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Abstract 

Auscultation is crucial for the diagnosis of respiratory system diseases. However, traditional stethoscopes have inher‑
ent limitations, such as inter‑listener variability and subjectivity, and they cannot record respiratory sounds for offline/
retrospective diagnosis or remote prescriptions in telemedicine. The emergence of digital stethoscopes has overcome 
these limitations by allowing physicians to store and share respiratory sounds for consultation and education. On 
this basis, machine learning, particularly deep learning, enables the fully‑automatic analysis of lung sounds that may 
pave the way for intelligent stethoscopes. This review thus aims to provide a comprehensive overview of deep learn‑
ing algorithms used for lung sound analysis to emphasize the significance of artificial intelligence (AI) in this field. 
We focus on each component of deep learning‑based lung sound analysis systems, including the task categories, 
public datasets, denoising methods, and, most importantly, existing deep learning methods, i.e., the state‑of‑the‑art 
approaches to convert lung sounds into two‑dimensional (2D) spectrograms and use convolutional neural networks 
for the end‑to‑end recognition of respiratory diseases or abnormal lung sounds. Additionally, this review highlights 
current challenges in this field, including the variety of devices, noise sensitivity, and poor interpretability of deep 
models. To address the poor reproducibility and variety of deep learning in this field, this review also provides a scal‑
able and flexible open‑source framework that aims to standardize the algorithmic workflow and provide a solid basis 
for replication and future extension: https:// github. com/ conta ctless‑ healt hcare/ Deep‑ Learn ing‑ for‑ Lung‑ Sound‑ Analy 
sis.
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Background
Lung disease has been a leading cause of mortality 
worldwide for many years, especially since the onset of 
corona virus disease 2019 (COVID-19) [1–3]. Various 
clinical methods have been developed to diagnose and 
evaluate lung health conditions, including computed 
tomographic scans, chest X-rays, and pulmonary 
function tests (PFTs) [4, 5]. However, these methods are 
often limited to high-end clinics due to their complexity 
and high costs [6]. In contrast, auscultation offers a non-
invasive, low-cost, and portable way of working where 
paramedics use a conventional acoustic stethoscope 
to diagnose lung diseases, including asthma, chronic 
obstructive pulmonary disease (COPD), and pneumonia 
[7–9], based on the patient’s lung sound.
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Although the stethoscope has been widely used 
in clinics, it has several associated challenges. First, 
the interpretation of lung sounds requires a trained 
paramedic, limiting stethoscope use in low-resource 
areas [10]. Second, the medical-decisions made based 
on auscultation are subject to inter-listener variability 
in proficiency [11]. The subjectivity of the diagnosis is 
further amplified by the lack of a recording function 
in the conventional stethoscope that prevents other 
personnel from analyzing the sounds heard during the 
consultation [12]. These challenges need to be resolved 
to improve the quality and efficiency of lung disease 
diagnosis.

To this end, the digital stethoscope has been developed 
to record lung sounds by digitizing acoustic signals [13]. 
It enables the visualization and retrospective analysis 
of lung sounds. In addition, wireless transmission 
(e.g., Bluetooth or WiFi) allows it to be used for 
remote diagnosis, further increasing the convenience 
of application [14–16]. The emergence of digital 
stethoscopes combined with related physics study 
[17] has contributed to our understanding of lung 
sounds including, their production, transmission, and 
characteristics under healthy and pathological conditions 
[18].

Based on this understanding, the recognition of 
lung sound patterns using machine learning has been 
achieved, providing an objective and quantitative method 
for lung health assessment [19]. Earlier studies focused on 
the feature engineering of lung sounds and exploitation of 
shallow machine learning tools for abnormal lung sound 
detection [20]. Zhang et  al. [21] conducted a clinical 
trial showing that support vector machine (SVM)-based 
diagnosis performed better than general pediatricians in 
abnormal lung sound detection, achieving an accuracy of 
77.7% and 59.9% for crackles and wheezes, respectively. 
This demonstrates the potential of machine learning in 
intelligent lung sound recognition.

More recently, deep learning-based models were 
proposed to detect the patterns related to lung diseases 
and distinguish abnormal lung sounds from normal 
ones and have shown promising performance [22]. 
Compared with shallow machine learning, most deep 
learning-based methods adopt an end-to-end learning 
approach to automatically learn the representation 
of lung sounds from raw acoustic signals without the 
need for handcrafted feature engineering. They can also 
leverage transfer learning to increase the adaptability 
of the learned models in new environments, which 
reduces the amount of data needed for training [23, 
24]. It is important for clinical applications due to the 
difficulty of acquiring a large amount of patient data. 
Pham et al. [25] applied convolutional neural networks 

(CNNs) to learn temporal-frequency information 
from spectrograms, and achieved 89% specificity and 
82% sensitivity in normal and abnormal lung sound 
classification. Perna et  al. [26] used recurrent neural 
networks (RNNs) to mine the context information 
of lung sounds over time, obtaining an accuracy of 
99% in recognizing COPD patients. In addition, Altan 
et al. [27] proposed a deep belief network-based model 
combined with a three-dimensional (3D)-second order 
difference plot of lung sound signals to distinguish the 
severity of COPD patients. These methods demonstrate 
the feasibility of implementing deep learning-
based intelligent stethoscopes that can automate 
the detection of pulmonary disease and its severity. 
Moreover, deep learning-based quantitative results 
overcome the disadvantages of subjective auscultation 
diagnosis caused by inter-listener difference and the 
need for clinical proficiency, thus supporting medical 
diagnosis and treatment. Thus, deep learning-based 
approaches can significantly improve the quality of 
healthcare in underdeveloped countries with limited 
clinical resources; examples of their applications 
include community-acquired pneumonia detection and 
the domiciliary management of COPD.

To increase the understanding of deep learning-based 
lung sound analysis, in this paper, we systematically 
review deep learning methods proposed for lung sound 
analysis. This review, organized as shown in Fig. 1, out-
lines the system of lung sound analysis, including the 
pathological fundamentals of lung sounds, existing digi-
tal stethoscopes, and deep learning-based methods. The 
fundamentals of lung sounds guide and motivate the 
design of reasonable deep learning methods, and in turn, 
the application of digital stethoscope-based deep learn-
ing methods verifies the understanding of observations. 
In contrast to previous reviews [6, 19, 28–31], this paper 
emphasizes the applications of deep learning-based lung 
sound analysis, including the system framework, basic 
model selection, and the advancement of deep methods 
in respiratory medical tasks, also highlighting the chal-
lenges that need to be overcome. The main contributions 
of this review are as follows: (1) It provides an in-depth 
review of the fundamentals of lung sounds under normal 
and pathological conditions that motivates the design 
of deep-learning models and guides the design of signal 
processing algorithms (spectrograms, typical signatures, 
and their definitions); (2) It provides a thorough over-
view of the algorithmic framework of deep learning-
based lung sound analysis, with a detailed introduction 
to each processing step, including the pros and cons of 
deep models and challenges they face; and (3) It provides 
a unified open-source deep learning-based framework 
that aims to standardize algorithmic components and 
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establish a strong base that facilitates replication, bench-
marking, and future extension.

The remainder of this paper is structured as follows. 
First, the fundamentals of lung sounds are presented. 
Then, the existing digital and wireless stethoscopes that 
can be used for clinical purposes are described, followed 
by an overview of the framework of deep learning in lung 
sound analysis including the main tasks, preprocessing, 
public datasets, and related research. Furthermore, an 
open-source framework for deep learning-based lung 
sound analysis is introduced. Finally, the conclusions of 
this review are presented.

Fundamentals of lung sounds
This section provides an overview of lung sound 
to improve our understanding of its definitions, as 
summarized in Table 1, which is important for designing 
and implementing methods for lung sound analysis.

Lung sound, also termed respiratory sound, can be cat-
egorized into two types according to the health condi-
tion: (1) normal lung sound, which refers to the sounds 
generated by the airflow passing through the healthy 
respiratory system [32]; (2) abnormal lung sound, which 
is generally caused by lung diseases, exemplified by the 
presence of additional sounds overlaying the normal lung 
sound, the absence or reduction of normal lung sound, 
and asymmetry between left and right lung sounds [28]. 
Figure 2 portrays these separately.

Normal lung sound
Normal lung sound mostly consists of tracheal, 
bronchial, vesicular, and bronchovesicular sounds [33]. 
The differences between regarding the mechanism of 
generation, auscultation location, appearance timing, and 
acoustic characteristics are shown in Table 1.

Tracheal sound is produced by the turbulent airflow 
passing the tracheal tissues of the respiratory system 
[34]. When auscultation is carried out over the trachea, 

particularly above the sternum, this sound can be heard 
clearly during both the inspiratory and expiratory phases. 
The tracheal sound lasts for a similar duration in both 
phases, and the pause between the two phases is obvious 
[35]. Since its transport occurs in the straighter part of 
the trachea with a larger diameter, the tracheal sound 
is typically high-pitched, hollow, non-musical, harsh, 
and louder than other normal lung sounds [36, 37]. The 
normal tracheal sound has a wide energy distribution of 
100–5000  Hz, and the energy usually drops at 800  Hz 
[38].

Bronchial sound is generated by the airflow traversing 
from the trachea to the main airways, and can usually be 
heard near the second and third intercostal spaces [37]. 
Like the tracheal sound, it appears in both phases but 
mainly in the expiratory phase, twice as long as in the 
inspiratory phase [39]. In general, the bronchial sound 
is generally soft, non-musical, loud, high-pitched, and 
tubular, with a similar frequency energy distribution as 
the tracheal sound [28, 40].

Vesicular sound is created by the airflow passing 
through the smaller airways and alveoli (tiny air sacs) 
in the lungs [41]. It is audible in most of the lung 
fields across the whole inspiration phase and the early 
expiration phase [35, 42, 43]. The vesicular sound is 
typically soft, non-musical, and low-pitched and its 
frequency range is from below 100–1000  Hz with an 
energy drop at 200 Hz [40, 44].

Bronchovesicular sound can be heard between the 
scapulae in the posterior chest, and in the central region 
of the anterior chest [40]. It has a similar duration in the 
expiratory and inspiratory phases [39]. In sound analysis, 
the bronchovesicular sound is softer than the bronchial 
sound but approximates the tubular sound, similar to 
the sound between the bronchial and vesicular sounds. 
Additionally, the frequency band of bronchovesicular 
sounds is between that of vesicular and bronchial sounds 
[44].

Fig. 1 An overview of deep learning in lung sound analysis. The fundamentals of lung sounds include clinically relevant knowledge and its acoustic 
characteristic, which guides and motivates the design of the digital stethoscope in hardware and software. In turn, the application of digital 
stethoscope‑based deep learning methods verifies the understanding of observations
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Abnormal lung sound
Abnormal lung sounds can be distinguished as 
discontinuous and continuous abnormal sounds 
according to their acoustic properties. The former has a 
shorter duration of less than 25 ms including fine crackle, 
coarse crackle, and pleural rub, whereas the latter 
typically has a longer duration of more than 250 ms [28], 
including wheeze, rhonchi, and stridor. Table 1 presents a 
description of these lung sounds in terms of their causes, 
appearance timing, clinical characteristics, acoustic 
characteristics, and the associated diseases.

Fine crackle arises due to the explosive opening of 
small airways or alveoli that were previously collapsed or 
closed [45]. It is commonly audible in mid-to-late inspi-
ration and sometimes in the expiration phase, chang-
ing or disappearing with the body position [35]. Clinical 
study has reported that fine crackle is caused by several 
diseases, such as interstitial lung fibrosis and pneumo-
nia [35]. It can be used as a biomarker for detecting spe-
cific diseases such as idiopathic pulmonary fibrosis and 

asbestosis, showing good sensitivity and specificity [46]. 
Fine crackle presents as high-pitched (close to 650  Hz), 
non-musical, and explosive, with a duration of nearly 
5 ms [47].

Coarse crackle is probably caused by air bubbles in 
larger airways that open and close intermittently [48]. 
Upon auscultation, it can be heard in both phases, mostly 
in the early inspiratory phase [49]. Due to intermittent 
airway opening, it is associated with some obstructive 
diseases, for example, COPD, bronchiectasis, and asthma 
[28, 50]. In contrast to fine crackle, coarse crackle is 
low-pitched (close to 350 Hz) and has an approximative 
duration of 15 ms [51].

Pleural rub is generated by the rubbing of the pleural 
membranes against each other and is relevant to pleural 
inflammation and pleural tumors [35]. It is typically 
biphasic with the expiratory sequence of sounds 
mirroring the inspiratory sequence [37]. Pleural rub is 
non-musical, rhythmic, and low-pitched (<  350  Hz). Its 
duration is longer than 15 ms.

Table 1 The understanding of normal and abnormal lung sounds

“-” none, COPD chronic obstructive pulmonary disease

Categories of lung sounds Produce/Cause Timing Acoustics characteristics Associated disease

Normal

 Tracheal Turbulent airflow 
through pharynx and glottis

Both inspiration 
and expiration

Hollow, non‑musical, harsh;
High‑pitch, 100–5000 Hz, 
drop at 800 Hz

–

 Bronchial Airflow traversing 
from trachea to the main 
airways

Inspiration, mostly 
expiration

Soft, non‑musical, tubular;
High‑pitch, similar 
to tracheal

–

 Vesicular Airflow through smaller 
airways and alveoli

Inspiration, early expiration Soft, non‑musical;
Low‑pitch, 100–1000 Hz, 
drop at 200 Hz

–

 Bronchovesicular Airflow through bronchi 
and alveoli

Both inspiration 
and expiration

Frequency 
between vesicular 
and bronchial

–

Abnormal

 Fine crackle Explosive opening of small 
airways or the alveoli

Mid‑to‑late inspiration, 
occasionally expiration

Explosive, non‑musical;
High‑pitch, 650 Hz;
Duration: 5 ms

Interstitial lung fibrosis, 
pneumonia, pulmonary 
fibrosis, asbestosis

 Coarse crackle Air bubble in larger airways Expiratory, mostly early 
inspiratory

Explosive, non‑musical;
Low‑pitch, 350 Hz;
Duration: 15 ms

COPD, bronchiectasis, asthma

 Pleural rub Pleural membrane rubbing 
against each other

Biphasic Non‑musical, rhythmic;
Low‑pitch, 350 Hz;
Duration: 15 ms

Pleural inflammation, pleural 
tumors

 Wheeze Airflow limitation, airway 
narrowing

Inspiratory, mostly 
expiration

Musical, sibilant;
High‑pitch, > 100 Hz;
Duration: > 80 ms

COPD, asthma, foreign body

 Rhonchi Thickening of secretions 
in bronchial tree

Inspiratory, mostly 
expiratory

Musical, sibilant;
Low‑pitch, 200 Hz;
Duration: > 80 ms

Bronchitis, COPD

 Stridor Upper airway obstruction Mostly inspiratory, 
sometimes both

Musical, sibilant;
High‑pitch, 500 Hz;
Duration: > 250 ms

Epiglottitis, foreign body, 
croup, laryngeal oedema
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Wheeze is produced by airflow limitations due to 
airway narrowing and is normally detected in both 
phases, mostly in the expiration phase [52]. Wheezing 
sounds are typically caused in asthma and COPD, 
possibly by a foreign body (e.g., a tumor) blocking the 
airway [35]. In general, wheeze is musical, sibilant, and 
high-pitched (more than 100 Hz). Its duration is generally 
more than 80 ms [53].

Rhonchi are related to the thickening of secretions 
in the bronchial tree and can be heard mostly in the 
expiration phase and sometimes in the inspiratory phase. 
Rhonchi are reported to be associated with bronchitis 
and COPD [35]. The acoustic characteristics of rhonchi 
are similar to those of wheeze sounds but with a relatively 
low pitch (< 200 Hz) [53].

Stridor is created by the turbulent airflow in the 
bronchial tree, which is relevant to upper airway 
obstruction. Upon auscultation, it can be detected mostly 
in the inspiration phase, but in certain situations, it can 
be heard in both phases [28]. Diseases related to upper 
airway obstruction may cause stridor, including croup 

and laryngeal edema. Stridor is a sibilant and musical 
sound that has a high pitch above 500 Hz with a duration 
longer than 250 ms.

Digital stethoscopes
For deep learning-based lung sound analysis, the data 
acquisition process depends on digital stethoscopes that 
record the lung sound by converting acoustic waves into 
electrical signals. Thus, this section focuses on digital 
stethoscopes currently available in the market and widely 
used in clinics, with an emphasis on their limitations and 
potential directions for improvement.

Implementation of digital stethoscopes
A digital stethoscope generally consists of a diaphragm, 
sensor, pre-amplifier, microcontroller, and transmis-
sion module [54, 55], as shown in Fig. 3. Its workflow is 
as follows in Fig. 3a, b: first, the diaphragm is placed on 
the chest piece to capture the sound wave of the internal 
body [56]. Then, either piezoelectric sensors or electret 
microphones are commonly used to convert the sound 

Fig. 2 Lung sound demo. In each example, the upper panel shows the acoustic signal and the lower panel shows the corresponding spectrogram



Page 6 of 23Huang et al. Military Medical Research           (2023) 10:44 

waves into electrical signals [57, 58]. The pre-ampli-
fier enhances the extremely weak acoustic signal that is 
picked up by the sensor [59]. Next, the microcontroller 
processes the amplified signal, which includes control-
ling the audio processing circuitry and managing the 
user interface and display. Finally, under the control of 
the microcontroller, the transmission module (e.g., Blue-
tooth), transmits data to the terminals in a lossless way as 
far as possible [60, 61].

Available digital stethoscopes
Here, we focus on digital stethoscopes that have been 
used as clinical devices, including 3 M LITTMAN 3200, 
Thinklabs digital stethoscope, and Clinicloud digital 
stethoscope, as shown in Fig. 3c–e.

3M LITTMAN 3200
The most popular stethoscope, it amplifies 24 times for 
acoustic signals with a denoised module and offers a 
mobile applications system for lung health management. 
A clinical trial showed that the diagnostic accuracy of 
medical interns was improved upon using LITTMAN 
3200 compared to the traditional acoustic stethoscope 
[62]. Some studies also used machine learning to 
automatically detect abnormal lung sounds and diagnose 
lung diseases in offline clinical studies, wherein the 3M 
LITTMAN 3200 was applied to collect and transmit lung 
sounds [10, 63, 64].

Thinklabs digital stethoscope
This is a tube-free device that can amplify acoustic signals 
100-fold, remove noises that have different frequency 
bands by using multiple frequency filters, and pro-
vide a mobile APP. This stethoscope has been clinically 

investigated for pneumonia detection [65] and the analy-
sis of the frequency characteristics of normal lung sounds 
[66].

Clinicloud digital stethoscope
This stethoscope has been designed without the function 
of signal amplification. It was used in a clinical trial at 
Melbourne Hospital and showed accurate abnormal 
sound detection (ASD) in children [67].

Limitations and future improvements
Although the abovementioned stethoscopes are capable 
of recording and transmitting lung sounds, they still face 
some challenges. First, the high price of existing digital 
stethoscopes limits their scope of application in low-
resource areas. Such areas desperately need low-cost 
and easy-to-operate medical devices since they cannot 
afford expensive equipment and manpower. Second, the 
available commercial digital stethoscopes are single-
channel devices, making it difficult to monitor the left 
and right lungs synchronously. The diagnostic accuracy 
of single-channel devices can be improved by extending 
them to multiple channels [68–70]. Third, the difference 
in sound quality between these stethoscopes may cause 
deviations in the performance of algorithms for lung 
sound analysis [71]. Gairola et al. [72] performed device-
based fine-tuning to improve the quality of detection; 
however, it is not practical to tune all these devices.

To solve these challenges, future research should focus 
on the implementation of low-cost and highly-reliable 
digital stethoscopes. Specifically, the development of 
each component of the device can facilitate this goal. 
For example, the expensive commercial diaphragm can 
be replaced with 3D-printed materials [73]. For signal 
transmission, the lung sound signal can be transmitted 

Fig. 3 Digital stethoscopes. a Implementation of wireless stethoscopes; b Telemedicine; c 3 M LITTMAN 3200; d Thinklabs; e Clinicloud
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by matured technologies such as Bluetooth Low 
Energy [74] and Zigbee [75], allowing stethoscopes to 
be a part of the Internet of Medical Things to provide 
more comprehensive lung health assessments [76]. 
Furthermore, the development of wearable devices is 
also conducive to all-weather lung health monitoring. 
Meanwhile, the endurance and intelligence of digital 
stethoscopes need to be improved by introducing new 
technologies regarding the battery, processor, and 
embedded algorithms to cope with medical situations in 
low-resource areas.

Deep learning in lung sound analysis
This section reviews deep learning studies for lung sound 
analysis including the system framework, common data-
sets, preprocessing, feature extraction, and deep learning 
methods designed for different medical tasks, as shown 
in Fig. 4.

System framework
Clinically, auscultation results depend on the doctor’s 
interpretations of lung sounds, which are often subjective 
based on the proficiency of the listener. As a result, the 
clinical decisions made for the same patient may vary 
between physicians, promoting misdiagnosis and missed 
diagnosis. To solve this issue, machine learning methods 
(SVM, CNN, and random under-sampling boosting) have 
been proposed in different clinical contexts to provide 
quantitative and objective results on different types 
and degrees of lung disease [21, 77, 78]. However, most 
shallow machine learning-based lung sound analysis 
methods were evaluated based on a self-collected dataset 
of only a few subjects that was saturated at a low accuracy 
of approximately 80% [79–81].

Recently, deep learning has shown great potential in 
lung sound analysis, with a more accurate and robust 
performance compared with shallow machine learning 
[82]. Its improved performance may be attributed to 
the following features. (1) Representation: deep learning 

methods automatically learn task-relevant features in 
a data-driven manner without the need for manual 
feature engineering, and the learned features can capture 
complex patterns and structures in the raw data [22]; (2) 
Context information: deep learning methods show the 
advantages of capturing temporal context information, 
such as RNNs, which is significant for lung sound analysis 
in mining periodic lung sound changes caused by disease 
[26]; (3) Transfer learning: deep learning methods can 
use the common knowledge shared with related fields 
(e.g., AudioSet [83], a large audio dataset) to improve 
lung sound analysis, which reduces the amount of data 
required for training [24]. This property is significant for 
clinical applications since clinical data are often scarce 
due to the challenge of organizing clinical trials.

Generally, most deep learning-based lung sound 
analyses follow the paradigm of sequentially executing 
data acquisition and preprocessing, feature extraction, 
and classification. First, a digital stethoscope is used to 
collect lung sound data, following which preprocessing is 
applied to suppress environmental noise in the recorded 
lung sound signals. Thereafter, feature extraction is used 
to convert high-dimensional preprocessed lung sound 
data into a lower-dimensional space to obtain a more 
discriminative representation. Finally, the classifier is 
designed to create a mapping between the features and 
classes of relevant diseases.

Datasets for lung sound analysis
To evaluate performance, many deep learning-based 
lung sound analysis methods were benchmarked on pub-
lic datasets for a fair comparison. The public lung sound 
datasets [84–88] are summarized in Table  2. The most 
widely used dataset is the ICBHI 2017 Respiratory Sound 
Database [84] which consists of 920 recordings from 126 
subjects who were diagnosed with respiratory patho-
logical conditions, such as pneumonia, bronchiectasis, 
bronchiolitis, and COPD. Those recordings had different 
sampling rates (e.g., 4000 Hz, 10,000 Hz, and 44,100 Hz) 

Fig. 4 Deep learning‑based framework for lung sound analysis. For two different medical tasks (ASD and RDR), the training set is used to construct 
the model including the steps of preprocessing, feature extraction, model selection. Finally, the test set is used to evaluate the performance 
of model. FNN fully connected neural network, CNN convolutional neural network, RNN recurrent neural network, COPD chronic obstructive 
pulmonary disease
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and their duration ranged from 10 to 90  s. For annota-
tion, the medical teams labeled the beginning and end 
of the breathing cycles in each recording as well as the 
presence/absence of crackles and wheezes. This dataset 
collected 6898 breath cycles, with 3642 normal cycles, 
1864 with crackles, 886 with wheezes, and 506 with both, 
where the cycle duration of all recordings varied from 0.2 
to 16 s, with a mean duration of 2.7 s.

Recently, many new datasets have emerged for lung 
sound analysis. Fraiwan et  al. [85] collected 112 lung 
sound recordings from 112 subjects who were healthy or 
diagnosed with asthma, pneumonia, COPD, bronchitis, 
heart failure, lung fibrosis, and pleural effusion. Each 
recording was annotated according to the different lung 
sound events, including normal, inspiratory, expiratory, 
crepitations, crackles, and wheezes. Hsu et  al. [86] 
proposed a new dataset called HF_Lung_V1, which 
consists of 9765 lung sound recordings with a duration of 
15 s from 261 subjects. These recordings were collected 
using a single-channel device (3  M LITTMAN 3200) 
and a multi-channel device (self-customized device, 
HF-Type-1). HF_Lung_V1 marked 34,095 inspiratory 
segments, 18,349 expiratory segments, 13,883 continuous 
adventitious sound segments, and 15,606 discontinuous 
adventitious sound segments. Moreover, Hsu et  al. [87] 
collected lung sounds from 42 new subjects to expand 
HF_Lung_V1 into a new dataset, namely HF_Lung_V2. 
More details about these public datasets are given in 
Table 2.

In addition, the need for the management of chronic 
pulmonary disease like COPD has also gradually 

attracted the attention of clinicians and researchers [89], 
where the assessment of disease severity is a prerequisite 
for determining medical interventions [90]. Altan et  al. 
[88] released a dataset called RespiratoryDatabase@TR 
that collected lung sounds from patients diagnosed with 
asthma, bronchitis, and different severities of COPD 
(0–5). In the trial, each subject underwent the exami-
nations of chest X-rays, PFTs, and cardiopulmonary 
auscultation. The resulting dataset consists of 77 record-
ings from 77 subjects, with each recording sampled at 
4000 Hz and containing 4 channels of heart sounds and 
12 channels of lung sounds. For annotation, two pul-
monologists validated and labeled the sound records as 
murmur, crackle, or wheezing, with reference to the gold 
standards of chest X-rays and PFTs. RespiratoryData-
base@TR has been widely used to assess the severity of 
COPD [27, 91, 92].

Data acquisition and preprocessing
In the clinical procedure for acquiring lung sound data, 
the digital stethoscope should be placed on specific parts 
of the thoracic surface for certain durations (e.g., 15  s, 
30  s, or even longer) to depict the overall lung condi-
tion. As shown in Fig. 5, the monitoring of the superior 
lung lobe requires the digital stethoscope to be placed on 
both the left and right second intercostal spaces on the 
anterior chest, along with the suprascapular region at the 
equivalent horizontal level. The fourth intercostal space 
and the interscapular region are correspondingly affili-
ated with the superior lobe of the left lung (the lingular 
segment) and the middle lobe of the right lung. To assess 

Table 2 Public lung sound datasets

COPD chronic obstructive pulmonary disease

Dataset Subject Audio recording Duration Annotation Diagnosis

ICBHI 2017 [84] 126 920 10–90 s Normal, crackle, wheeze, both crackle 
and wheeze

Lower respiratory tract infections, 
upper respiratory tract infections, 
pneumonia, COPD, asthma, 
bronchiolitis, bronchiectasis, cystic 
fibrosis

Fraiwan et al. [85] 112 112 5–30 s Inspiratory, expiratory, wheezes, 
crackles, normal

Normal, asthma, pneumonia, COPD, 
bronchitis, heart failure, lung fibrosis, 
pleural effusion

HF_Lung_V1 [86] 261 9765 15 s Inhalation, exhalation, stridor, 
rhonchus, crackle

Acute respiratory failure, chronic 
respiratory failure, acute exacerbation 
of COPD, COPD, pneumonia, acute 
respiratory distress syndrome, 
emphysema

HF_Lung_V2 [87] 303 14,138 15 s Inhalation, exhalation, stridor, 
rhonchus, crackle

Acute respiratory failure, chronic 
respiratory failure, acute exacerbation 
of COPD, COPD, pneumonia, acute 
respiratory distress syndrome, 
emphysema, long‑term mechanical 
ventilation

RespiratoryDatabase@TR [88] 77 77  > 17 s COPD 0–5, wheezing, crackle Asthma, COPD, bronchitis, healthy
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the inferior lobes of the lung, auscultation should be per-
formed on the left and right eighth intercostal spaces as 
well as the infrascapular region. Through this process, 
the lung sound data from the audio recorded by the 
stethoscope are extracted in the form of electrical signals. 
However, since lung sound is fragile to environmental 
noise and the disturbance caused by internal heartbeat 
sounds, it is necessary to preprocess the raw recordings 
to ensure that lung sound is the dominant component 
of the recordings [93]. According to the different noise 
sources, the preprocessing can be subdivided into two 
types, namely external noise reduction and heart sound 
separation.

External noise reduction methods are generally based 
on three different technologies. (1) Filter-based: this 
technology has the ability to quickly process a large 
amount of data but it is difficult to remove noise, with 
frequency information overlapping with lung sounds 
[94–96]; (2) Wavelet-based: this can decompose the 
mixed signal based on its time–frequency information to 
obtain the denoised signal; however, its denoising effect 
is easily affected by the selection in the wavelet basis 
function and threshold function [97–99]; (3) Empiri-
cal mode decomposition (EMD) based: this eliminates 
different types of noise in the audio signal but requires 
high computational complexity and reasonable param-
eter selection [100, 101]. For example, Meng et al. [102] 
decomposed the noisy signal into seven sub-signals 
using wavelet decomposition and located the position of 
the lung sound in each sub-signal using autocorrelation 
coefficients to extract the effective lung sound compo-
nents. Haider et  al. [103] used EMD to decompose the 
noisy signal and integrated Hurst analysis for intrinsic 
mode function (IMF) selection to reduce the noise from 
the lung sound recording. Based on prior knowledge of 
lung sound signals, Emmanouilidou et al. [11] processed 
the noisy signal in short-time windows and used the cur-
rent frame’s signal-to-noise information to dynamically 
extract the interested components of lung sound.

To separate the lung sound and heart sound, vari-
ous methods have been proposed based on blind source 

separation (BSS), such as filter-based methods, inde-
pendent component analysis (ICA), wavelet-based 
methods, and non-negative matrix factorization (NMF) 
[104–109]. Grooby et al. [110] presented an NMF-based 
method that separates the raw sound recording into both 
the heart sound and lung sound. Although these methods 
have shown their effectiveness, the results of ICA-based 
separation are varied due to the selection of the num-
ber of iterations and convergence criteria, resulting in 
uncertainties in the phase, amplitude, or ranking order of 
separated signals. In the NMF-based method, the spec-
trogram of mixed signals is decomposed into two non-
negative matrices, minimizing the difference between 
the product of the two non-negative matrices and the 
original matrix. Since the minimization process involves 
non-convex optimization, the decomposed signal is eas-
ily limited to the local optimal solution, resulting in poor 
noise reduction. In addition, the periodicity of heart 
sound has been applied to differentiate heart sound from 
lung sound [111, 112]. For example, Ghaderi et al. [113] 
applied singular spectrum analysis to locate and separate 
different trends of heart sound and lung sound.

Feature extraction
The high variability of lung sound is caused by many fac-
tors, such as age, sex, lung disease, and body position. 
The feature extraction method is important for obtain-
ing distinctive feature representations for classification. 
As shown in Fig. 6, the representations of lung sound rely 
on two different types of feature extraction: traditional 
handcrafted feature extraction and deep learning-based 
feature extraction [114], which are discussed below.

The traditional handcrafted features have quantifi-
able characteristics of audio signals that can be used to 
differentiate various sounds, which can be subdivided 
as follows: (1) time-domain features, which capture 
information related to lung sound variations over time, 
such as zero-crossing rate, root mean square, and signal 
envelope; (2) frequency-domain features, which provide 
information about the distribution of energy across vari-
ous frequency bands, such as spectral centroid, spectral 

Fig. 5 Auscultation sites. The red dots indicate auscultation. Typically, doctors monitor the lungs in a symmetrical way, up and down
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roll-off, and spectral flux. Mel-frequency cepstral coef-
ficients (MFCCs) are a commonly used feature in lung 
sound analysis derived from the Fourier transform, which 
can capture the distribution of energy in different fre-
quency bands [115, 116]; and (3) time–frequency domain 
features, which record the distribution of energy across 
different frequency bands over time, providing valuable 
insights into the non-stationary and transient nature of 
lung sounds, such as wavelet transform and spectrogram 
[117–119]. Researchers generally use a combination of 
multiple-domain handcrafted features as representations 
for lung sound analysis [120]. Among them, the statisti-
cal feature is a commonly used combination representa-
tion derived from a short temporal sliding window that 
divides the signal into multiple segments to extract multi-
domain features. The statistical values of each feature 
across multiple segments, such as mean, variance, skew-
ness, and kurtosis, are calculated as the representation. 
Deep learning-based feature extraction is a data-driven 
approach that learns features directly from the raw data 
without the need to design manual features [121–123]. 
The CNN, with the input of the spectrogram, is com-
monly used to capture complex and hierarchical patterns 
within data and can learn more discriminative and robust 
representations. Pham et al. [124] explored the effect of 
different types of spectrograms and the spectral-time 
resolution in deep learning-based lung disease detection. 
Long short-term memory (LSTM) is another important 
method for feature extraction based on raw data or fre-
quency-domain features. Fraiwan et al. [125] used CNN 
to extract the time–frequency information of multiple 
windows from the raw signal, then used LSTM to mine 

the continuous time–frequency change information for 
pulmonary disease recognition.

In summary, traditional handcrafted features are manually 
designed based on the human understanding of audio sig-
nals that emphasize different characteristics of lung sounds 
in different targeting domains. These handcrafted features 
are usually easy to interpret and computationally efficient. 
Initially, the 1D handcrafted features combined with fully 
connected neural networks (FNNs) were often used for lung 
sound analysis by projecting the feature vectors into the 
specified task space [117]. However, handcrafted features 
are more sensitive to noise, suffering from quality drops 
when unexpected events emerge (e.g., talking, footsteps, and 
coughing) [93]. Unlike handcrafted features, deep learn-
ing-based feature extraction does not fully rely on the 
human understanding of acoustics or audio content, 
but automatically learns the task-relevant features 
from a large amount of lung sound data. Here, CNN 
combined with the input of 2D spectrogram represen-
tation is the most commonly used method, wherein 
the spectrogram records the raw signal information 
in the time–frequency domain, and the convolutional 
kernel is used to integrate the frequency and time 
domain features to generate high-level semantic rep-
resentations. The features learned by the deep learn-
ing model have the clear advantage of high complexity 
and dimensionality; however, they lack interpretabil-
ity since the procedure of network optimization (e.g., 
backpropagation) is not transparent. Furthermore, this 
approach requires more computing resources.

Deep learning methods
This section outlines the existing deep-learning methods 
for lung sound analysis [10, 22–27, 33, 72, 77, 82, 91, 92, 
117, 122–157], as shown in Table 3. Many aspects of deep 

Fig. 6 Design procedure of deep learning models. FNN makes predictions based on 1‑D statistical features extracted from multiple windows, 
and RNN predict the health states based on the 2‑D features of each window. CNN learns the deep features from the 2D spectrogram input 
to predict the health states. 1D one‑dimensional, 2D two‑dimensional
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Table 3 Deep learning methods in lung sound analysis

Task Year Ref Basic method Dataset Outcome

ASD 2013 [126] Wavelets, FNN Self‑collected, 13 healthy, 13 
pathological

Normal or crackle: ACC—71.55%

2014 [117] Wavelets, FNN Lehrer’s dataset Normal, wheeze or crackle: ACC—99.26%

2016 [132] MFCCs, LFCCs, FNN RALE database,
IIT Kharagpur,
Salt Lake, Kolkata

Normal, wheeze or crackle: ACC—97.61%, 
SEN—97.41%, SPE—98.33%

2018 [33] Spectrogram, CNN RALE dataset Coarse crackle, fine crackle, polyphonic 
wheeze, monophonic wheeze, normal, 
squawk, stridor: ACC—95.56%

2018 [127] MFCCs, RNN Self‑collected, 10 healthy, 5 idiopathic 
pulmonary fibrosis

Inspiration: F1—87%;
Expiration: F1—84.6%;
Crackles: F1—72.1%

2018 [147] LSTM ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SEN—
58.4%, SPE—73.0%, AS—65.7%

2019 [133] Spectrogram, CNN Self‑collected, 50 pediatric patients Wheeze, rhonchi, fine crackle, or coarse 
crackles: recall—76.5%, precision—53.0%, 
SPE—83.6%, F1—62.5%

2019 [148] Spectrogram, CNN CBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SEN—
31.12%, SPE—68.20%, AS—50.16%

2020 [23] Mel spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SEN—
48.63%, SPE—84.14%, AS—66.38%

2020 [131] Mel spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
AS—78.4%; normal and abnormal: 
AS—83.7%

2020 [136] Mel Spectrogram, CNN ICBHI 2017 Normal, wheeze or crackle: ACC—98.6%, 
F1—98.4%

2020 [149] Spectrogram, LSTM, CNN, autoencoder Self‑collected, 22 patients Inspiration or expiration: ACC—92%

2020 [150] Spectrogram, CNN Self‑collected, 25 pediatric patients Normal, wheeze or crackle: crackle PPA—
95%, NPA—99%; wheeze PPA—90%, 
NPA—97%

2020 [151] Spectrogram, CNN RALE database,
Think labs Lung sound library

Normal, crackles, wheezes, or rhonchi: 
ACC—83.78%

2021 [22] Spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
85.44%, SEN—70.93%, AS—78.18%

2021 [72] Mel spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
72.3%, SEN—40.1%, AS—56.2%;
Normal or abnormal: SPE—80.9%, 
SEN—73.1%, AS—77.0%

2021 [77] CNN Self‑collected, 1918 respiratory sound 
record

Normal, abnormal (crackles, wheezes, 
rhonchi): ACC—84.8%, precision—81.4%, 
recall—81.7%, F1—81.4%

2021 [152] Spectrogram, CNN, autoencoder ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
SPE—69%, SEN—29%, AS—49%

2023 [82] Spectrogram, CNN Self‑collected, 105 health, 189 patients Normal, crackles, or rhonchi: ACC—83%

2022 [130] Mel spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
ACC—84.7%, SEN—84.5%, SPE—84.9%, 
precision—84.4%, recall—89.0%, 
F1—86.6%

2022 [134] Spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
85.6%, SEN—29%, AS—57.3%
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Table 3 (continued)

Task Year Ref Basic method Dataset Outcome

2022 [135] Mel spectrogram, TCN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
86.1%, SEN—65.3%, AS—75.7%

2022 [137] LSTM, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
82.46%, SEN—47.37%, AS—64.92%

2022 [146] Spectrogram, Mel spectrogram, CNN ICBHI 2017 Crackles or others: ACC—86.4%;
Wheezes or others: ACC—78.2%;
Crackles, wheezes, or others: ACC—84.5%

RDR 2013 [153] Statistical feature, FNN Self‑collected, 27 healthy and 33 
tuberculosis

Healthy or pulmonary tuberculosis 
subject: ACC—73%

2014 [138] FNN Self‑collected, 10 healthy and 20 
pathological

Normal and abnormal subject: ACC—
92.86%, SEN—86.30%, SPE—86.90%

2018 [27] Deep belief networks RespiratoryDatabase@TR Risk level or interior level: ACC—95.84%, 
SEN—93.34%, SPE—93.65%

2018 [91] Extreme learning machines RespiratoryDatabase@TR COPD or health: ACC—92.22%, SEN—
89.44%, SPE—95.00%

2018 [154] Deep extreme learning RespiratoryDatabase@TR COPD or health: ACC—95.0%, SEN—
93.33%, SPE—93.53%

2019 [123] Spectrogram, CNN ICBHI 2017 All diseases classification: ACC—97%

2020 [155] Boltzmann machines RespiratoryDatabase@TR COPD or healthy subject: ACC ‑93.67%, 
SEN—91%, SPE—96.33%

2020 [122] Convolutional RNN Self‑collected, 16 healthy and 7 
pulmonary fibrosis

Health or idiopathic pulmonary 
fibrosis: precision—100%, SEN—85.9%, 
F1—92.4%

2020 [139] Mel spectrogram, CNN ICBHI 2017 Non‑COPD, COPD, or healthy subject: 
SEN—98.5%, SPE—99.0%, AS—98.7%

2020 [143] Extreme learning machines RespiratoryDatabase@TR Five severity degrees of COPD: ACC—
94.31%, SEN—94.28%, SPE—98.76%

2020 [156] Statistical feature, FNN ICBHI 2017 Health or diseases: ACC—82%, 
precision—87%

2021 [140] EMD, wavelet, CNN ICBHI 2017 Non‑COPD, COPD, or healthy subject: 
precision—98.90%, recall—98.90%, 
ACC—98.92%, F1—98.90%;
Six diseases: precision—98.70%, 
recall—98.27%, ACC—98.70%, 
F1—98.47%

2021 [144] Deep belief network RespiratoryDatabase@TR Mild, moderate, or severe COPD: ACC—
71.74%, SEN—70.08%, SPE—73.53%

2022 [125] CNN, LSTM Self‑collected, 103 patients Health or five diseases: ACC—98.16%, 
SEN—90.06%, SPE—98.61%, 
precision—92.13%

2022 [141] Wavelet, CNN, LSTM ICBHI 2017 Health, COPD, asthma, or pneumonia: 
ACC—88.86%;
Health, COPD, or non‑COPD: ACC—
66.54%

2022 [142] FNN, CNN, LSTM ICBHI 2017 URTI, COPD, pneumonia, and bronchiolitis 
and healthy: ACC—94%, precision—94%, 
recall—94%, F1—93%

2022 [157] Statistical feature, FNN ICBHI 2017 Health or diseases: SPE—97.6%, 
SEN—98.2%

2023 [10] CNN, LSTM Self‑collected, 198 patients Disease, symptom relief, or health:
1) subject‑dependent: SEN—96.98%, 
SPE—97.43%, AS—97.20%
2) subject‑independent: SEN—43.26%, 
SPE—39.61%, AS—41.44%
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learning-based lung analysis are overviewed: basic model 
selection, the advancement of medical tasks, and limita-
tions and future directions.

Basic model selection
The construction of a specific deep-learning model is 
based on the structure of input data, as shown in Fig. 6. 
FNNs can be used to extract information from a 1D 
representation, such as the 1D statistical features of lung 

Table 3 (continued)

Task Year Ref Basic method Dataset Outcome

2023 [92] Mel spectrogram, pretrained 
MobileNet‑V1

RespiratoryDatabase@TR Risk level or interior level: ACC—99.25%, 
SEN—99.18%, SPE—99.36%;
Five severity degrees of COPD: ACC—
96.14%, SEN—95.94%, SPE—98.89%

2023 [129] CNN Self‑collected, 126 subject Health, asthma, COPD, ILD, pneumonia, 
bronchiectasis: precision—92.81%, 
SEN—92.22%, SPE—98.50%

ASD, RDR 2019 [26] MFCCs, LSTM ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: ACC—
74%, SPE—85%, SEN—62%, AS—74%;
Normal or abnormal: ACC—81%;
Health or diseases: ACC—99%, SPE—82%, 
SEN—99%, AS—91%;
Health, COPD, or non‑COPD: ACC—98%, 
SPE—82%, SEN—98%, AS—90%

2020 [25] Spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
SPE—89%, SEN—72%, AS—80%;
Normal or abnormal: SPE—89%, 
SEN—82%, AS—85%;
Health or diseases: SPE—71%, SEN—99%, 
AS—85%;
Health, COPD, or non‑COPD: SPE—71%, 
SEN—95%, AS—83%

2021 [124] Spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
SPE—90%, SEN—68%, AS—79%;
Normal or abnormal: SPE—90%, 
SEN—78%, AS—84%;
Health or diseases: SPE—86%, SEN—98%, 
AS—92%;
Health, COPD, or non‑COPD: SPE—86%, 
SEN—95%, AS—91%

2021 [128] Mel spectrograms, CNN ICBHI 2017 Normal, crackles, or wheezes: SPE—82%, 
SEN—61%, AS—72%;
COPD, healthy, and pneumonia: 
SPE—92%, SEN—98%, AS—95%

2021 [145] Spectrogram, Inception ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: 
SPE—73%, SEN—30%, AS—52%;
Health, COPD, or non‑COPD: SPE—100%, 
SEN—75%, AS—85%

2022 [24] Spectrogram, CNN ICBHI 2017 Normal, crackles, wheezes, 
and both crackles and wheezes: SPE—
78.55%, SEN—35.97%, AS—35.97%;
Normal or abnormal: SPE—79.34%, 
SEN—50.14%, AS—64.74%;
Health, COPD, or non‑COPD: SPE—
91.77%, SEN—93.68%, AS—92.72%;
Health or diseases: SPE—91.77%, 
SEN—95.76%, AS—93.77%

ACC  accuracy, AS average score of specificity and sensitivity, ASD abnormal sound detection, COPD chronic obstructive pulmonary disease, CNN convolutional neural 
network, EMD empirical mode decomposition, FNN fully connected neural network, ILD ınterstitial lung disease, LFCCs linear frequency cepstral coefficients, LSTM 
long short-term memory, MFCCs mel-frequency cepstral coefficients, NPA negative percent agreement, PPA positive percent agreement, RDR respiratory disease 
recognition, RNN recurrent neural network, SEN sensitivity, SPE specificity, IIT Indian Institute of Technology, F1 F1-score, URTI upper respiratory tract infection
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sound data. For RNNs, the lung sounds will be divided 
into continuous time windows, and the acoustic features 
will be extracted from each window to form a 2D lung 
sound representation. Then, the RNN uses the hidden 
layer to learn the temporal changes of lung sounds for 
disease classification. CNNs are more suitable for 2D data 
representation, such as images (e.g., 2D spectrograms of 
lung sound). Therefore, the construction of deep learning 
can be done based on the selection of a specific deep 
learning model according to its input structure. The basic 
models can be referred to [33, 126, 127]. Preferably, the 
model undergoes some tailoring or tuning of its structure 
based on the classification task and optimization 
strategy [24, 128, 129]. For example, the FNN-based 
method transforms the lung sound into a combination 
representation of acoustic characteristics, then feeds 
it to the FNN for abnormal sound identification [18]. 
Charleston-Villalobos et  al. [118] extracted power 
spectral density as the representation of lung sound, 
then used a FNN to distinguish between healthy subjects 
and interstitial lung disease (ILD) patients, achieving a 
mean accuracy of 84% with a self-collected dataset. The 
RNN-based method analyzes the temporal dynamics of 
lung sounds, which provides insight into the progression 
of respiratory diseases over time [127]. Perna et  al. [26] 
exploited the temporal information of lung sounds by 
using an RNN to recognize abnormal lung sounds, 
achieving 85% specificity and 62% sensitivity. The CNN-
based method learns the temporal-frequency features 
from the 2D spectrogram of lung sounds to detect 
abnormal patterns and infer health conditions [33, 121]. 
Based on the ICBHI 2017 dataset, Yu et al. [130] extracted 
global and local features from the Mel spectrogram 
with a CNN to recognize normal lung sounds, crackle, 
wheeze, and both, achieving 84.9% specificity and 84.5% 
sensitivity.

Advancement of medical tasks using lung sound analysis
For medical purposes, deep learning methods can be 
sorted for two main tasks. (1) ASD: this is a diagnos-
tic auxiliary task that involves the detection of specific 
abnormal lung sounds, usually crackling and wheezing, 
as the basis for the diagnosis of specific diseases; and (2) 
respiratory disease recognition (RDR): this is an auto-
mated diagnostic task that directly distinguishes respira-
tory patients from healthy subjects or identifies patients 
with different types of respiratory diseases, such as 
patients with COPD, pneumonia, and asthma. The rela-
tionship between them is shown in Fig. 4.

ASD consists of two sub-tasks:

(1)  2-classes abnormal lung sound detection. As a 
binary classification, this focuses on distinguishing 

abnormal lung sounds from normal lung sounds 
without concrete labels or on detecting one type 
of abnormal lung sound (e.g., crackle, wheeze, and 
stridor). Serbes et  al. [126] explored the effect of 
different wavelet types and window sizes in FNN-
based crackle detection, where Gaussian, Hanning, 
Hamming, and Rectangular windows were 
considered, while Morlet, Mexican Hat, and Paul 
wavelets were applied to lung sound recognition. 
Nguyen et  al. [131] proposed the methods 
of temporal stretching and vocal tract length 
perturbation for data augmentation to solve the 
issue of limited training samples, then used a CNN 
as the backbone for abnormal lung sound detection.

(2) Multi-classes abnormal lung sound recognition. 
This is used to distinguish between specific 
abnormal sounds including crackles, wheezes, and 
rhonchi, where the number of classes is dependent 
on the number of types of abnormal sounds. 
Sengupta et  al. [132] extracted statistical features 
based on MFCCs for lung sound, then fed a FNN 
to distinguish normal, wheeze, and crackle sounds. 
Their experiment was carried out on 30 subjects 
and showed that MFCC-based statistical features 
outperformed wavelet-based features in finding 
abnormal sounds. Bardou et  al. [33] extended the 
types of abnormal lung sounds to include normal, 
coarse crackle, fine crackle, monophonic wheeze, 
polyphonic wheeze, squawk, and stridor, then used 
a spectrogram-based CNN to identify these types. 
Grzywalski et  al. [133] conducted a clinical trial 
to compare the accuracy of abnormal lung sound 
detection between an artificial intelligence (AI) 
algorithm and doctors, where a CNN was trained to 
detect four types of lung sound: wheezes, rhonchi, 
and fine and coarse crackles. This trial suggested 
that CNN-based abnormal lung sound detection is 
more accurate than doctors in regard to the metrics 
of sensitivity and F1-score. With the release of the 
ICBHI 2017 dataset, the number of studies on ASD 
for detecting normal sound, crackles, wheezes, 
and both crackles and wheezes exploded [23, 130, 
134, 135]. Rocha et  al. [136] separately trained a 
classifier for crackle detection, wheeze detection, 
and mixture detection (crackle, wheeze, and others) 
and used four different machine learning methods 
to evaluate its effectiveness (e.g., boosted trees, 
SVM, and CNN). Gairola et  al. [72] proposed 
a concatenation-based augmentation to solve 
the unbalanced class issue, and used the ResNet 
block for abnormal lung sound detection. For a 
limited training sample, Song et  al. [22] proposed 
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an abnormal lung sound detection method that 
encourages intra-class compactness and inter-class 
separability by comparing samples from different 
classes during the training phase. To explore the 
temporal and frequency information of lung sound, 
Petmezas et  al. [137] integrated a CNN and an 
RNN for abnormal lung sound detection, where 
the former extracts the deep temporal-frequency 
features from spectrograms, and the latter uses the 
deep features to mine the change of lung sound 
over the time.

For RDR, most studies were evaluated on ICBHI 2017 
and focused on four sub-tasks:

(1) 2-classes respiratory pathology recognition. This is 
used to distinguish patients from healthy people. 
Messner et  al. [122] collected lung sounds from 
healthy subjects and patients with idiopathic 
pulmonary fibrosis, then applied a convolutional 
RNN to lung sound analysis for binary classification 
(e.g., healthy vs. pathological). Mondal et  al. [138] 
extracted the statistical feature combination of 
kurtosis, sample entropy, and skewness from 
lung sounds and used FNN to infer lung health 
conditions.

(2) 3-classes respiratory chronic disease recognition. 
This divides populations into three groups: 
healthy subjects, chronic patients (e.g., COPD, 
bronchiectasis, and asthma patients), and non-
chronic patients (e.g., those with upper and lower 
respiratory tract infection, pneumonia, and 
bronchiolitis). García-Ordás et  al. [139] converted 
lung sounds into Mel spectrogram representations 
to train CNNs to recognize respiratory pathologies, 
meanwhile using variational autoencoders to 
generate new samples for minority classes to 
solve the issues of unbalanced data. Shuvo et  al. 
[140] decomposed the preprocessed signal using 
EMD to obtain an IMF signal that had a high 
correlation with the lung sound signal, then applied 
the continuous wavelet transform to extract 
a discriminative representation for training a 
lightweight CNN model. Their proposed method 
was evaluated on ICBHI 2017 and outperformed 
other lightweight models. Shi et  al. [141] explored 
the temporal-frequency information of different 
scales with the dual wavelet analysis module, and 
used the attention module to extract the salient 
difference information for respiratory chronic 
disease recognition.

(3) Multi-types specific RDR. This task is used to 
distinguish between specific respiratory diseases 

(e.g., COPD, asthma, and pneumonia), where the 
number of classes depends on the total class of 
the disease. Tariq et  al. [123] applied a variety of 
data augmentation methods to solve the issue of 
unbalanced classes (e.g., time stretching, pitch 
shifting, and dynamic range compression) and 
used a CNN to extract pathological features 
from the spectrogram to recognize seven 
respiratory diseases. Kwon et al. [142] explored the 
performance of different combinations of feature 
extraction methods and classifiers in detecting 
lung conditions (e.g., healthy lungs, Upper 
respiratory tract infection, COPD, pneumonia, and 
bronchiolitis).

(4) Multi-courses respiratory disease severity 
recognition. This task aims to distinguish the 
severity of respiratory diseases, in which the 
number of classes generally depends on the medical 
definition of disease progression. Morillo et al. [158] 
adopted principal component analysis and FNN 
to detect whether COPD patients were aggravated 
by pneumonia, with a sensitivity and specificity 
of 72.0% and 81.8%, respectively. Based on the 
RespiratoryDatabase@TR dataset, Altan et  al. 
[27] proposed the method of using a 3D-second 
order difference plot to analyze lung sound signals, 
then using pre-trained deep belief networks to 
distinguish the risk level from the interior level for 
COPD patients. This approach demonstrated the 
validity of pre-trained deep-learning architectures 
in RDR. Huang et  al. [10] proposed a hybrid 
model based on pre-trained VGGish networks and 
BiLSTM to identify the severity of community-
acquired pneumonia among children, including 
pneumonia-confirmation, spontaneous resolution, 
and recovery. Altan et al. [143] adopted the cuboid 
and octant-based quantization methods to extract 
characteristic abnormalities from a 3D-second 
order difference plot, then used a deep extreme 
learning machine classifier to separate five COPD 
severities. Yu et  al. [144] explored the ability of 
multiple methods (SVM, decision tree, and deep 
belief network) to identify the severity of COPD, 
where the deep belief network achieved 93.67% 
accuracy in distinguishing between patients with 
mild, moderate, and severe COPD.

More recently, some studies proposed deep learn-
ing-based methods that can be used for both RDR and 
ASD [25, 124, 145], as shown in Table  3. Perna et  al. 
[26] extracted the MFCCs of multi-window from lung 
sound signals to generate representations, then used an 
RNN-based model. Li et al. [128] proposed a knowledge 
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distillation-based method that transfers the weights of a 
CNN learned from multiple centers into a fuzzy decision 
tree, which provides an interpretable model for abnormal 
lung sound detection and chronic RDR. Nguyen et  al. 
[24] introduced different methods to adapt a pre-trained 
model to a new environment, including fine-tuning, co-
tuning, stochastic normalization, and their combina-
tion, for ASD and RDR. In their experiments, the authors 
noted that varying performance was caused by differ-
ences in equipment and introduced spectrum correction 
to solve this issue [159].

Limitations and future directions
Table  3 summarizes the state-of-the-art deep learning 
approaches for ASD and RDR. It shows that most 
methods use specificity, sensitivity, and the confounding 
index between the two for ASD, while evaluation metrics 
(e.g., accuracy, precision, recall, and F1) are added based 
on the evaluation metrics of ASD for RDR. In terms of 
the model, a CNN with the input of a spectrogram and 
Mel spectrogram is currently the most widely-used 
method for both tasks, achieving over 80% specificity and 
60% sensitivity in the ICBHI 2017 dataset for ASD and 
having over 90% accuracy, recall, precision, and F1 for 
RDR. In addition, most methods recently used a structure 
that applies a CNN to extract deep features from multiple 
consecutive temporal windows, then uses the deep 
features of successive windows as the input of RNN to 
learn the contextual information for RDR. Table 3 shows 
that deep learning has made progress regarding lung 
sound-based medical tasks, demonstrating the capability 
to identify different abnormal sounds, pulmonary 
diseases, and disease severity. However, the clinical 
application of deep learning-based lung sound analysis 
still faces some challenges, as discussed below.

The main challenge is that most deep learning-based 
lung sound analysis methods have poor interpretability 
[128]; thus deep learning-based methods currently 
only play a supporting role in clinical applications. 
Specifically, physicians rely on the interpretation of 
lung sounds for medical decision-making. However, 
the black-box operation of deep learning makes it 
difficult for physicians to understand how the model 
works in the diagnosis, that is its mechanism is not fully 
clear. As a result, physicians cannot fully trust or rely 
on the results given by the model. Potential solutions 
to improve interpretability include the following. (1) 
Symptom localization: intuitively, the segmentation 
network can highlight the segments of lung sound in 
the respiratory cycle to locate the symptoms caused by 
the disease. These segments can be used not only for 
disease diagnosis, but also for physicians to confirm the 

final outcome based on intermediate supporting results 
[160]. The appearance and localization of abnormal 
sounds in specific respiratory diseases can be exploited 
as the trigger of intelligibility by combining them with 
clinical knowledge; (2) Input visualization: Gradient-
weighted class activation mapping analyzes input and 
gradients to generate interpretable heatmaps that can 
be used to understand which regions the model focuses 
on when making decisions [161]. This can present the 
intermediate results of the model during the decision-
making process, which may convince the clinician of its 
reliability [162]; (3) Knowledge distillation: this can distill 
the knowledge learned from complex models to another 
model with interpretability, such as decision trees or 
linear regression, to achieve an interpretable recognition 
process with high performance [128]; (4) Surrogate 
model: this generates a simple, interpretable local model 
for each specific input to approximate the behavior of 
the original complex model given the input, such as local 
interpretable model-agnostic explanations (LIME) [163]. 
Thus, LIME can help explain the predictions of complex 
models on specific inputs.

Another challenge is that deep learning-based lung 
sound analysis lacks robustness under some conditions. 
(1) Noise sensitivity: most methods have performance 
degradation due to an increased noise level [136], 
meaning that the reliability of deep learning methods will 
be compromised in disease diagnosis due to distortions, 
resulting in misdiagnosis and missed diagnosis; (2) 
Device difference: due to the difference between 
devices regarding sensors, timbre, and sound quality, 
the performance of a model trained on a single device 
will fluctuate or drop when tested on other devices [23, 
24]; (3) Physiological diversification: Fernandes et  al. 
[146] reported that physiological differences between 
patients, including age, sex, and body mass index, caused 
deviations in the performance of models for ASD. To 
address this problem, transfer learning which mines 
invariant features under different factors (e.g., noise, 
devices, and physiological differences) for lung sound 
analysis, may be an option. It can map the data with 
differences into aligned data distributions to improve 
generalizability [164, 165]. Moreover, multi-input models 
that take these differences as input and force the model 
to dynamically adjust its weight based on the input to 
improve generalizability may be effective.

In addition, due to differences in the morbidity of pul-
monary diseases, the data distribution of lung sound is a 
long-tail distribution, which may cause the poor recog-
nition ability of models for rare categories. Most meth-
ods adopt data augmentations to address this issue [22, 
72, 139]; however, they are still unreliable in real clinical 
applications since the data augmented by perturbations 
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are different from patient data in practice. To address 
this issue, few-shot learning might be a useful tool that 
aims to extract the representative features from a limited 
number of training samples to exhibit good generaliza-
tion when faced with new, unseen data [166]. For exam-
ple, prototypical networks achieved remarkable results in 
audio event classification with the long-tail distribution 
[167, 168]. The key idea is to learn the prototype repre-
sentation of each class, then perform the classification 
by calculating the distance between the new sample and 
each prototype [169]. In addition, contrastive learning 
can be applied to lessen long-tail distribution issues by 
increasing the distance between different classes in the 
feature space. Li et  al. [170] integrated the idea of pro-
totypical networks to first generate a set of targets uni-
formly distributed on a feature space, then make the 
features of different classes converge to these distinct and 
uniformly distributed targets during training. This forces 
all classes, including a few, to remain uniformly distrib-
uted by the constraints of targeted supervised contras-
tive learning on the feature space during the optimization 
process to improve class boundaries.

It is worth noting that most existing lung sound studies 
only focus on accuracy rather than taking computational 
resource consumption into account, tending to use 
models with a large number of parameters that demand 
more memory and high computational resources [6, 
14, 122]. This poses challenges to implementation on 
the chips of portable devices with limited computation 
power as compared to servers or personal computers, 
especially considering the cost-effective hardware 
solutions that are important for large-scale deployment 
in poor-resource areas for healthcare improvement. 
The edge computing of intelligent stethoscopes allows 
the processing of lung sound data on the device, 
which reduces the time delay in decision-making 
and monitoring caused by data transmission in cloud 
computing, protects the privacy of patients, and reduces 
the cost of maintaining the cloud server. Such a device 
is also suitable for disease or well-being management at 
home by tracking and predicting recovery. Therefore, 
we consider portable digital stethoscopes equipped with 
deep learning methods to be a major research direction 
in this field. Here, we present three strategies to embed 
deep learning models into the chip of a stethoscope for 
edge computing. (1) Lightweight model: a large number 
of methods, such as knowledge distillation and pruning, 
have been used to lightweight large-scale models to 
reduce computational requirements [171]; (2) Hardware 
acceleration: characteristics of hardware, such as parallel 
processing capabilities, high-speed memory access, and 
customized computation units, are proven to accelerate 
computation in deep models [172]; and (3) Operational 

optimization: the complexity and computation of deep 
models can be dropped by optimizing basic operators 
(e.g., depthwise separable convolution decomposes 
the convolution operation into two separate layers, a 
depthwise convolution layer and a pointwise convolution 
layer) [173]. With the above three strategies, deep 
learning models can be implemented in the chips of 
digital stethoscopes in the near future, turning the 
devices into intelligent stethoscopes that not only 
make recordings of lung sounds, but also give prompt 
predictions on potential diseases, which can better assist 
clinicians in consultation.

Open‑source framework
Due to the poor reproducibility caused by the variety 
of deep learning methods, an open-source framework 
intended to build a solid foundation for replication and 
extension has been released to facilitate progress in 
this field. This framework provides the commonly used 
methods (e.g., FNN with acoustic feature input and CNN 
with spectrogram input) and demonstrates them on the 
ICBHI 2017 dataset as an example of benchmarking. In 
addition, the framework decomposes the algorithm into 
four major modules: preprocessing for segmentation 
and noise reduction, feature extraction for input 
representation, evaluation metrics for performance 
assessment, and classifier design for training and testing. 
Thus, researchers can focus on improving specific 
steps while keeping the rest identical, which can largely 
improve the efficiency and agreement of the benchmark. 
This framework was developed based on PyTorch, and 
each module contains a main function that is called upon 
to execute the corresponding task.

The preprocessing module consists of two main opera-
tions: (1) Noise suppression. Since lung sounds are eas-
ily contaminated in the real environment, this framework 
executes basic noise suppression based on the band-pass 
filter to retain the frequency band information of inter-
est for lung sounds. In addition, it provides candidates 
for noise suppression, including EMD, wavelet denoising, 
ICA, etc. (2) Segmentation. This step segments the input 
audio recording into intervals to form a uniform input to 
train the deep model. For the ICBHI 2017 dataset, each 
audio recording has each respiratory cycle annotated, 
i.e., the cycles with abnormal lung sounds (crackles and 
wheezes) are annotated as 1 and the other as 0. This 
module splits the recording with such labels. If the dura-
tion of the segment is insufficient, smart padding [131] or 
zero padding is used.

The feature extraction module transforms the 1D 
sound signal into a representation suitable for the model 
input. For FNNs and RNNs, lung sound analysis methods 
adopt the statistical features extracted from segmentation 
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as the representation to train and test the model. This 
framework performs extraction using pyAudioAnalysis 
[174]. For CNNs, spectrogram-based input is generally 
employed for training and testing, where the framework 
uses the Librosa library to extract different spectrograms, 
including the Mel spectrogram.

The evaluation metrics module provides the data-
splitting strategies and the commonly used evaluation 
metrics for the experiment setting. To date, there are 
two data-splitting strategies for lung sound analysis: 
(1) subject-dependent experiment [22, 130, 131] that 
randomly splits the entire dataset into training and 
testing sets. Here, the data from one subject exist in 
both the training set and the testing set; and (2) subject-
independent experiment [10, 24, 175] that splits the 
entire dataset into training and testing sets in a subject-
wise manner. Here, the data from one subject only appear 
in the training set or testing set to implement the cross-
subject benchmark. The choice of evaluation metrics 
has been referred to [84], including accuracy, specificity, 
sensitivity, and ICBHI score.

The classifier design module is based on PyTorch to 
automate lung sound analysis, where the training and 
testing set is loaded based on different dataset splitting 
strategies. This module is formed by the model design, 
evaluation metrics, training and testing function, and 
recording function. For model design, a commonly used 
basic model is implemented (e.g., FNN, CNN, and RNN). 
For evaluation metrics, specificity, sensitivity, and the 
ICBHI score (the mean of specificity and sensitivity) 
are applied to evaluate the performance of the model 
according to previous studies [84]. The recording 
function is applied to visualize the training information 
including loss, specificity, and sensitivity.

To develop and evaluate deep learning methods, 
the above modules can be used as a basis or starting 
point, providing general functional performance as 
demonstrated on the ICBHI 2017 dataset. Customized 
functions can be added on top of each module in future 
research.

Conclusions
This review provides a systemic overview of the devel-
opment of deep learning-based lung sound analysis for 
intelligent stethoscopes. Deep learning has shown effec-
tive performance in detecting, classifying, and assessing 
respiratory conditions from lung sound recordings, espe-
cially the CNN model with 2D spectrogram-based input. 
While there are still challenges to be addressed, includ-
ing noise reduction, the interpretability of the model, and 
the robustness of performance, the potential benefits of 
deep learning-based lung sound analysis are significant 

regarding the intelligent stethoscope. With further devel-
opment and refinement, we expect deep learning to 
empower the digital stethoscope for automatic and intel-
ligent diagnosis. In addition, it can be a part of 5G tel-
emedicine based on video and audio streams, where deep 
learning-based intelligent stethoscopes provide in-body 
information (e.g., lung sound and heart sound) and the 
video provides out-body information (e.g., affective and 
pain level).
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