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Abstract 

Background Physiological and biochemical processes across tissues of the body are regulated in response 
to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, 
and sports. A better understanding of such processes can ultimately help improve human performance and prevent 
illnesses in the work environment.

Methods To study regulatory processes in intense physical activity simulating real‑life conditions, we performed 
a multi‑omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters 
before and after a 45 min, intense exercise regimen. Omics profiles post‑ versus pre‑exercise were compared by Stu‑
dent’s t‑test followed by pathway analysis and comparison between the different omics modalities.

Results Our multi‑omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combin‑
ing the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute 
repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed 
a strong, concomitant regulation of 6 out of 8 identified proteins from the renin‑angiotensin system supporting 
increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed 
a decrease in 3 pro‑inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review 
identified 6 papers that support an altered susceptibility to respiratory infection.

Conclusion This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance 
during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution 
against respiratory diseases could benefit workers on highly physical demanding jobs.
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Background
Physical activity induces a multi-organ response to 
increased energy needs, oxygen demands, and the con-
sequences of tissue damage [1]. Demands that exceed 
adaptive capacity, can overcome these homeostatic 
mechanisms, leading to exhaustion, decreased human 
performance, and increased worker susceptibility to 
injury or disease [2–4]. Improving our understanding of 
these synchronized regulatory processes would enable 
us to monitor the balance between adaptive and adverse 
responses to intense physical exercise to predict the early 
stages of exhaustion, develop interventions that improve 
performance and recovery, and mitigate health risks for 
occupations involving intense physical activity, such as 
firefighting, law enforcement, military, and sports.

Mass spectrometry-based multi-omics analysis of bio-
logical fluids, such as blood plasma, saliva, and urine, is 
one of the most promising approaches for studying the 
dynamics of the molecular regulation of normal, adap-
tive, and disease states in humans. Continual advances 
in instrumentation have enabled the identification and 
quantitation of thousands of biomolecules per sample, 
leading to comprehensive views of the regulated pro-
cesses [5–10]. A pioneer metabolomics study reported 
that glycogenolysis, the tricarboxylic acid (TCA) cycle 
and lipolysis were major activated processes in acute and 
prolonged aerobic exercises [11]. Contrepois et  al. [5] 
performed a multi-omics analysis of plasma and leuko-
cytes from human volunteers that underwent an acute 
aerobic exercise session that revealed a highly orches-
trated landscape of molecular signals and processes that 
support human physical activity. Omics analysis has also 
shown memory improvement due to exercise-mediated 
anti-inflammatory effects [12]. A meta-omics analysis of 
elite marathon runners found that the gut bacterium Veil-
lonella atypica (V. atypica) was associated with increased 
performance [13]. Additionally, the administration of V. 
atypica to mice improved their performance, which was 
attributed to the conversion of lactate produced in the 
muscle into propionate at the intestinal surface [13]. In 
another example, injection of glycosylphosphatidylino-
sitol-specific phospholipase D1 into sedentary mice was 
shown to recapitulate the cognitive benefits induced by 
exercise [14]. These findings represent a proof of con-
cept that physical performance can be improved with 
exogenous treatments based on an understanding of the 
underlying physiological processes and their molecular 
transducers.

A fundamental question in exercise physiology is how 
different tissues of the body are regulated to meet the 
physiological and metabolic demands of intense exercise 
while simultaneously maintaining homeostasis. Here, 
we investigated the molecular regulatory signatures of 

strenuous exercise by performing proteomics, lipidomics 
and metabolomics analyses of wildland firefighters fol-
lowing an intense 45 min exercise session at the aerobic 
threshold. We chose to study wildland firefighters due to 
their arduous work under difficult conditions in remote 
locations for shifts often longer than 24 h, and for up to 
14–21 days. During the peak of the 2020 wildfire season 
(September 2020), over 32,000 wildland fire personnel 
were deployed across the Western United States to par-
ticipate in fire suppression [15]. Our data shows strong 
signatures of molecular regulation in the different bio-
fluids, providing insights into the molecular coordina-
tion between tissues during intense physical activity. We 
also performed a systematic literature review to investi-
gate the potential health consequences of the molecular 
regulation in response to extreme physical activity and 
training. This is an important step towards building the 
capability to monitor the balance between adaptive and 
adverse responses and to predict the early biochemi-
cal and physiological stages of exhaustion, in pursuit 
of reducing the occupational risk of firefighters, first 
responders and other high-stress occupations.

Methods
Study design, sample cohort and randomization
Sample size calculations were performed to determine 
the necessary number of subjects assuming an experi-
mental design with data collection before and after 
exercise. As is standard, a type 1 error rate of 0.05 and 
a power of 0.80 were assumed, and the median standard 
deviation, was used to estimate typical variability in the 
data. Power analyses were conducted based on an ongo-
ing study’s lipidomics dataset, showing that 5 samples 
would be needed for a 0.8 power to reach statistical sig-
nificance with ≥ 1.5-fold change in 75% of the measured 
molecules. A total of 13 male firefighter volunteers with 
the average age of (25 ± 3)  years old and average body 
mass index of (26.3 ± 3.3)  kg/m2 before exercise were 
recruited. All volunteers that agreed to participate were 
included, without exclusion criteria, to have a better rep-
resentation of the firefighter population.

The volunteers underwent an exercise session that con-
sisted of hiking outdoors over hilly terrain in Santa Clar-
ita, CA, with full wildland firefighter gear that weighed 
from 9 to 20 kg. Volunteers’ blood was collected pre- and 
post-exercise by phlebotomy and immediately placed on 
ice. The post-sample was collected within 10  min after 
the exercise. Blood was drawn by professional phleboto-
mists from different arms for baseline and after exercise 
sampling to avoid local responses related to the drawing 
process. The skin surface was wiped with antiseptic tissue 
before the puncture to minimize contamination. Blood 
was drawn into one 6 ml ethylenediaminetetraacetic acid 
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(EDTA)-coated vacuum tube (Vacuntainer, BD, Franklin 
Lakes, NJ, USA), mixed by inverting the tube 8–10 and 
immediately placed on ice. Plasma was then separated by 
centrifugation at 1000×g for 10 min at room temperature. 
Collected plasma was visually inspected for coagulation 
and hemolysis, collected into 0.5 ml aliquots, and stored 
within 1 h of blood draw. For the saliva collection, volun-
teers rinsed their mouths 3 times for 30 s each with water 
and then dripped the saliva directly into the tube without 
spitting to avoid contamination with other fluids of the 
respiratory and gastroesophageal systems and placed on 
ice. Urine was collected by directly urinating into tubes 
and placed on ice. Immediately after collection, plasma, 
saliva, and urine samples were stored at − 80 °C. Sample 
collection, preparation and instrument run orders were 
randomized to minimize confounding factors.

Ethics approval and consent to participate
The study was conducted after approval from the Insti-
tutional Review Board of the Pacific Northwest National 
Laboratory (PNNL IRB #2019-17) and participants 
signed information consent in accordance with federal 
regulations. The consent signed by participants of the 
study included permission for publishing the research 
findings and was captured in accordance with federal 
regulations.

Sample preparation for multi‑omics analysis
Simultaneous metabolite, protein and lipid extraction 
(MPLEx)
Biofluids were transferred into 2  ml Sorenson MµlTI™ 
SafeSeal™ tubes (Sorenson BioScience, Inc., Salt Lake 
City, UT, USA) with gas chromatography-mass spec-
trometry (GC-MS) heavy isotope internal standard mix, 
GC-IS (1 mg/ml in water each 2H4-malonic acid, 2H4-suc-
cinic acid, 2H5-glycine, 2H4-citric acid, 13C6-fructose, 
2H5-tryptophan, 2H4-lysine, 2H7-alanine, 2H35-stearic 
acid, 2H5-benzoic acid, 2H15-octanoic acid): plasma − 1:1 
(v:v, sample: GC-IS), urine− 4:1 (v:v, sample: GC-IS). 
Urine was further treated with 1 mg/ml urease at 37  °C 
with mild shaking (500 rpm) for 30 min and incubated on 
ice for 1 min. Plasma sample was also spiked with 10 μl 
SPLASH mix (in methanol) (Avanti Polar, Alabaster, AL, 
USA). Extraction was perfumed using the MPLEx proto-
col [16]. A 2:1 (v:v) chloroform/methanol mix was added 
to the samples to make a ratio of 8:4:3 (v:v:v) chloroform/
methanol/water. Samples were then vortexed and incu-
bated on an ice block for 5  min. The layers were sepa-
rated by centrifugation at 12,000×g for 10  min at 4  °C. 
For plasma samples, 66.7 µl (from a total 500 µl extrac-
tion volume) of the lower lipid layer was transferred to a 
glass autosampler vial and dried in a centrifugal vacuum 
concentrator. The upper liquid layer and the rest of the 

bottom layer were transferred to another autosampler 
vial for metabolites and dried. For the other biofluids, the 
upper and lower phases were collected into separate files. 
The dried metabolites were capped and stored at − 20 °C 
for metabolomics analysis. The dried lipids had 500  µl 
2:1 chloroform: methanol added, capped, and stored for 
lipidomics analysis. The protein pellet was washed with 
1 ml of ice-cold methanol and centrifuged to the pellet, 
supernatant was removed and allowed to dry in a fume 
hood. Proteins were dissolved in 8 mol/L urea prepared 
in 50  mmol/L Tris-HCl, pH 8.0 and concentration was 
measured by BCA Protein Assay (Thermo Scientific, San 
Jose, CA, USA). Disulfide bonds were reduced for 1  h 
at 37  °C with 5  mmol/L dithiothreitol (Sigma-Aldrich, 
St. Louis, MO, USA) from a 500  mmol/L stock solu-
tion. Reduced cysteine residues were alkylated by add-
ing 500  mmol/L iodoacetamide (Sigma-Aldrich, St. 
Louis, MO, USA) to a final concentration of 10 mmol/L 
and incubating in the dark at 25 °C for 45 min. Samples 
were diluted fourfold with 50 mmol/L Tris-HCl, pH 8.0 
and digested with lysyl-C endopeptidase (FUJIFILM 
Wako Chemicals, Richmond, VA, USA) at 1:50 enzyme‐
to‐substrate ratio at 25  °C for 2  h. The same amount of 
sequencing-grade modified trypsin (Promega, Madison, 
WI, USA) was added to the samples for 14 h incubation 
at 25 °C. The reaction was stopped by acidifying the sam-
ples with 100% formic acid (Sigma-Aldrich, St. Louis, 
MO, USA) to a final concentration of 1% formic acid, 
extracted in C18 SepPak cartridges (Waters, Milford, 
MA, USA) and dried in a centrifugal vacuum concentra-
tor (Thermo Fisher Scientific, Carlsbad, CA, USA).

Metabolite extraction with methanol
Metabolites were also extracted with methanol for more 
comprehensive coverage. Plasma and urine samples were 
spiked with GC-IS as described above. Urine was also 
treated with urease. Eight volumes of ice-cold metha-
nol were added, and samples were vortexed for 10 s and 
placed in ice blocks for 10 min and vortexed for 3 min. 
Centrifuged at 15,000×g at 4 °C for 10 min and the super-
natant was transferred to autosampler vials and dried in a 
centrifugal vacuum concentrator. Dried metabolites were 
capped and stored at − 20  °C for further metabolomics 
analysis.

Plasma sample preparation for isobaric labeled proteomic 
analysis
Plasma abundant proteins were depleted using a Mul-
tiple Affinity Removal System (MARS) column (Hu-14 
4.6 × 100  mm, Agilent Technologies, Santa Clara, CA, 
USA) coupled with a 1200 series HPLC (Agilent Technol-
ogies, Santa Clara, CA, USA). A total of 40 μl of plasma 
was diluted eightfold with Agilent buffer A and filtered 
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with a 0.22  µm centrifugal filter. Samples were loaded 
onto MARS column for 27 min LC gradient (18 min sam-
ple load at 0.125 ml/min, then washed for 2 min at 1 ml/
min with Agilent buffer A, and high abundant proteins 
eluted for 7 min at 1 ml/min Agilent buffer B). Unbound 
fractions, containing low- and mid-abundant proteins 
from the same participant were pooled, then concen-
trated and had their buffer exchanged to 50 mmol/L Tris-
HCl, pH 8.0 using 3-kD molecular mass cutoff Amicon 
centrifugal filters (Millipore, Burlington, MA, USA) fol-
lowing the manufacturer’s instructions. Proteins were 
digested as described above and labeled with 11-plex 
tandem mass tags (TMT, Thermo Fisher Scientific Carls-
bad, CA, USA) according to the manufacturer’s recom-
mendations. One of the TMT channels was loaded with 
a pooled peptide mixture from all the samples, which 
serves as a reference to normalize across different sets of 
samples. Labeled peptides were fractionated into 96 frac-
tions by high pH reversed-phase chromatography and 
concatenated into 24 fractions, as previously described 
[17, 18].

Proteomics analysis
Peptides were analyzed by liquid chromatography-tan-
dem mass spectrometry (LC-MS/MS) using a nanoAquity 
 UPLC® system (Waters Corporation, Milford, MA, USA) 
connected to a Q-Exactive mass spectrometer (Thermo 
Scientific, San Jose, CA, USA) as described in detail else-
where [19]. Data from the TMT-labeled experiment were 
processed with Decon2LS software combined with DTA 
Refinery (version 2, Pacific Northwest National Labora-
tory, Richland, WA, USA) [20, 21] for mass recalibra-
tion and peak list extraction. Peptides were identified 
with MSGF+ [22] by searching against the human ver-
sion of the SwissProt database downloaded from Uni-
prot Knowledgebase on February 22, 2019. The searching 
parameters consisted of 1) parent ion mass tolerance 
of ± 6 ppm, 2) tryptic digestion in at least one of the ter-
mini with 2 missed cleavages allowed, 3) cysteine car-
bamidomethylation (+ 57.0215  Da) and N-terminal/
lysine TMT labeling (+ 229.1629  Da) derivatization as 
static modifications, and 4) following variable modifica-
tions: oxidation (+ 15.9949 Da) on methionine, cysteine, 
tyrosine and tryptophan; dioxidation (+ 31.9898  Da) on 
cysteine; and deamidation/deamination (+ 0.98402  Da) 
on asparagine, glutamine and arginine residues. Data 
were filtered at spectral-peptide match (MSGF prob-
ability ≤ 1 ×  10−9), peptide (MSGF probability ≤ 7 ×  10−11) 
and protein (MSGF probability ≤ 2 ×  10−12) levels, result-
ing in < 1% false-discovery rate in each of the levels. TMT 
reporter ion intensities were extracted with MASIC [23] 
(version 1, Pacific Northwest National Laboratory, Rich-
land, WA, USA), and the intensities of multiple MS/MS 

spectra from the same peptide were summed together to 
remove redundancy.

Label-free proteomics data were processed with Max-
Quant (version 1.6.5.0, Max Planck Institute, Planegg, 
Germany) [24] by searching tandem mass spectra against 
the human proteome database downloaded from Uniprot 
Knowledgebase (https:// www. unipr ot. org/) on Septem-
ber 23, 2019. Searching parameters considered trypsin 
cleavage in both peptide termini, methionine oxidation 
and protein N-terminal acetylation as variable modi-
fications and cysteine carbamidomethylation as fixed 
modification. Mass tolerance of parentions was set to 
20 and 4.5  ppm for prior and after mass recalibration, 
respectively. The remaining parameters were set as the 
software default options. Resulting identifications were 
filtered with a ≤ 1% false-discovery rate in both peptide-
spectrum match and protein levels. Label-free quantifica-
tion and intensity-based absolute quantification methods 
were used for the MaxQuant analysis. For this analysis, 
the match between runs option was enabled to decrease 
missing values.

The saliva microbiome analysis was processed with 
Decon2LS software combined with mzRefinery (version 
2, Pacific Northwest National Laboratory, Richland, WA, 
USA) [25] for mass recalibration and peak list extrac-
tion. Peptides were identified with MSGF + using the 
human SwissProt database combined with the Human 
Oral Microbiome Database (downloaded from https:// 
www. homd. org/ on February 17, 2020). The search-
ing parameters consisted of 1) parent ion mass toler-
ance of ± 20  ppm, 2) tryptic digestion of both termini 
with 2 missed cleavages allowed, 3) cysteine carbamido-
methylation (+ 57.0215  Da) as invariable modification 
and 4) methionine oxidation (+ 15.9949  Da) as vari-
able modification. Data were filtered at spectral-peptide 
match (MSGF probability ≤ 1.0 ×  10−9), peptide (MSGF 
probability ≤ 1 ×  10−11) and protein (MSGF probabil-
ity ≤ 1 ×  10−12) levels, resulting in < 1% false-discovery 
rate in each of the levels. The results led to the identifica-
tion of proteins from 142 bacterial genera. For the quan-
titative analysis, we appended the top strain of each of 
the 142 bacterial genera to the human SwissProt database 
(both downloaded from https:// www. unipr ot. org/ on 
April 5, 2020) and reanalyzed the data with MaxQuant 
v.1.6.14, which can identify and quantify proteins but 
performs better in smaller sequence databases [26]. The 
same parameters for the label-free proteomics analysis 
were used to process the data.

Metabolomic analysis
Metabolites were derivatized with N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) (Sigma-
Aldrich, Saint Louis, MO, USA) and trimethylchlorosilane 

https://www.uniprot.org/
https://www.homd.org/
https://www.homd.org/
https://www.uniprot.org/
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(TMCS) (Sigma-Aldrich, Saint Louis, MO, USA) and 
analyzed on Agilent GC 7890A using a HP-5MS column 
(30  m × 0.25  mm × 0.25  μm; Agilent Technologies, Santa 
Clara, CA, USA) coupled with a single quadrupole MSD 
5975C (Agilent Technologies, Santa Clara, CA, USA) as 
previously described [27]. Fatty acid methyl ester standard 
mix (C8-28) (Sigma-Aldrich, Saint Louis, MO, USA) was 
analyzed in parallel as standard for retention time cali-
bration. Collected data were calibrated and deconvoluted 
using Metabolite Detector (version 2, Technical University, 
Braunschweig, Germany) [28]. Identification of molecules 
was done by matching against the FiehnLib library [29] 
with additional in-house entries and the NIST17/Wiley 11 
GC-MS spectral databases.

Lipidomic analysis
Lipids were subjected to LC-MS/MS analysis on orbit-
rap mass spectrometry (Velos Orbitrap, Thermo Fisher 
Scientific, San Jose, CA, USA) as previously described 
[30]. Lipid species were identified using LIQUID (ver-
sion 1, Pacific Northwest National Laboratory, Richland, 
WA, USA) [30] and identifications were manually vali-
dated based on the MS/MS spectra (diagnostic and cor-
responding acyl chain fragments), the precursor isotopic 
profile, extracted ion chromatogram, mass measurement 
accuracy and elution time. Quantification was performed 
with MZmine (version 2, VTT Technical Research Cen-
tre of Finland) [31]. All LC-MS/MS data were aligned and 
gap-filled to the identified lipid-based observed m/z and 
retention time. Aligned features were manually verified 
and peak apex intensity values were exported for statisti-
cal analysis.

Dermcidin ELISA assay
Dermcidin was quantified using an ELISA kit (cata-
log number MBS2704747, MyBioSource, San Diego, 
CA, USA). One-hundred microliters of plasma or saliva 
were plated onto 96-well plates and incubated for 1  h 
at 37  °C, then add Detection Reagent A and incubate 
for another hour at 37  °C. After this period, plates were 
washed 3 times with 350 μl of wash buffer before incu-
bation with appropriate Detection Reagent B for 30 min 
at 37  °C. Plates were washed 5 times with 350  μl of 
wash buffer and incubated with 90 μl of Substrate Solu-
tion for 20 min at 4 °C. The reaction was quenched with 
50 μl of Stop Solution and measured at 450 nm in a plate 
spectrophotometer.

Urea quantification assay
Urine urea concentration was determined with a urease-
based kit (Sigma-Aldrich, Saint Louis, MO, USA) follow-
ing manufacturer-provided protocol. Fifty microliters 

of reaction mix containing Urea assay buffer, Peroxi-
dase substrate, Enzyme mix, Developer and Converting 
Enzyme, was mixed with 50 μl of 1500-fold diluted urine 
and incubated for 60  min at 37  °C. The reaction was 
measured at 570 nm in a plate spectrophotometer.

Systematic literature review
The literature search was done between February 26 and 
March 16, 2021, by querying PubMed for publications 
(see Table  1 for keywords). The groups of workers that 
were included in this search were firefighters, soldiers, 
marathon runners and soccer players. Only studies that 
followed up individuals for respiratory infections after 
physical activity were included in the analysis.

Statistical analysis
Statistical analyses were conducted in R version 3.6 using 
the pmartR [32] and stats packages. Missing values were 
converted to “NA” and data were  Log2 transformed. TMT-
labeled proteomics data were normalized to the reference 
pool. Peptides shared by multiple proteins were excluded. 
Biomolecules appearing only once across all samples were 
excluded. A robust Mahalanobis distance based on peptide 
abundance vectors (rMd-PAV) was calculated to identify 
potential sample outliers in the data [33]. Sample outli-
ers were confirmed using visual inspection of correlation 
heatmaps and principal component analysis (PCA) plots. 
The metabolomics and lipidomics datasets were normal-
ized via global median centering. Proteomics datasets were 
normalized by the statistical procedure for the analyses of 
peptide abundance normalization strategies (SPANS) [34] 
at the peptide level, and rolled up with R-rollup. Statistical 
comparisons of biomolecule abundances were performed 
using a paired Student’s t-test and considered significant 
with a P-value ≤ 0.05 without further corrections.

Functional‑enrichment analysis
Differentially abundant proteins (Student’s t-test 
P-value ≤ 0.05) were submitted for functional-enrich-
ment analysis using DAVID (version 6.8, Frederick 
National Laboratory for Cancer Research, Frederick, MD, 
USA) [35] and the whole set of human predicted genes 
was used as the background. Only the pathways contain-
ing KEGG annotation were considered in the analysis. 
Graphs of pathways overrepresented with differentially 
abundant proteins were plotted with Minitab (version 
19.2020.1, Minitab LLC, State College, PA, USA). Lipid 
ontology and enrichment analysis were done using Lipid 
Mini-On (version 1, Pacific Northwest National Labora-
tory, Richland, WA, USA) [36].
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Results
Blood plasma, urine, and saliva were collected from 
wildland firefighters before and after an exercise, which 
consisted of hiking for 45  min, at a strenuous pace, in 
hilly terrain, while wearing full wildland firefighter gear 
(between 9 and 20 kg). Exercise sessions occurred at the 
start of the fire season, in late June 2019, during onboard 
training. The local temperature was 20  °C, while the air 
humidity was 78% with 6 km/h winds. From the initial 13 
male firefighters, two participants were excluded, one was 
unable to finish the exercise regimen and a second study 
participant exceeded the post-exercise biospecimen col-
lection time threshold. Participants that concluded the 
course were on average (25 ± 3) years old and weighed 
on average (80.1 ± 13.5)  kg before exercise, and lost, on 
average, (1.8 ± 0.2)  kg (2.2% of the initial weight) during 
exercise. The participants’ body mass index reduced from 
(26.6 ± 3.3) kg/m2 pre-exercise to (26.0 ± 3.3) kg/m2 post-
exercise. Each biofluid was submitted for comprehen-
sive proteomics, lipidomics and metabolomics analyses. 
Combining all the analyses 3835 proteins, 730 lipids and 
182 metabolites were identified and quantified (Addi-
tional file  1: Tables  S1–S3). The different omics meas-
urements were then integrated to provide a global view 
of physiological and biochemical pathways regulated 
during the exercise session that is released into different 
biofluids.

Multi‑omics signatures of intense exercise in plasma
The plasma proteomics analysis resulted in the iden-
tification and quantification of 1510 proteins. Out of 
the 1510 identified proteins, 142 significantly (Stu-
dent’s t-test P ≤ 0.05, 107 up-regulated and 35 down-
regulated) changed across the pre- and post-exercise 
plasma samples (Additional file 1: Table S4). The paired 
metabolomics analysis of the same samples led to the 
identification of 91 metabolites, 29 up-regulated and 35 
down-regulated (Additional file 1: Table S5). A lipidom-
ics analysis resulted in the identification of 391 lipid spe-
cies, 149 of which were up-regulated and 77 of which 
were down-regulated (Additional file  1: Table  S6). A 
functional-enrichment analysis of the proteomics data 
shows that pathways related to Staphylococcus aureus 
infection, systemic lupus erythematosus and prion dis-
eases were down-regulated post-exercise (Fig.  1a), pos-
sibly indicating immune modulation. Complement and 
coagulation cascades had proteins simultaneously down-
regulated and up-regulated post-exercise, while the coag-
ulation proteins were up-regulated, and the complement 
proteins were down-regulated (Fig.  1a and Additional 
file 1: Table S4). Enrichment of pathways such as ECM-
receptor interaction, focal adhesion, and proteoglycans 

in cancer (Fig. 1a) showed a general increase in extracel-
lular matrix (ECM) proteins. Except for osteopontin, all 
the other 11 proteins of the ECM-receptor interaction 
pathway were up-regulated post-exercise (Fig.  1b). As a 
loading control, the abundant plasma protein, ceruloplas-
min, was unaffected by the exercise session (Fig. 1b). The 
release of ECM proteins into the blood might be due to 
tissue damage.

We also investigated the proteins with the most up-
regulation following the exercise regimen. Dermci-
din, an antimicrobial peptide and regulator of glucose 
metabolism, was the most up-regulated protein with a 
4.4-fold increase in abundance in the proteomics analy-
sis (Fig. 1c). A validation experiment with ELISA showed 
a 3.5-fold increase in dermcidin after exercise (Fig.  1d). 
Subsequent significant proteins with up-regulation were 
all growth and tissue regeneration factors, such as soma-
totropin and several S100 proteins (Fig. 1c). Histone H4, 
a major structural protein of cellular chromatins, was 
up-regulated 3.3-fold (Fig. 1c). The presence of chroma-
tin proteins in the plasma is surprising to some extent 
but could be caused by cell lysis. To check this possibility, 
we looked at the other histones. Histone H2A type 2-C 
abundance was below the limit of quantification (Addi-
tional file 1: Table S1), while the other core histones that 
are equally as abundant as H4 in cells, such as H2A, H2B 
and H3, were not detected. We also found that the two 
peptides of histone H4 detected in our analysis were 
from its C-terminal region. The 5 amino acid residues 
of histone H4 C-terminus correspond to the osteogenic 
growth peptide, a tissue regeneration factor. Therefore, 
the identified peptides from histone H4 are probably 
secreted osteogenic growth peptides rather than leakage 
of lysed cells. The pathways related to immune response 
(Fig. 1a) could also be contributing to tissue repair. Over-
all, these signatures suggest an acute response to the tis-
sue damage toward regeneration.

The lipidomics analysis showed differential abundance 
of multiple lipid classes. The sphingolipids [sphingo-
myelin (SM), ceramides and hexosylceramides], largely 
driven by SM, have several up-regulated lipid species 
(Fig.  2a). Among the phospholipids, diacylglycerophos-
phoethanolamines (PEs) and monoacylglycerophos-
phoethanolamines (LPEs) were down-regulated, whereas 
diacylglycerophosphocholines (PCs), acylalkylglycer-
ophosphocholines (PCOs) and diacylglycerophospho-
inositols (PIs) were up-regulated (Fig.  2a). In terms of 
energy storage lipids, a decrease of several species of 
diacylglycerol (DG) and triacylglycerol (TG) (Fig.  2a). 
Conversely, TGs containing very long, polyunsaturated 
fatty acid C22:6 were statistically enriched among the 
lipids with increased abundance post-exercise (Addi-
tional file 1: Table S5). To better understand this process, 
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we sorted TG species based on their fold change against 
double bonds or total carbon length. TGs with fewer dou-
ble bonds had the highest decrease, whereas the more 
unsaturated ones were up-regulated (Fig.  2b). TGs with 
a smaller carbon number also had the highest decrease 
(Fig.  2b), suggesting a preference for the degradation 
of TGs with short saturated fatty acids. One exception 
to this rule is the TGs with C18:1 and C18:2, which are 
degraded faster than TGs with C18:0 (Fig. 2b). In agree-
ment with this observation, the level of oleate (C18:1) was 
increased by 66% (P = 0.001) in plasma compared to non-
significant changes of the stearate (C18:0) level (P = 0.17) 
(Fig. 2b). The lipolysis activator apolipoprotein C3 (found 
on triglyceride-rich lipoproteins) was up-regulated by 28% 
(P = 0.0002), while the lipolysis marker fatty acid-binding 
protein 4 was increased by 65% (P < 0.001), indicating 
an increase in lipolysis (Fig. 2c). Consistently, the lipoly-
sis products glycerol (+ 55%) and fatty acids myristate 
(C14:0): + 57% (P = 0.001), and palmitate (C16:0): + 51% 
(P = 0.004) were also increased post-exercise (Fig.  2d). 
The increase in plasma fatty acid levels was accompanied 
by increase in the levels of 10:1 (+ 53%, P = 0.003), 12:0 
(+ 59%, P = 0.01), 14:1 (+ 74%, P = 0.001) and 16:0 (+ 31%, 
P = 0.007) acyl-carnitines (Fig.  2c), which are conjugated 
molecules that facilitate the transport of fatty acids to the 
mitochondria for beta oxidation.

Downstream analysis of the metabolites from central 
carbon metabolism showed that glucose had only a 7% 
reduction (P = 0.02) in abundance post-exercise (Addi-
tional file 1: Table S6). This small change could be due to 
the homeostatic mechanisms to maintain the blood glu-
cose levels as we observed changes in D-gluconic acid and 
in other sugars along with isomerases and kinases (Addi-
tional file 1: Tables S4 and S6). An increase in the levels 
of the glycolysis products, pyruvate (+ 51%, P < 0.001) 
and lactate (+ 34%, P = 0.02) (Fig. 2e), was also observed, 
which agrees with the proteomics data showing enrich-
ment in glycolysis/gluconeogenesis (Fig. 1a). In addition, 
we observed 5 out of the 10 glycolytic enzymes being 
up-regulated: hexokinase HK3, aldolase ALDOA, phos-
phoglycerate mutase PGAM4, enolase ENO1 and tran-
sketolase TKT (Fig. 2e). A similar increase was observed 
in the levels of 5 out of 7 TCA cycle intermediates and 2 

enzymes in the plasma samples (Fig. 2e). We also aimed 
to look for the ATP levels, but neither ATP nor its catab-
olites were detected by the automated GC-MS analysis. 
After manual inspection, we found that the increase of 
glycolysis and TCA cycle metabolites was accompanied 
by elevated levels of ATP catabolites in plasma: hypox-
anthine (+ 11.6-fold, P < 0.001), xanthine (+ 5.2-fold, 
P < 0.001) and inosine (+ 7.3-fold, P = 0.001) (Fig.  2f ). In 
terms of amino acids, glutamine, and arginine (detected 
as ornithine) were reduced by 17% (P = 0.003) and 25% 
(P < 0.001), respectively (Additional file  1: Table  S3). 
Conversely, alanine and glutamate levels were increased 
by 23% (P = 0.01) and 66% (P = 0.001) (Additional file  1: 
Table S6), while all other detected amino acids had minor 
or insignificant changes in abundance. To further inves-
tigate if amino acids are used as an energy source, we 
analyzed the levels of their degradation product, urea, in 
plasma and urine. The levels of urea in plasma and urine 
were measured by GC-MS and enzymatic assay, respec-
tively, and neither of them showed differences after exer-
cise (Fig.  2g, h), supporting that amino acid catabolism 
was not an important source of energy during this exer-
cise session.

Overall, in plasma we observed an increase in ECM 
(tissue damage markers), immunomodulation and regen-
eration proteins, suggesting that the impact of exercise 
causes tissue damage and that the repair response starts 
immediately. A strong change in lipid metabolism, glyco-
lysis and TCA cycle was observed, probably to support 
the high energy demands of the body.

Multi‑omics signatures of intense exercise in urine
The multi-omics analysis of the urine samples resulted in 
the identification and quantification of 1711 proteins, 105 
metabolites and 279 lipids (Additional file 1: Tables S7–
S9). Out of the molecules, 291 proteins (197 up-regulated 
and 94 down-regulated), 37 metabolites (14 up-regulated 
and 23 down-regulated) and 139 lipids (52 up-regulated 
and 87 down-regulated) were differentially abundant 
between pre- and post-exercise urine samples. The func-
tional-enrichment analysis showed a strong trend in 
the regulation of secretion and reabsorption pathways 
(Fig.  3a). The renin-angiotensin system pathway, which 

Fig. 1 Comparative multi‑omics analysis of blood plasma prior and post exercise. a Functional‑enrichment analysis of proteins differentially 
abundant (Student’s t‑test P ≤ 0.05) after the exercise session. The enrichment analysis was done with DAVID and the graph is plotted 
in function of the fold enrichment versus Fisher’s exact test P‑values. The colors represent if the pathways were overrepresented in up‑regulated 
or down‑regulated proteins, while the circle sizes represent the number of regulated proteins in each pathway. b Boxplot of abundance ratios 
of extracellular matrix (ECM) proteins comparing pre‑ and post‑exercise sessions. Black diamonds represent outlying data points. c Boxplot 
of abundance ratios of regeneration factors comparing pre‑ and post‑exercise sessions. d ELISA analysis of plasma dermcidin levels prior 
and after the exercise session. **P ≤ 0.01 (Student’s t‑test). Down significantly down‑regulated molecule, Up significantly up‑regulated molecule, ns 
non‑significant

(See figure on previous page.)
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controls body fluid balance and blood pressure, was 
enriched 13.6-fold among the post-exercise-regulated 
proteins (Fig. 3a). In addition, we found the level of angi-
otensinogen in urine was increased 2.9-fold after the 
exercise session, and the levels of its converting enzymes 
were also consistently increased: angiotensin-converting 
enzyme (ACE) (detected in 6 samples post-exercise and 
only 1 before exercise), angiotensin-converting enzyme 2 
(ACE2) (+ 2.1-fold, P = 0.001), Lysosomal Pro-X carboxy-
peptidase (+ 2.0-fold, P = 0.02), neprilysin (+ 2.2-fold, 
P = 0.0007) and glutamyl aminopeptidase (+ 1.8-fold, 
P = 0.02). The level of cathepsin G was reduced by 2.2-fold 
(P = 0.007) and the level of aminopeptidase N was not 
significantly different (P = 0.25) (Fig.  3b). We observed 
increases in angiotensin in urine, but not blood or saliva 
(Fig.  3c). As the renin-angiotensin pathway increases 
vasoconstriction, we investigate if it would alter the filtra-
tion rates of the kidney, we look at the levels of cystatin 
C. Cystatin C is a continuously expressed freely filtered 
small protein used clinically as a marker of glomerular 
filtration rate. Since cystatin is completely catabolized in 
the proximal tubules of the kidney, plasma levels of cys-
tatin C are used as clinical biomarker for filtration rates. 
We found that the level of cystatin C in plasma was simi-
lar pre- versus post-exercise session (Fig.  3d). Similarly, 
the plasma level of creatinine, another indicator of glo-
merular filtration rate, was also not significantly affected 
by the exercise session (Additional file 1: Table S3). This 
indicates that glomerular filtration rates are maintained 
at an approximately constant level during exercise. Con-
versely, we found an increase in total protein concen-
tration of the urine post-exercise (P = 0.0057) (Fig.  3e), 
which might indicate an increase in water reabsorption 
by the renin-angiotensin system to aid in water body 
homeostasis (i.e., combat water loss due to perspiration).

We next investigated the effect of the renin-angiotensin 
system regulation in more detail by analyzing the abun-
dance of ion and metabolite transporters. We found a 
significant change in the abundance of 12 transporters, 
including 10 up-regulated and 2 down-regulated after 
exercise (Additional file  1: Table  S4). The abundance 

of sodium/glucose cotransporters 1 and 5, which are 
involved in sugar reabsorption, were up-regulated by 2.0- 
(P = 0.05) and 3.3-fold (P = 0.0002), respectively (Fig. 3f ). 
Concomitantly, the level of galactose was reduced by 2.3-
fold (P = 0.001), while the levels of glucose and fructose 
remained similar (Fig. 3g). We also observed an increase 
in abundance of the sodium/potassium-transporting 
ATPase (ATP1B1: 2.3-fold, P < 0.001 and ATP1A1: 2.1-
fold, P = 0.006), while the regulatory subunit γ-2 was 
down-regulated by 5.9-fold (P = 0.009) (Fig. 3g). In addi-
tion, the sodium-coupled monocarboxylate transporters 
1 and 2 were up-regulated by 3.4- (P = 0.008) and 1.8-fold 
(P = 0.005) (Fig.  3f ), respectively, suggesting a reabsorp-
tion of ions and consequently, water. The neutral and 
basic amino acid reabsorption transport protein rBAT 
(SLC3A1) was increased by 2.6-fold (P < 0.001) after exer-
cise. Conversely, the level of neutral amino acid trans-
porter 10 (SLC38A10) was reduced by 1.1-fold (P = 0.01) 
(Fig.  3f ). Most of the amino acids had similar post-/
pre-exercise fold changes comparing plasma with urine 
(Fig. 3h and Additional file 1: Table S6). However, there 
were amino acids, such as cysteine, which responded 
differently in plasma than in urine. Cysteine abundance 
increased 29% (P = 0.003) post-/pre-exercise in urine 
while plasma levels remained similar (Fig. 3i). These data 
support differential reabsorption of amino acids during 
exercise.

In terms of energy-related metabolites, the lipidom-
ics analysis of urine showed a strikingly different profile 
compared with the plasma samples. Despite similarly 
higher levels of acyl-carnitines and ceramides in urine 
and plasma, the levels of TG, SM, PC, PCO and PI were 
divergent in these biofluids (Figs.  2a and 3j). TG levels 
were higher in urine, while the levels of SM, PC, PCO 
and PI were lower (Fig.  3j). These differences in lipid 
profiles between plasma and urine might be due to filtra-
tion, reabsorption, and differences in energetic demands 
locally in the kidneys. The glycolysis products, lactate and 
pyruvate, were increased by 4.7- (P = 0.001) and 2.2-fold 
(P = 0.0004), respectively (Fig. 3k). On the other hand, the 
levels of most the TCA cycle intermediates (Additional 

(See figure on previous page.)
Fig. 2 Metabolic signatures of the exercise session in the blood plasma. a Plasma lipidomics profile comparing prior and after the exercise session. 
The bar graph shows the percentage up and down‑regulated species in each lipid class. The asterisks represent classes of lipids that are significantly 
enriched (Fisher’s exact test P ≤ 0.05) with differential abundant species, as determined using Lipid MiniOn. b Relationship between the total 
number of double bonds in triacylglycerol species and fold change comparing post‑ versus pre‑exercise. c Relationship between the total number 
of carbons in fatty acids of triacylglycerol species and fold change comparing post‑ versus pre‑exercise. d Boxplot of abundance ratios of lipid 
metabolism molecules comparing pre‑ and post‑exercise sessions. Diamonds represent outlying data points. e Levels of molecules from the central 
carbon metabolism in plasma comparing pre‑ and post‑exercise sessions. f Boxplot of abundance ratios of ATP catabolites in plasma comparing 
pre‑ and post‑exercise sessions. g Relative quantification of the plasma urea levels using the GC–MS‑based metabolomics data. h Quantification 
of the urine urea concentrations using a colorimetric assay. ALDOA aldolase A, Down significantly (Student’s t‑test P ≤ 0.05) down‑regulated 
molecule, ENO1 enolase 1, HK3 hexokinase 3, IDH1 isocitrate dehydrogenase 1, LDHA lactate dehydrogenase, ns non‑significant, PGAM4 
phosphoglycerate mutase family member 4, Up significantly up‑regulated molecule, ns non‑significant, TG triacylglycerol, TKT transketolase
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file 1: Table S3) were similar before and after exercise, like 
that of α-ketoglutarate (Fig.  3k). The levels of the ATP 
catabolites, xanthine, hypoxanthine, and inosine, were 
increased after exercise, while the level of uric acid was 
decreased at the same time (Fig.  3k). Collectively, the 
observed increases in urinary catabolites are consistent 
with a urinary molecular signature of an increase of the 
energy utilization.

Our data showed a simultaneous and consistent molec-
ular signature of energy utilization and catabolite excre-
tion in the plasma and urine. We also observed increases 
in the renin-angiotensin system and nutrient re-absorp-
tion system proteins, consistent with an adaption to 
maintain fluid balance and meet the increased energy 
demands of exercise.

Multi‑omics signatures of intense exercise in saliva
The multi-omic analysis of the saliva samples resulted 
in the identification and quantification of 2339 human 
proteins, 93 metabolites and 410 lipids (Additional file 1: 
Tables  S10–S12). Of these molecules, 487 proteins (92 
up-regulated and 395 down-regulated), 7 metabolites 
(4 up-regulated and 3 down-regulated) and 122 lipids 
(68 up-regulated and 54 down-regulated) were signifi-
cantly regulated in response to the exercise regimen. A 
functional-enrichment analysis with DAVID showed 23 
pathways to be overrepresented in proteins regulated by 
the exercise session. We found an overrepresentation of 
down-regulated proteins from highly abundant intracel-
lular pathways, such as ribosome, proteasome, carbon 
metabolism, gap junctions and aminoacyl-tRNA synthe-
sis (Fig. 4a, b). In contrast, the level of lysozyme, which is 
produced by the submaxillary gland and directly secreted 
into saliva, was not significantly affected by exercise 
(Fig. 4b). The consistent decrease in proteins from several 
abundant intracellular pathways post- versus pre-exercise 
may suggest a reduction of the cell numbers in saliva. A 

17% (P = 0.01) reduction in the epithelial cell marker pro-
tein 1 (also known as 14-3-3 sigma) was observed while 
the myeloid cell marker CD14 level increased by 40% 
(P = 0.02) (Fig. 4b), suggesting that the decrease in abun-
dant cellular proteins may be due to a reduction of epi-
thelial cell shedding into saliva.

We also observed a decrease in the levels of the pro-
inflammatory cytokines IL-36α, IL-18, and IL-1 (Fig. 4c). 
This was accompanied by a decrease in the level of 
ceramides (Fig.  4d), which are also pro-inflammatory 
molecules. Consistent with this observation, ceramide 
synthase 3 was also reduced after exercise (Fig.  4c). 
We also observed an increase in levels of anti- or post-
inflammatory lipid species, such as monoalkylglycer-
ophosphocholines (also known as lyso-PAF) and TGs 
(Fig.  4d). These data show a coordinated reduction of 
inflammation post-exercise, which is further supported 
by a reduction in the leukocyte trans-endothelial migra-
tion pathway (Fig. 4a). One possibility is that this reduc-
tion in inflammation facilitates gas exchange since 
airway inflammation may induce bronchoconstriction or 
obstructive airflow patterns. However, salivary biomarker 
composition may not be reflective of that found within 
nasal secretions, lower respiratory tract secretions or 
alveolar lung fluid. Thrombospondim-1, an inducer of the 
pulmonary vasoconstriction, was up-regulated by 57% 
(P = 0.04) after exercise, while opiorphin prepropeptide, 
a vasodilator of the peripheral tissue, was up-regulated 
by 60% (P = 0.02) (Fig.  4c. We also observed an up-reg-
ulation of secreted phospholipase A2 (PLA2G2) (Fig. 4c 
and its products monoacylglycerophosphocholines (also 
known as lysoPCs) (Fig.  4d), which are vasorelaxation 
inhibitors. Though speculative, these data support the 
idea that inflammation is reduced in the oral cavity and 
possibly in the airways as a temporary adaptive mecha-
nism to improve respiratory performance during intense 
physical activity.

Fig. 3 Comparative multi‑omics analysis of urine prior and post exercise. a Functional‑enrichment analysis of proteins differentially abundant 
(Student’s t‑test P ≤ 0.05) after the exercise session. The enrichment analysis was done with DAVID and the graph is plotted in function of the fold 
enrichment versus Fisher’s exact test P. The colors represent if the pathways were overrepresented in up‑regulated or down‑regulated proteins, 
while the circle sizes represent the number of regulated proteins in each pathway. b Boxplot of abundance ratios of renin‑angiotensin system 
proteins comparing pre‑ and post‑exercise sessions. c Boxplot of abundance ratios of angiotensinogen in different body fluids comparing 
pre‑ and post‑exercise sessions. d Boxplot of abundance ratios of cystatin C in different body fluids comparing pre‑ and post‑exercise 
sessions. e Protein content in the urine prior to post exercise. **P < 0.01 (Student’s t‑test). f Boxplot of abundance ratios of transporters 
comparing pre‑ and post‑exercise sessions. g Boxplot of abundance ratios of urine sugar levels comparing pre‑ and post‑exercise sessions. h 
Boxplot of abundance ratios of valine pre‑ and post‑exercise session comparing plasma and urine. i Boxplot of abundance ratios of cysteine 
pre‑ and post‑exercise session comparing plasma and urine. j Urine lipidomics profile comparing prior and after the exercise session. The bar graph 
shows the percentage up‑ and down‑regulated species in each lipid class. The stars represent classes of lipids that are significantly enriched (Fisher’s 
exact test P ≤ 0.05) with differential abundant species, as determined using Lipid MiniOn. k Boxplot of abundance ratios of metabolites comparing 
pre‑ and post‑exercise sessions. Diamonds represent outlying data. ACE angiotensin converting enzyme, ACE2 angiotensin converting enzyme 
2, Biosyn. biosynthesis, Down significantly down‑regulated molecule, ns non‑significant, PRCP prolylcarboxypeptidase, Prox. tub. proximal tubule, 
reab. reabsorption, sign. signaling, transp. transporter, Up significantly up‑regulated molecule

(See figure on previous page.)



Page 14 of 21Nakayasu et al. Military Medical Research           (2023) 10:48 

We hypothesized that the anti-inflammatory processes 
might influence susceptibility to infection and trigger 
a compensating change in other immune system ele-
ments. To address this hypothesis, we investigated levels 
of other immune proteins. Several innate immune pro-
teins were consistently up-regulated after exercise: CD14, 
CD55 and all antimicrobial peptides/proteins (dermci-
din, cystatins, β-defensin 1 and histatin-1) (Fig.  5a). We 

validated the levels of dermcidin by ELISA. Dermcidin 
had a 2.5-increase in the proteomics (P = 0.01) and a 
10.7-fold increase by ELISA (P < 0.001) (Fig.  5a, b). The 
discrepancy in fold change might be due to the levels of 
dermcidin being close to the detection limit in the pre-
exercise sample. This increase in antimicrobial peptides 
in saliva supports our hypothesis of a compensatory 
mechanism to improve host defense. We next explored 

Fig. 4 Comparative multi‑omics analysis of saliva prior and post exercise. a Functional‑enrichment analysis of proteins differentially abundant 
(Student’s t‑test P ≤ 0.05) after the exercise session. The enrichment analysis was done with DAVID and the graph is plotted in function of the fold 
enrichment versus Fisher’s exact test P‑values. The colors represent if the pathways were overrepresented in up‑regulated or down‑regulated 
proteins, while the circle sizes represent the number of regulated proteins in each pathway. b Boxplot of abundance ratios of abundant intracellular 
proteins comparing pre‑ and post‑exercise sessions. Diamonds represent outlying data points. c Boxplot of abundance ratios of inflammation 
and fluid balance comparing pre‑ and post‑exercise sessions. d Saliva lipidomics profile comparing prior and after the exercise session. The 
bar graph shows the percentage of up and down‑regulated (Student’s t‑test P ≤ 0.05) species in each lipid class. The stars represent classes 
of lipids that are significantly enriched (Fisher’s exact test P ≤ 0.05) with differential abundant species, as determined using Lipid MiniOn. Down 
down‑regulated molecule, init. initiation, Up up‑regulated molecule, ns non‑significant
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whether there was a functional impact on the oral micro-
biota. Compared to plasma and urine, we found higher 
levels of C15 fatty acyl-containing PE and diacylglycer-
ophosphoglycerol (PG) (Fig.  5c), in saliva than in blood 
and urine, consistent with the expectedly higher load of 
bacteria in the oral cavity. We reanalyzed the proteom-
ics data by searching against the human and oral micro-
biome bacterial sequences. We identified proteins from 
142 bacterial genera, and we used the intensity-based 
absolute quantification (iBAQ) method to estimate the 
relative protein copy numbers. The saliva proteome was 
comprised of 96.3% human and 3.7% bacterial proteins 
by copy numbers (Fig.  5d). We used the same quantifi-
cation to calculate the saliva protein fraction from each 

organism and compared prior and after the exercise. The 
exercise session had no effect on the human proteins and 
the total bacterial proteins, but decreased the abundance 
of the bacteria Cryptobacterium curtum, Propionibacte-
rieae G-2, Absconditabacteria SR1 G-1 and Chlorobium 
limicola (Fig. 5e). The decreases in these four oral cavity 
bacteria are consistent with our hypothesis that increases 
in salivary antimicrobial peptides influence oral micro-
bial populations and potentially host susceptibility.

Overall, we observed molecular signatures of down-
regulation of inflammation in the saliva, which can be 
an adaptive response to exercise that improves respi-
ration and blood flow. We also found evidence that the 
decrease in inflammation is accompanied by an increase 

Fig. 5 Analysis of the saliva innate immune proteins and microbiota prior and post exercise. a Boxplot of abundance ratios of innate immune 
proteins comparing pre‑ and post‑exercise sections. Stars represent outliers. b ELISA analysis of saliva dermcidin levels prior and after the exercise 
sessions. **P ≤ 0.01 (Student’s t‑test). c Number of diacylglycerophosphoethanolamine and diacylglycerophosphoglycerol species containing C15 
fatty acids in different body fluids. **P ≤ 0.01 (Fisher’s exact test). d Fraction of human and bacterial proteins in the saliva proteomics. e Boxplot 
of abundance ratios of total iBAQ scores from proteins of different organisms comparing pre‑ and post‑exercise sessions. Stars represent outliers. 
Down significantly down‑regulated molecule, PE diacylglycerophosphoethanolamine, PG diacylglycerophosphoglycerol, Up significantly 
up‑regulated molecule, ns non‑significant
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of antimicrobial peptides, which altered oral microbiome 
composition.

Discussion
Our study illustrates the promise of utilizing advanced 
mass spectrometry for the global characterization of 
proteins, lipids, and metabolites to understand the coor-
dinated physiologic and immunologic acute response 
to intense exercise. In plasma, we observed molecu-
lar signatures consistent with those reported in previ-
ous studies despite differences in the exercise regimen 
and cohort characteristics divergent enough to have a 
significant influence on tissue responses to exercise [5, 
11]. Lewis et al. [11] performed a pre- and post-exercise 
plasma metabolomics analysis of marathon runners, 
individuals that were submitted to an acute exercise 
regimen or running a marathon, whereas Contrepois 
et  al. [5] performed a multi-omics analysis of plasma 
after volunteers reached “peak oxygen consumption” in 
a short and intense exercise session (8–12 min exercise). 
In both studies, the average age was in the 50 s, whereas 
in our cohort the average age was in the 20 s. Like what 
was reported by Contrepois et al. [5], plasma from vol-
unteers in our study showed signatures of tissue dam-
age and regenerative response after exercise. In terms of 
metabolism, all three studies showed increased lipolysis 
[5, 11]. We found that short-chain saturated fatty acids 
were consumed first, consistent with previous findings 
[5]. Longer and unsaturated fatty acids were metabo-
lized more slowly, except for C18:1 and C18:2, which 
are rapidly metabolized like the short saturated fatty 
acids. Short- and mid-chain fatty acids can be metabo-
lized faster as a result of their carnitine-independent 
transportation into mitochondria [37]. Unsaturated fatty 
acids are harder to metabolize due to the requirement 
of additional beta oxidation steps in the mitochondria 
[38]. Beta oxidation is accompanied by an increase in the 
TCA cycle activity. Simultaneously, we observed molec-
ular markers of an increase in glycolysis metabolites, evi-
denced by the accumulation of its products lactate and 
pyruvate, but the minimum change in the levels of glu-
cose. Stable levels of plasma glucose are likely the result 
of a homeostatic mechanism that mobilizes glucose 
from glycogen stores [11]. Another mechanism could be 
via dermcidin. Although, dermcidin is mainly character-
ized as an antimicrobial molecule, more recently it was 
suggested to play a role in glucose homeostasis by reduc-
ing insulin secretion [39].

A major difference between our study and the stud-
ies by Lewis et al. [11] and Contrepois et al. [5] was the 
magnitude of amino acid consumption. While the two 
prior studies showed that amino acid degradation occurs 
during the exercise session, this was not evident in our 

study, which we attribute to differences in age, exercise 
regimen and training of the cohort. Younger and well-
trained individuals have lower amino acid demands dur-
ing exercise [40]. In addition, amino acid metabolism is 
not altered in resistance exercise [40]. The increase in ala-
nine and glutamate observed in our analysis is probably 
due to transamination of the overflowing glycolysis and 
TCA cycle metabolites pyruvate and α-ketoglutarate [41]. 
In a parallel study, we analyzed the effects of heat stress 
on a moderate exercise regimen in which participants 
walked on the treadmill for 1 h at 5 km/h. We found that 
only lipid metabolism was regulated during this exercise 
and no significant difference was observed in glycolysis 
or amino acid metabolism, when we compared post- and 
pre-exercise results (unpublished observations). This 
further supports that exercise regimen can differentially 
regulate different metabolic pathways.

Increased metabolism supporting the energy demands 
of exercise leads to higher production of catabolites that 
must then be excreted in the urine. We found increased 
levels of the glycolysis products (lactate and pyruvate) 
and ATP catabolites (inosine, xanthine, and hypoxan-
thine) in the post-exercise urine. Consistent with our 
data, these metabolites have been reported to increase 
after different exercise regimens [42–44]. Stable plasma 
levels of cystatin C and creatinine were consistent with 
unchanged glomerular filtration rates after the firefighter 
training regimen. Others have reported stable glomerular 
filtration rate even during extreme physical activity, such 
as running an ultramarathon [45]. We found increases in 
molecular markers of the renin-angiotensin system in the 
urine, but not in plasma and saliva. Two other exercise 
regimens, high-intensity intermittent exercise and mod-
erate-intensity continuous exercise, have both displayed 
an increase in levels of angiotensin II and angiotensin 
1–7 in urine but not in plasma [46]. This is consistent 
with up-regulation being isolated to the proximal tubule 
rather than associated with other sources like the liver 
[47]. Angiotensin is produced in the proximal tubule of 
the kidney, which may explain the observed increase in 
urine. Angiotensin II increases the expression of sodium-
glucose cotransporters, increasing renal reabsorption 
of sugars and water [48]. The increased angiotensin II 
produced in the kidneys may cause vasoconstriction as 
shown in rats [49]. Conversely, there is vasodilation in the 
muscles during exercise [50–52], which may help diverge 
the blood flow and supply nutrients and oxygen to the 
contracting muscle.

Moderate aerobic exercise has also been shown to 
improve respiratory mechanics and possibly lung func-
tion [53]. We found that the decrease in inflammatory 
markers was accompanied by increased opiorphin, a 
peripheral tissue vasodilator [54] that may increase blood 
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flow to muscles during the exercise regimen to improve 
the delivery of oxygen and nutrients [52]. Our saliva 
analysis showed a decrease in abundant cellular pro-
teins, which might be due to a reduction in normal epi-
thelial cell turnover in the oral cavity [55]. Nonetheless, 
moderate aerobic exercise has been shown to decrease 
eosinophilic inflammation in a murine model of asthma 
[56]. Airway inflammation caused by allergies, asthma, 
or chronic obstructive pulmonary disease (COPD) can 
lead to bronchoconstriction, airflow obstruction and 
decreases in lung function [57]. We postulate that the 
decrease in inflammatory molecules we observed in the 
saliva after exercise might represent an adaptive mecha-
nism to improve gas exchange in response to higher 
cellular oxygen demand [58, 59]. Furthermore, dur-
ing strenuous activity, dominant nasal breathers will 
switch to oronasal breathing at an approximated 35 L/
min threshold [60, 61]. At maximum minute ventila-
tion, nasal breathing accounts for approximately 60% of 
total ventilation; suggesting that the crucial functions of 
nasopharyngeal filtration, warming and humidification 
are reduced. Oronasal breathing allows for greater distal 
airway deposition of microbes, allergens and toxic/irri-
tant particles as mucociliary nasopharyngeal membranes 
are bypassed [62]. In addition, inhaled air is drier and 
cooler, which may increase the risk for epithelial cellular 
damage, encumber mucociliary escalator function, and 
increase infection susceptibility as an intact epithelial 
barrier is essential for preventing respiratory infections.

Decreased proinflammatory markers in the oral cavity 
might also impact the ability to fight against infections. 
Indeed, marathon runners are at a higher risk for acquir-
ing upper respiratory tract infections after races [63]. We 
found that decreases in the proinflammatory response 
occurred alongside increases in antimicrobial peptides 
and CD14 within the oral cavity. We interpreted these 
changes as evidence of a compensatory mechanism to 
maintain immune surveillance. The reduction of specific 
microbes from the oral microbiome may be a conse-
quence of this increase in antimicrobial peptides. In fact, 
increases in salivary antimicrobial peptides have been 
previously linked to prolonged exercise. However, this 
increase in antimicrobial peptides had no effect on inhib-
iting E. coli growth [64], suggesting a limited capacity of 
antimicrobial peptides within the oral cavity to protect 
against host infections. It is plausible that our observed 
increase in antimicrobial peptide expression was insuf-
ficient to compensate for the expected reduction in 
immune surveillance in the presence of the decreased 
proinflammatory response.

To study potential impacts on the saliva immune mol-
ecule profiles in response to the high-intensity of physi-
cal activity we performed a systematic literature review. 

We queried PubMed for papers that studied respiratory 
infection events in response to a high-intensity physical 
activity (see Table 1 for keywords), which included fire-
fighters, soldiers, marathon runners and soccer players. 
Only papers that performed a survey of respiratory ill-
nesses were qualified for the systematic review. Gaughan 
et al. [65], monitored a group of 58 wildland firefighters 
post-fire and compared respiratory questionnaire results 
to pre- and post-fire season responses. They found that 
respiratory symptom scores were significantly higher 
post-fire compared to pre-season and post-season. Simi-
larly, Tiollier et al. [66] performed medical examinations 
and monitored salivary immunoglobulin A (IgA) levels 
for a group of 21 soldiers throughout an intense period 
of training. They found that over 66% experienced at 
least one upper respiratory tract infection episode which 
rapidly resolved 2 d after the training session. Robson-
Ansley et  al. [67], Peters et  al. [68], and Nieman et  al. 
[69] followed up on post-marathon runner upper res-
piratory symptomology via questionnaire. All three stud-
ies found at least twice higher incidence of self-reported 
upper respiratory infections compared to control groups. 
However, Robson-Ansley et  al. [67], attributed respira-
tory symptomology to elevated immunoglobulin E (IgE) 
serum levels, suggesting that respiratory symptomol-
ogy was due to eosinophilic inflammation rather than 
neutrophilic inflammation. Furusawa et  al. [70] found 
no significant differences in upper respiratory tract 
infection rates in a cohort of wheelchair marathon rac-
ers. Conversely, Moreira et  al. [71] monitored salivary 
IgA, salivary cortisol, and upper respiratory tract infec-
tion symptoms within a cohort of 34 soccer players dur-
ing practice season, competition and post-season. They 
found that the number of upper respiratory symptoms 
significantly reduced, while salivary IgA significantly 
increased 2  weeks after the competition season ended. 
They concluded that intense training and competition 
may attenuate mucosal immune responses and neutro-
philic inflammation. In summary, there is evidence sup-
porting a relationship between physical demands and a 
higher incidence of respiratory infections.

Our study had limitations that potentially reduced the 
generalizability of our results. Study participants had a 
relatively low diversity being historically healthy, athleti-
cally fit, young adult males. They were chosen from an 
available small sample of local wildland firefighters. The 
study did not include women, which is a reflex of the fire-
fighter population in the US which is composed of 96% 
males [72]. The small sample size might bring concerns 
of findings statistical significance and interference with 
confounding factors, but the “within subject” differen-
tial expression before and after intense exercise reduces 
the impact of the sample size. In addition, we estimated 
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that the study was sufficiently powered for its intended 
aims. Increasing the number of subjects could increase 
the number of identified lipids, proteins, and metabolites, 
but would not change the main conclusions of the paper. 
Moreover, a metabolomics analysis of plasma showed 
strikingly similar profiles and trends in terms of lipolysis, 
glycolysis, TCA cycle, tissue damage and regeneration 
response when compared to other exercise metabolomic 
studies [5, 11]. Unlike Contrepois et  al. [5], our exer-
cise protocols were not standardized, and peak oxygen 
consumption  (VO2 max) was not measured to moni-
tor whether participants reached their maximal exercise 
capacity during the 45 min exercise session. However, the 
accumulation of lactate is a reliable indicator of anaero-
bic metabolism, suggesting that exercise intensity had 
surpassed aerobic respiratory capacity in most of our 
participants [73]. It is also important to note that clinical 
trials should be carried out before using these findings 
for human health.

Another overriding limitation would be the generaliz-
ability of potential health impacts to the general popu-
lation or other elite athlete exercise multi-omic studies 
because of the characteristics of the different popula-
tions. Nonetheless, when we compared our results to 
those considered in the systematic review cohorts, we did 
observe a similar trend regarding possible increased sus-
ceptibility to respiratory infection after intense physical 
activity. Unfortunately, four of the seven studies exam-
ined, relied upon self-reported respiratory symptoms 
to indicate respiratory infection incidence. While self-
reporting through questionnaires is a common method 
to collect health information, it may not be the most 
accurate or consistent method. The presence of respira-
tory symptoms does not differentially diagnose respira-
tory infection. Additionally, self-report of symptoms is 
subject to recall bias and makes it more difficult to obtain 
consistent outcomes across a study because respira-
tory symptoms also occur during eosinophilic inflam-
mation or hypersensitivity reactions. However, one of 
the reviewed studies considered the presence of fever 
obtained during medical examination, as well as respira-
tory symptoms to diagnose respiratory infection. This 
helped to reduce bias and disease misclassification [68].

One final limitation that may be unique to wildland 
firefighters, is their perennial exposure to specific respir-
able toxic pollutants during fire suppression activities [74, 
75]. These individual environmental exposures may per-
manently alter immune system immunomodulation and 
gene expression of key metabolic pathways to confound 
our results. Further epigenetics investigation would help 
to illuminate this potential bias.

Conclusions
Overall, we observed clear evidence for the regulation of 
physiological and biochemical processes typically coordi-
nated to supply energy and oxygen demands from intense 
exercise. In plasma, we found signatures of tissue damage 
and an acute repair response. In terms of metabolism, 
lipolysis, glycolysis, and TCA cycle were up-regulated 
to meet increased energy demands. The urine analysis 
showed a strong regulation of the renin-angiotensin sys-
tem toward an adaptive response required to increase 
catabolite elimination, reabsorption of nutrients and 
maintain fluid balance. Decreases in inflammatory mol-
ecules and increases in antimicrobial peptides in saliva 
could be viewed as paired responses, one to improve 
respiratory function, and the other to increase immune 
surveillance under conditions of increased susceptibility 
to infection. Furthermore, we also found that this com-
pensatory mechanism might be insufficient to protect 
professionals after tasks that demand intense physical 
effort. This study is a critical first step towards developing 
a comprehensive understanding of the physiological, bio-
chemical, and immunological effects of stress, definition 
of the molecular markers of those effects, and the devel-
opment of effective methods for monitoring and mitigat-
ing those effects in critical first responder populations 
like firefighters.
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Additional file 1: Table S1 Quantitative proteomics analysis of plasma, 
saliva, and urine. Plasma samples were immunodepleted for the top 14 
most abundant proteins, digested with trypsin, labeled with tandem 
mass tags, and fractionated by high pH reverse phase chromatography 
before being analyzed by LC‑MS/MS. Saliva and urine were digested with 
trypsin and analyzed by label‑free LC‑MS/MS. Proteins were considered 
significantly different with a P ≤ 0.05 by Student’s t‑test (highlighted in 
green). Fold changes are highlighted in degrees of red (up‑regulation) 
and blue (down‑regulation). Table S2 Quantitative lipidomics analysis of 
plasma, saliva, and urine. Plasma, saliva, and urine extracted with chloro‑
form: methanol: water and analyzed by LC‑MS/MS in both positive and 
negative ionization modes. Lipids were considered significantly different 
with a P ≤ 0.05 by Student’s t‑test (highlighted in green). Fold changes are 
highlighted in degrees of red (up‑regulation) and blue (down‑regulation). 
“_A”, “_B” or “_C” denotes different chromatographically resolved isomers. 
Table S3 Metabolomics analysis of plasma, saliva, and urine. Plasma, 
saliva, and urine extracted with methanol, derivatized and analyzed by 
GC‑MS. Metabolites were considered significantly different with a P ≤ 0.05 
by Student’s t‑test (highlighted in green). Fold changes are highlighted 
in degrees of red (up‑regulation) and blue (down‑regulation). Table S4 
Quantitative plasma proteomics analysis. Plasma samples were immuno‑
depleted for the top 14 most abundant proteins, digested with trypsin, 
labeled with tandem mass tags, and fractionated by high pH reverse 
phase chromatography before being analyzed by LC‑MS/MS. Significance 
was calculated with Student’s t‑test. Values represent normalized intensi‑
ties. Table S5 Quantitative plasma metabolomics analysis. Plasma samples 
were extracted with methanol, derivatized with N‑methyl‑N‑(trimethylsilyl)
trifluoroacetamide and analyzed by GC‑MS. Significance was calculated 
with Student’s t‑test. Values represent normalized intensities. Table S6 
Quantitative plasma lipidomics analysis. Plasma samples were extracted 
with MPLEx and analyzed by LC‑MS/MS in both positive and negative 
ionization modes. Significance was calculated with Student’s t‑test. Values 
represent normalized intensities. Table S7 Quantitative urine proteom‑
ics analysis. Urine samples were digested with trypsin and analyzed 
by LC‑MS/MS. Significance was calculated with Student’s t‑test. Values 
represent normalized intensities. Table S8 Quantitative urine metabo‑
lomics analysis. Urine samples were extracted with methanol, derivat‑
ized with N‑methyl‑N‑(trimethylsilyl)trifluoroacetamide and analyzed by 
GC‑MS. Significance was calculated with Student’s t‑test. Values represent 
normalized intensities. Table S9 Quantitative urine lipidomics analysis. 
Urine samples were extracted with MPLEx and analyzed by LC‑MS/MS in 
both positive and negative ionization modes. Significance was calculated 
with Student’s t‑test. Values represent normalized intensities. Table S10 
Quantitative saliva proteomics analysis. Saliva samples were digested 
with trypsin and analyzed by LC‑MS/MS. Significance was calculated 
with Student’s t‑test. Values represent normalized intensities. Table S11 
Quantitative saliva metabolomics analysis. Saliva samples were extracted 
with methanol, derivatized with N‑methyl‑N‑(trimethylsilyl)trifluoroaceta‑
mide and analyzed by GC‑MS. Significance was calculated with Student’s 
t‑test. Values represent normalized intensities. Table S12 Quantitative 
saliva lipidomics analysis. Saliva samples were extracted with MPLEx and 
analyzed by LC‑MS/MS in both positive and negative ionization modes. 
Significance was calculated with Student’s t‑test. Values represent normal‑
ized intensities.
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