 
gene expression patterns in DCs in response to infec-
tion suggested that gene expression level changes prior 
to the demethylation programs [144]. This suggests that 
DNA demethylation may not be imperative to establish-
ing DC-specific transcriptional programs; instead, the 
role of TF binding to cis-acting elements might be more 
predominant.

Treg cells
The ratio between PD-1+  TEFF and  CD4+CD25+ Treg 
cells could predict clinical efficacy of ICB therapy [145], 
with Treg cells expanded upon PD-1 inhibitor treatment 
[146]. Similar to  TEX subsets, the development and func-
tion of Treg cells are programmed by key TF forkhead 
box P3 (FOXP3) with sustained expression through the 
demethylation of Foxp3 locus [147]. Accessibility of the 
Treg cell-specific demethylation region (TSDR) can be 
abolished during CRISPR-based Foxp3 silencing, indi-
cating the essential role of Foxp3 in regulating TSDR 
genes [148, 149]. In an in  vitro setup, 5-azacytidine 
mediates the demethylation of TSDR and upregulates 
FOXP3 expression, abolishing the immunosuppressive 
function of Treg cells, even resulting in an increase of 
IL-17+FOXP3+ “effector" Treg cells [150]. However, con-
trasting results are reported elsewhere [151] and the net 
effect of 5-azacytidine on Treg requires more research, 
considering the important role of 5-azacytidine in the 
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treatment of hematological malignancies and autoim-
mune disorders [152, 153]. Likewise, the overall acti-
vating effect of several HDACis (e.g., inhibitors for 
HDAC6/9/11 and SIRT1) on Treg is documented [154, 
155], while HDAC5 alone may inhibit the suppressive 
functions of Treg cells [156]. These studies demonstrate 
the need to develop isoform-specific HDACis for clini-
cal application. CBP/p300, another set of transcriptional 
co-activators, are known to drive the differentiation of 
regulatory T cells through both transcriptional and non-
transcriptional mechanisms, underscoring the complex-
ity of  TREG regulation [157]. The BET-H3K27 acetylation 
transcriptional activating pathway also contributes to sta-
ble expression of FOXP3, and its abrogation suppresses 
 TREG functions [158]. In contrast, the chromatin-modify-
ing enzyme EZH2, critical for the maintenance of  TREG 
identity post-activation, presents a different mechanism 
of action, with its inhibition leading to a reprogramming 
of intratumoral  TREG cells and enhanced cancer immu-
nity [159, 160]. Notably, unlike its pro-tumor effects on 
MDSCs, EZH2i disrupt  TREG biology and synergizes with 
anti-CTLA4 ICB in murine models [161].

CAFs
In the TIME, apart from immune constituents, CAFs 
constitute another class of immunosuppressive agents. 
Originating from normal fibroblasts and mesenchy-
mal precursors such as pericytes and adipocytes, 
CAFs emerge in response to oncogenic signals within 
TIME. Similar to  TEX subsets, the heterogeneity and 
plasticity in CAF cell types have been revealed by 
single-cell RNA-sequencing (scRNA-seq), under the 
transcriptional regulation by CAF-associated TFs such 
as STAT3. A combined array analysis of DNA meth-
ylation and gene expression in human mesenchymal 
stem cells (MSCs) pre- and post-tumor co-culture 
reveals that tumor-induced methylation of STAT3 
are pivotal for CAF activation and tumor growth, 
an effect reversible by 5-azacytidine [162]. Moreo-
ver, a STAT3-dependent reprogramming of normal 
fibroblast into invasive CAFs is driven by leukemia 
inducible factor (LIF)-induced DNA methylation. In 
parallel, LIF-induced histone acetylation upregulates 
DNMT3b-dependent DNA methylation, reinforc-
ing STAT3 signaling [163]. HDAC6-mediated dea-
cetylation also upregulates STAT3 and PGE2/COX2, 
which worsens the immunosuppressive effects of 
CAFs [164]. Furthermore, overexpressing high mobil-
ity group at-hook 2 (Hmga2) in prostate stromal cells 
induces CAF formation within the TIME [165]. Taken 
together, these findings underscore the intricate net-
work of epigenetic modifications, encompassing DNA 

methylation, PTMs, and chromatin remodeling, that 
govern CAF development and modulate the TIME. 
Intriguingly, it has been shown that increased lactate 
production within the TIME has been linked to ele-
vated α-KG levels in MSCs, initiating their transforma-
tion into CAFs [166], highlighting an epigenetic link 
between metabolic shifts and anticancer immunity.

EPCs
EPCs, as immature erythroid progenitors and precur-
sors of red blood cells, proliferate within the immune 
macroenvironment including dLNs and the spleen, 
and in the TIME [167]. By generating suppressive 
cytokines like TGF-β and IL-10, alongside reactive 
oxygen species (ROS) and PD-L1 expression, EPCs 
attenuate T cell activity [168–170]. These suppressive 
pathways parallel those utilized by MDSCs, suggest-
ing that they may be similarly amenable to epigenetic 
interventions. EPCs are further segregated into  CD45+ 
and  CD45− subsets; the  CD45+ EPCs, marking an ear-
lier erythroid differentiation stage, comprise over 40% 
of the EPC population in tumor-bearing mice and are 
chiefly accountable for immunosuppression [169, 171]. 
Thus, enhancing erythropoiesis could potentially alle-
viate T cell suppression in both the macroenvironment 
and the TIME.

Erythroid differentiation arrest and the resultant 
EPC accumulation might stem from epigenetic mis-
regulation. Erythroblasts exhibit stage-specific phe-
notypes, transcriptomes, and epigenetic profiles [172, 
173]. EPC maturation is marked by TET-mediated 
demethylation and chromatin restructuring, which 
facilitate enhancer-promoter interactions [174, 175]. 
In one study, VPA was found to drive the differentia-
tion of stem-like  CD34+ cord blood cells by increas-
ing H3 acetylation of promoters for erythroid-specific 
genes [176]. Additionally, Dnmt1 and Ezh2 are iden-
tified among genes associated with erythropoiesis 
[176], and it’s been shown that EZH2-mediated epige-
netic silencing of the pro-apoptotic Bim contributes to 
erythropoiesis [177]. However, in the terminal stage of 
erythropoiesis, the accumulation of repressive histone 
marks (e.g., H3K9me3, H3K27me3, and H4K20me1) 
mediated by LSD1 [178] and Setd8 [179] as well as the 
decrease of activating histone mark (e.g., H3K27ac) 
mediated by HDAC2 [180] and HDAC5 [181] are 
involved in the terminal maturation of human eryth-
roblasts. These insights underline the potential of epi-
genetic modulation in erythropoiesis. Approaches to 
epigenetic therapy should be tailored, with treatment 
regimens timed to target epigenetic dynamics active 
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at specific erythropoiesis stages, employing agents like 
selective HDACi, EZH2i, and DNMTi for early-stage 
intervention.

Epigenetic reprogramming and immunometabolism
Epigenetic reprogramming significantly influences T cell 
immunometabolism, a key determinant of their func-
tionality within the TIME. Growing evidence has shown 
that exhausted T cells exhibit metabolic insufficiency 
with suppressed mitochondrial respiration and glyco-
lysis [182, 183]. Both inefficient nutrients (e.g., glucose 
and methionine) and detrimental metabolites (e.g., lac-
tate and glutamine) may contribute to the commitment 
to the exhaustion phenotype by altering the epigenetic 
mechanisms regulating T cell development [184]. Spe-
cifically, glucose scarcity impedes glycolytic flux, leading 
to a shortfall in acetyl coenzyme A (acetyl-CoA), which 
is the acetyl source for histone acetylation. This defi-
ciency is evidenced by reduced H3K9ac at the Ifng locus 
in T cells, correlating with diminished IFN-γ produc-
tion, whereas acetate supplementation restores IFN-γ 
production even in glucose-restricted conditions [185]. 
Similarly, elevated extracellular lactate level can disrupt 
cellular redox balance [186], as indicated by an increased 
NADH/NAD+ ratio, which in turn can stifle T cell activ-
ity by inhibiting aerobic glycolysis and the function of the 
 NAD+-dependent HDAC, SIRT1—a key enzyme sup-
porting the development of T cells capable of enhanced 
tumor control [187]. Nonetheless, the role of SIRT1 
within the TIME is complex, as it also influences the 
function of Treg cells and MDSCs [188].

Methylation also has an essential role in conferring the 
effects of immunometabolism. The activity of TET and 
JMJD3 is dependent on α-KG, a product of glutamine 
catabolism, and α-KG-dependent H3K27 demethylation 
is involved in the dysfunction of TSTs [189]. In addition, 
the hypoxia-inducible factor 1α (HIF-1α)-dependent 
accumulation of the α-KG-derived oncometabolite 2HG 
antagonizes the α-KG-dependent TET functions and 
leads to global histone and DNA methylation in adop-
tively transferred  CD8+ T cells, promoting their in  vivo 
persistence [190]. Conversely, increased methionine 
uptake leads to the accumulation of SAM as the methyl 
donor for all methylation programs, including histones 
and nucleic acids. The downregulation of SAM is asso-
ciated with loss of the H3K79me2 mark at STAT5 pro-
moter and impaired T cell immunity [191]. Likewise, 
methionine restriction resulted in reduced SAM level 
and demethylation of H3K4me3, thereby disrupting the 
differentiation of inflammatory Th17 cells [192]. Fur-
thermore, increased methionine uptake permits histone 
and nucleic methylation programs, including the meth-
ylation of the  m6A nucleotide in RNA mediated by the 

methyltransferase like-3 (METTL3) methyltransferase. 
Such methylation schemes participate in the regula-
tion of T-cell differentiation programs and the TIME 
[193]. Interestingly, high level of extracellular potassium, 
despite suppressing  TEFF programs by restricting nutri-
ent uptake, induces histone deacetylation at the exhaus-
tion loci and promote T cell stemness in the TIME [194]. 
Therefore, epigenetic mechanisms including PTMs and 
nucleic acid methylation underpin the modulatory effects 
of cell metabolism on the phenotypes and function of 
TIME-TSTs. Future research is needed to elucidate pos-
sible epigenetic regulation on certain exhaustion-related 
immunometabolic pathways such as mitochondrial 
stress, endoplasmic reticulum stress, and hypoxia [195, 
196].

Epigenetic reprogramming and cancer microbiome
The human microbiome has been acknowledged as a 
hallmark of cancer [197], plays a pivotal role in carcino-
genesis, therapeutic responses, and antitumor immu-
nity [198]. The gut and intratumoral microbiota specific 
to tumor types and individuals may tailor individual’s 
response to ICIs, highlighting the microbiota-mediated 
modulation of antitumor immunity. Evidence suggests a 
correlation between microbiota composition and posi-
tive responses to ICIs, with unique microbial signatures 
differentiating responders from non-responders in ICB 
treatments, as revealed by integrated 16S rRNA and 
metagenomic shotgun sequencing [199]. Mechanistically, 
the effector function of  CD8+ TSTs and DC activation 
is stimulated by oral administration of Bifidobacterium 
alone or in combination with anti-PD-L1 [200]. Simi-
larly, a consortium of 11 strains of bacteria from healthy 
human gut was capable of inducing IFN-γ production 
in  CD8+ T cells and MHC-I expression in  CD103+ DCs 
[201]. A relative abundance of Akkermansia mucin-
iphila (A. muciniphila) was associated with improved 
ICI efficacy in the patients of non-small-cell lung cancer 
(NSCLC), renal cell carcinoma, and urothelial carcinoma 
[202]. Correspondingly germ-free (GF) mice receiving 
fecal microbiota transplant (FMT) from non-responder 
FMT displayed resistance to ICB and was reversed by 
supplementation of A. muciniphila which increased 
 CXCR3+CD4+ T cells and decreased Treg cells in the 
TIME [202]. Additional immune-activating mechanisms 
for microbiota include activation of pro-inflammatory 
bioactive molecules [e.g., Toll-like receptors (TLRs) 
[203] and STING], facilitating the formation of intratu-
moral TLS [204], and increasing tumor immunogenic-
ity through coating tumor cells with microbial peptides 
[205].

However, microbial-TLR interactions can also encour-
age the infiltration of immunosuppressive cells in 
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pancreatic cancer (PC), enhancing tumor immuno-
suppression. Microbiome dysbiosis could drive can-
cer progression through epigenetic modulation [206]. 
Genome-wide bisulfite sequencing of GF and conven-
tionally raised mice revealed that exposure to microbi-
ota-induced TET2/3-dependent aberrant methylation 
programs in response to acute inflammation, underly-
ing the carcinogenesis of colon tumor in colitis. Conse-
quently, genetic depletion of TET2/3 restores intestinal 
homeostasis [207]. In addition, oncometabolites pro-
duced by microbes are critical to conferring the epi-
genetic-modifying effects of microbiota. For instance, 
colonization of butyrate-producing bacteria strains 
leads to elevated histone acetylation levels in colorec-
tal adenocarcinomas. In immune cells, microbe-derived 
short-chain fatty acids (SCFAs) butyrate and propionate 
could potentiate the generation of Treg cells by inhibit-
ing HDAC activity [208]. Nonetheless, the direct effects 
of microbiota on modifying the epigenetic landscape 
of T cell exhaustion are less well documented. This gap 
in understanding may explain the challenges in using 
microbiota composition as reliable ICI response bio-
markers, further complicated by the variability of the 
human microbiome [209].

Insights from clinical trials combining epitherapies 
and immunotherapies
As T cell exhaustion is increasingly recognized as both 
a cause and consequence of high tumor burden [210], 
the concurrent use of epigenetic modulators and tumor 
burden-reducing immunotherapies may potentiate thera-
peutic synergy. While DNMTi AZA and DAC upregulate 
tumor antigens and antigen presentation components 
[57, 125], HDACi vorinostat and romidepsin promote 
immunostimulation of TAMs [140]. Additionally, the 
EZH2i tazemetostat is being evaluated for enhancing T 
cell responses by curtailing Treg cells [161]. Emerging 
BET inhibitors may also mitigate exhaustion by down-
regulating immunosuppressive pathways in MDSCs 
[136]. Combinational epi-immunotherapy approach 
could relieve tumor-imposed immunosuppression and 
reinvigorate endogenous antitumor immunity. Carefully 
designed clinical trials will be critical to validate and opti-
mize synergistic combinations tailored to specific cancer 
types and immune contexts.

Since 2002, several small molecule EMCs alone or 
in combination have been approved by the FDA for the 
treatment of various hematological malignancies such 
as AML, MDS, and T-cell lymphomas [23]. However, 
their combinational schemes with immunotherapies 
have failed on average to demonstrate improved clinical 

efficacies in the setting of hematological cancers [211, 
212]. Nonetheless, their performances in solid tumors are 
more promising and have been investigated in numerous 
phase II and I/II trials [213–215]. This disparity could be 
due to the following reasons. First, intrinsic and extrin-
sic mechanisms of resistance in T-cell and non-T-cell 
compartments contribute to a diminished response to 
ICIs in patients with leukemia [216]. Second, leukemic 
blasts could interact with circulating T cells through 
direct contact and bystander effects [216]. In this way, 
leukemic blasts rather than localized solid tumor cells 
are more proximate to circulating TSTs, thereby promot-
ing exhaustion and senescence. Given the importance 
of circulating TSTs in the replacement of intratumoral 
TSTs and ICI response, this suppressive effect could 
particularly undermine the benefits of combination ICI 
therapies.

The integration of epigenetic therapy with adoptive cell 
modalities, such as CAR T cells, encountered a setback 
with the cessation of a phase I trial combining azacy-
tidine and NKR-2 (NCT03612739) at the behest of the 
sponsor. However, clustered regularly interspaced short 
palindromic repeats and clustered regularly interspaced 
short palindromic repeats (CRISPR)-associated protein 
9 (CRISPR-Cas9) genome editing has facilitated direct 
modifications to the T cell epigenome, enabling the dele-
tion of epigenetic regulators like TET2 or the insertion 
of TFs such as c-Jun and basic leucine zipper ATF-Like 
transcription factor (BATF) [217–219]. A critical role of 
exhaustion for CAR T cell persistence has been estab-
lished in CAR T cell therapy [220–222]. Study suggests 
that when challenged by the same immunosuppressive 
TIME, both adoptive CAR and endogenous  CD8+ T cells 
display similar patterns of exhaustion with comparable 
transcriptional and epigenetic rewiring [68]. Notably, 
CAR T cells display an increased propensity to exhaus-
tion, due to tonic signaling from the synthetic TCR even 
in the absence of antigen. In line, a transient cessation 
of such signaling could phenotypically revive exhausted 
CAR T cells through EZH2-dependent epigenetic remod-
eling [222]. This reflects the need for applying a molecu-
lar "brake" in the design of CARs, mimicking how the low 
expression of PD-1 helps to maintain TCF-1+  TPEX iden-
tity [7] and how TOX promotes intratumoral persistence 
of TSTs [6]. An alternative approach could be to target 
the specific epigenetic landscape of exhaustion through 
either direct epigenetic therapies or modifications in 
CAR T cell engineering to bolster function before reinfu-
sion [223]. Additionally, the application of other immu-
nostimulatory agents, such as oncolytic viruses (OVs) 
and immunogenic chemotherapy regimens, has been 
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explored alongside epigenetic therapies, as detailed in 
recent reviews [224, 225].

Conclusions and perspectives
The exhaustion of tumor-reactive  CD8+ TILs confers 
resistance to cancer immunotherapies, underscoring 
the need to elucidate the developmental cues driving T 
cell exhaustion for therapeutic targeting. Elements in 
the immune macroenvironment and the TIME are rec-
ognized as mediators of ICB-induced T cell rejuvena-
tion, with the discovery of ICB-responding TST subsets 
in both peripheral and intratumoral immune niches [27, 
28]. Among them, the TdLN-TTSM subset is being rec-
ognized as the bona fide responder to ICB [27], aligning 
with clonal replacement model [40, 48] and dual origins 
for ICB-induced TST expansion within the TIME [48].

Epigenetic regulators orchestrate programs that modu-
late chromatin dynamics, acting as intrinsic switches for 
cellular fate and functional state at the molecular level. 
DNMTs and TETs control DNA methylation, whereas 
PTM-associated writers, erasers, and readers alter chro-
matin structure and accessibility [54]. ncRNAs, modu-
lated by RNA modifications like  m6A and  m5C, regulate 
gene expression and interact with epigenetic modifiers to 
effect gene silencing [84]. Chromatin remodelers manip-
ulate 3D interactions between promoters and distal regu-
latory elements [49], and metabolites serve as cofactors 
or substrates for epigenetic enzymes, conferring immu-
nometabolic effects [187]. The intricate synergy between 
TFs and epigenetic machinery intrinsically shapes T cell 
fates and responds to environmental cues sustaining T 
cell functionality. Thus, a strategy targeting intrinsic and 
extrinsic factors of T cell exhaustion may enhance ICB-
induced T cell revitalization.

However, the clinical performance of such combina-
tional strategy in hematological malignancies is so far 
insufficient to warrant further design of phase III tri-
als, while in solid tumors a number of phase II trials are 
ongoing. Addressing specific challenges is paramount 
before these combinational treatments can meet the 
demands posed by current immunotherapies (Fig. 4).

First, limited spatiotemporal resolution in tracking het-
erogeneous T cell epigenome dynamics during immuno-
therapy constrains our understanding of their cell fate 
decisions. However, recent advancements such as spa-
tial ATAC-seq have begun to address these limitations 
[226–230]. Studies that analyze the spatial organization 
of diverse  CD8+ T cell subtypes with unique epigenomic 
landscapes could significantly enhance our comprehen-
sion of the orchestration and establishment of systemic 
antitumor immunity at both cellular and tissue levels. 
Single-cell sequencing technologies have provided deep 

insights into disease pathogenesis, paving the way for 
accurate diagnostic and therapeutic approaches [226]. 
Techniques like single-cell cleavage under targets and 
tagmentation (scCUT&Tag) and the related spatial-
CUT&Tag enable high-resolution, genome-wide map-
ping of chromatin modifications and TFs, unraveling 
potential epigenetic drivers of immune cell differentia-
tion and tumorigenesis [227–229]. Spatial-CUT&Tag has 
been successfully benchmarked in the profiling of spa-
tially resolved (i.e., with spatial coordinates) chromatin 
accessibility for tissue sections including mouse embryos, 
human central nervous systems, and tonsils [230]. The 
selection of these tissues highlights the power of spa-
tial epigenomics in deciphering developmental biolo-
gies, encompassing organogenesis, immunogenesis and 
tumorigenesis [230]. Given that epigenetic mechanisms 
are intrinsic regulators for cell identity, cell state, and 
fate decisions, insights gained from spatial epigenomic 
mapping would help us elucidate mechanisms underly-
ing the mobilization of antitumor immunity by immuno-
therapies at both molecular and cellular level, in both the 
TIME (harboring TLSs) and TdLNs.

Second, the profound heterogeneity of the TIME across 
tumor types poses challenges to the identification of 
overriding regulatory mechanisms for therapeutic tar-
geting. Within each tumor niche, T cells are influenced 
by a milieu of diverse immunosuppressive factors with 
overlapping and distinct effects. Though epigenetic 
modulators may reinvigorate T cell reactivity, their pleio-
tropic impacts on the TIME remain poorly defined. This 
is exemplified by the debated net effect of 5-azacytidine 
on Treg cells [150, 151], where the same epigenetic drug 
could unpredictably augment certain immunosuppres-
sive mediators while alleviating others. Furthermore, 
significant knowledge gaps exist regarding T cell extrin-
sic cues, exhaustion phenotypes, and their interplay. 
Therefore, deciphering precise immunosuppressive 
mechanisms in a customized, patient- and tumor-spe-
cific manner is integral before rational application of 
epigenetic or other immunomodulators. The characteri-
zation of predictive biomarkers that allows swift iden-
tification of TSTs from bystander T cells [231] ex  vivo 
would benefit such studies and their clinical transla-
tion. These markers should simultaneously correlate 
with antitumor immunity and not themselves targeted 
by ICBs (hence excludes exhaustion-specific markers), 
so as to reflect the temporal dynamics of TST response 
throughout ICB treatment. Liu et  al. [48] recently iden-
tified CXCL13 as biomarker on both treatment-naïve 
and treatment-induced TSTs, signifying robust T cell 
response to ICB. These  CXCL13+ TSTs can be further 
divided into one functional  KI67highSTMN1high subset, 
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Fig. 4 (See legend on next page.)
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as well as three dysfunctional subsets including two  TPEX 
 (IL7R+HAVCR2−/GZMK+HAVCR2−) and one  TEX 
 (HAVCR2+TOX+). Comprehensive integration of high-
dimensional single-cell profiling with multiplexed spatial 
imaging and epigenomic assays could illuminate cell–cell 
interactions driving T cell dysfunction within the TIME 
topography [232]. Unraveling these interactions promises 
to reveal prognostic biomarkers and avenues for enhanc-
ing immunotherapy on a mechanistic level.

Finally, although FDA-approved small molecule inhibi-
tors of DNMT, HDAC, and EZH2 are available clinically, 
their extensive application is limited by poor bioavail-
ability, specificity, and systemic toxicity. Promising ave-
nues for addressing these challenges include advanced 
drug development platforms that integrate microfluidics 
and machine learning [233, 234]. These platforms could 
improve drug specificity and reduce toxicity, enhancing 
the efficacy of epigenetic drugs. Another promising strat-
egy for enhancing the bioavailability of small molecule 
compounds is the use of prodrug-based nano-delivery 
systems. These systems can improve drug solubility, sta-
bility, and circulation time, resulting in increased drug 
delivery to the target site and reduced off-target effects 
[235, 236]. Well-established predictive markers for 
therapeutic response and commercially available high-
throughput epigenome mapping would also assist the 
sensitivity and toxicity testing of epidrugs and tailoring of 
dosing schedule on a personalized basis.
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