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Abstract 

The respiratory system’s complex cellular heterogeneity presents unique challenges to researchers in this field. 
Although bulk RNA sequencing and single‑cell RNA sequencing (scRNA‑seq) have provided insights into cell types 
and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have 
not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory 
studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be 
applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, 
the current challenges and potential development directions are proposed, including high‑throughput full‑length 
transcriptome, integration of multi‑omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints 
are expected to advance the study of systematic mechanisms, including respiratory studies.
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Background
The respiratory system comprises the respiratory tract 
and lungs and is one of the organs that directly inter-
face with the external environment [1]. The complexity 
of its structure and function hinders our understand-
ing of the physiological and pathological processes 
involved [2]. The pathogenesis of most common 

respiratory diseases is complicated, a significant public 
health problem. Lung cancer is one of the most com-
mon diseases in clinical practice [3], with its morbid-
ity and mortality ranking first among all tumor types. 
The complexity of the lung tumor microenvironment 
(TME) is the main factor leading to misdiagnosis. 
Chronic respiratory diseases, such as asthma, emphy-
sema, and bronchitis, are still diagnosed based on res-
piratory symptoms, medical imaging, and lung function 
parameters, but they are highly heterogeneous and 
often overlap [4]. This vague description of underlying 
disease mechanisms leads to non-specific treatment 
schemes that may ultimately decrease the effectiveness 
of treatment for these diseases. In addition, tuberculo-
sis and pneumonia place a substantial economic bur-
den on the patients’ families and society. Therefore, 
revealing the pathogenesis of respiratory diseases, 
searching for specific biomarkers, and introducing new 
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therapeutic targets are important strategies to improve 
the current diagnosis and treatment.

Transcriptomics is a significant advance in combining 
high-throughput sequencing and bioinformatics to explore 
biological mechanisms [5]. However, sequencing analy-
sis of bulk tissue obscured individual cell phenotypic and 
functional differences and could not identify the molecular 
features of single-cell resolution [6]. With the develop-
ment of single-cell RNA sequencing (scRNA-seq), an 
increasing number of cell types and subtypes are being 
detected and clarified that allow defining the multi-
ple cell types and associated molecular characteristics 
of the lung, providing a valuable tool for studying the 
respiratory system [7, 8]. Nevertheless, due to the loss 
of spatial information caused by cell dissociation in 
single-cell sequencing, the interactions and functional 
changes of adjacent cells cannot be described in lung 
anatomy [9, 10]. Moreover, the relationship between 
cell state and different cell positions should be clearly 
elucidated [11].

Since it was proposed in 2016, spatial transcriptomics 
(ST) has provided a new perspective to decipher physi-
ological and pathological bases [12]. While maintaining 
the original spatial context, quantitative transcriptome 
analysis allows the resulting gene expression signatures 
to correlate with cell spatial localization, physiology, 
and histology. In addition, ST studies can reveal subcel-
lular RNA distribution patterns to help understanding 
the biological processes of spatial labelling and regu-
lation. With the development of techniques to collect 
and process samples for ST, the simultaneous reduc-
tion in reagent and sequencing costs, and the increas-
ing potency of computing platforms, the potential 
to tackle fundamental biological inquiries is steadily 
expanding. Some related applications of ST have been  
reviewed [13–15]. However, compared to brain neuro-
science, embryonic development, and heart and other 
organ tissues, ST has rarely been reviewed in respira-
tory and lung disease research.

This review focuses on the latest iterative technology of 
ST in recent years and summarizes how these techniques 
can be applied to the physiological and pathological pro-
cesses of the respiratory system, such as lung develop-
ment, lung atlas, lung cancer, and lung injury. Finally, the 
current challenges and potential development directions 
are proposed, including high-throughput full-length 
transcriptome, multi-omics and spatiotemporal omics 
integration, bioinformatics analysis, etc. By presenting a 
unique combination of comprehensive disease coverage, 
in-depth exploration of disease mechanisms, empha-
sis on spatial heterogeneity, and future directions, this 
review can provide a distinct and valuable contribution 
to the field of ST application in respiratory diseases.

Developments and limitations of ST
Spatial transcriptome methods have developed and 
emerged rapidly and can be categorized into imaging-
based and sequencing-based methods according to 
detection strategies. Previous reviews have elaborated on 
the principles and classification of ST [10, 16, 17]. This 
article focuses on the innovative forms and variants of 
these technologies.

Imaging‑based ST strategies
Image-based ST technologies include fluorescence in situ 
hybridization (ISH)- and in  situ sequencing (ISS)-based 
methods. The advent of high-resolution microscopy 
and single-molecule fluorescence in  situ hybridization 
(smFISH) has made it possible to quantify the subcellu-
lar resolution of transcripts in  situ [18]. A unique fluo-
rescently labelled probe binds to RNA, allowing the 
localization of individual molecules. The variant RNA 
scope of this technology is commercially available [19], 
and strategies such as multi-round hybridization, imag-
ing, and probe dissection have widely been applied, such 
as sequential FISH (seqFISH) [20, 21] (Fig. 1a). Hybridi-
zation chain reactions (HCR) based on isothermal ampli-
fication have also been applied to solve the problem of 
high autofluorescence, namely smHCR [22] (Fig. 1b). To 
overcome probe hybridization errors and read errors, a 
barcode allocation scheme, multiplexed error-robust 
FISH (MERFISH), has been developed and widely used 
in single-cell transcription localization and ST at the 
tissue level (Fig.  1c). On this basis, sequential fluores-
cence in situ hybridization (seq-FISH +) [23], ouroboros 
smFISH (osmFISH) [24], and signal amplification by 
exchange reaction (SABER) [25] are proposed to solve 
the molecular crowding in the imaging process. Among 
them, seq-FISH + used 20 probes and 3 excitation lights 
to analyse 10,000 genes (Fig. 1d). Enhanced electric FISH 
(EEL FISH) combines electrophoresis-aided large tis-
sue RNA sampling and multiplexed FISH for transcrip-
tion imaging of thick tissue, reducing data collection 
time [26]. Recently, expansion FISH (exFISH) [27] and 
expansion-assisted iterative fluorescence in  situ hybridi-
zation (EASI-FISH) [28] were used for the three-dimen-
sional (3D) resolution of gene expression in tissues using 
hydrogel expansion. Overall, due to the expensive and 
time-consuming nature of hybridization techniques and 
additional challenges, such as background fluorescence 
in tissues, ISH-based methods have thus far been limited 
to research on cell and tissue culture.

ISS-based methods are categorized into targeted and 
untargeted mRNA detection. One of the earliest tar-
geted in  situ sequencing techniques, ISS (Fig.  1e), gen-
erated signals through padlock probes and rolling circle 
amplification (RCA), enabling the expression of 256 RNA 
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transcripts in single-round hybridization and was com-
mercialized as Cartana [29]. Then BOLORAMIS (bar-
coded oligonucleotides ligated on RNA amplified for 
multiplexed and parallel in situ analyses) solved the prob-
lem of low detection efficiency of ISS by introducing the 
DNA ligase SplintR ligase [19]. Hybridization-based ISS 
(HybISS) allows a barcoding system to improve in  situ 
detection and removes the limitations of the sequence-
by-ligation chemistry of ISS. BaristaSeq utilizes syn-
thetic chemical sequencing technology to display higher 

signal-to-noise ratios through multiple rounds of imag-
ing and perform specific detection of RCA products [30]. 
In a preprint study in 2023, Tang et  al. [31] proposed 
improved ISS (IISS), which developed an improved com-
binatorial probe anchor ligation chemistry using a 2-base 
encoding strategy for barcode interrogation, improving 
the signal strength and specificity of ISS (Fig. 1e). Moreo-
ver, a recent study integrated electrochemistry and ISS 
(Electro-seq) to correlate cell electrophysiology with gene 
expression at the single-cell level and identify changes in 

Fig. 1 Imaging‑based ST strategies. a seqFISH decodes transcripts in space by sequential staining/imaging cycles. b Compared to seqFISH, 
smHCR can achieve ~ 20 fold signal amplification to detect single mRNA in situ. c MERFISH implements thousands of RNA imaging using 
a combinatorial FISH labeling with encoding schemes that correct errors. d seqFISH+ performs in situ RNA imaging using 20 probes in four‑wheel 
coding. e ISS‑methods by sequencing by ligation (ISS, IISS). f Electro‑seq combines bioelectronics with ISS enabling electrophysiological and gene 
expression profiling. g Non‑targeted sequencing, such as FISSEQ and ExSeq, enables unbiased covering sequencing of the whole transcriptome. 
ST spatial transcriptomic, FISH fluorescence in situ hybridization, seqFISH+ sequential FISH+, smHCR single‑molecule hybridization chain reaction, 
MERFISH multiplexed error‑robust FISH, ISH in situ hybridization, ISS in situ sequencing, IISS improved in situ sequencing, FISSEQ fluorescent in situ 
sequencing, Electro‑seq in situ electro‑sequencing
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the gene expression profile during myocardial cell devel-
opment [32] (Fig. 1f ).

On the other hand, spatially-resolved transcript ampli-
con readout mapping (STARmap) bypasses cDNA syn-
thesis and uses SNAIL probes and sequencing with 
error-reduction by dynamic annealing and ligation 
(SEDAL) to identify gene identifiers. By combining 
hydrogel histochemistry, it analyses tissue samples in 3D 
tissues rather than a single 2D pattern [33]. This year, the 
team further updated STARmap, or STARmap PLUS, and 
realized the joint detection of transcriptome and protein 
in a mouse model of Alzheimer’s disease [34].

Fluorescent in  situ sequencing (FISSEQ) is a repre-
sentative method in non-targeted sequencing that can 
achieve unbiased coverage of the whole transcriptome. 
However, its random primers lead to low detection effi-
ciency and involve complex enzymatic reactions [35] 
(Fig.  1g). Relevant reagents and instruments have been 
produced and commercialized [36]. Based on FISSEQ, 
untargeted expansion sequencing (ExSeq) combines 
expansion microscopy with ISS, using an amplified 
hydrogel to anchor RNA and generate optical barcodes, 
which have been used for gene analysis in Drosophila 
embryos and mouse brains [37] (Fig. 1f ).

Sequencing‑based ST strategies
Combining the next-generation sequencing (NGS) plat-
form and spatial information significantly improves the 
throughput of ST and unbiased retrieval of transcripts 
compared to image-based methods. A method based 
on laser capture microdissection (LCM) and scRNA-
seq was developed to allow a spatially unbiased analysis 
of the transcriptome and classification and sequencing 
of regions of interest (ROI) under microscopic guid-
ance (Fig.  2a). In addition, Tomo-seq [38], geographical 
position sequencing (Geo-seq) [39], and proximID [40] 
were developed to explain the heterogeneity and spatial 
differences of a small number of cell transcriptomes. At 
present, optical markers have replaced the traditional 
physical anatomy, such as NICHE-seq [41], transcrip-
tome in vivo analysis (TIVA) [42], ZipSeq [43] (Fig. 2b), 
which use patterned illumination and photocaged oligo-
nucleotides to mark ROIs; GeoMx digital spatial profil-
ing utilizes cleavable oligonucleotide tags to quantify the 
abundance of RNA or proteins in ROIs [44]. A technique, 
called Image-seq, allows the harvesting of location-spe-
cific live cells for sequencing using a living microscope 
with high sensitivity and transcription coverage but at 
the cost of reduced throughput [45] (Fig. 2c).

Given the low throughput and capture rate issues of 
imaging and microdissection technologies, research-
ers are gradually considering the in  situ spatial index-
ing methods. ST was developed, mRNA location 

information and expression levels were mapped using 
spatial barcode and unique molecular identifier (UMI), 
which was acquired by 10 × Genomics (100  μm), and 
its capture efficiency (10 × Visium, 55  μm) was further 
improved [12]. Slide-seq [46] (10 μm) and high-defini-
tion ST [47] (HDST, 2  μm) utilizing random barcode 
beads have been proposed for higher resolution. Slide-
seqV2 (10  μm) optimizes library construction and array 
indexing and demonstrates high capture efficiency for 
ST sequencing at near-cellular resolution [48]. However, 
low sensitivity and bead pre-decoding limit their appli-
cation. Spatial enhanced resolution omics sequencing 
(Stereo-seq, 0.22 μm) uses random barcode DNA nano-
spheres deposited in array mode for nanoscale resolu-
tion. It has been applied to construct a spatiotemporal 
transcription atlas of organogenesis [49, 50] (Fig.  2d). 
sci-Space [51] (200  μm) and XYZeq (a workflow that 
encodes spatial metadata into scRNA-seq libraries) 
[52] (500  μm) analyze cells and nuclear spatial coor-
dinates at large scales. However, they cannot provide 
actual spatial single-cell profiles because they lose 
cytoplasmic transcription information (Fig.  2e). Seq-
Scope (0.5–0.8 μm) directly uses illumina NGS chips to 
generate spatial barcode arrays, achieving subcellular 
resolution of spatial barcodes for visualizing the nuclei 
[53] (Fig. 2f ). Similar illumina chemistry, poly-indexed 
library-sequencing (Pixel-seq, 1  μm), reduces costs 
35-fold through repeatable enzyme replication of bar-
code-patterned gels and improves resolution 200-fold 
compared to existing methods [54] (Fig. 2f ).

Microfluidic channel-based approaches have also 
been integrated for spatial localization [55]. Deter-
ministic barcoding in tissue for spatial omics sequenc-
ing (DBiT-seq) (10 μm) can spatially encode tissues by 
cross-coding, allowing transcriptome and protein anal-
ysis [56] (Fig. 2g). Inspired by this method, multiplexed 
deterministic barcoding in tissue (xDBiT) [57], cross-
amplified barcodes on slides for spatial transcriptomics 
sequencing (CBSST-seq) [58] and Matrix-seq (a micro-
fluidics-based barcoding strategy) [59] have also been 
developed and applied, and extended to spatial multi-
omics (SM-omics), such as microfluidic indexing based 
spatial ATAC and RNA sequencing (MISAR-seq) [60] 
and spatial co-indexing of transcriptomes and epitopes 
(spatial-CITE-seq) [61]. In addition, spatial total RNA 
sequencing (STRS) utilizes the 10 × Visium platform to 
enable the detection of full-spectrum RNA rather than 
just polyadenylated RNA transcripts [62] (Fig.  2h). A 
more general challenge for ST based on spatial indexing 
methods is how to balance mRNA capture efficiency 
and lateral diffusion. Moreover, large-scale hybridiza-
tion reverse transcription may lead to the distortion of 
gene expression.
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Applications of ST to respiratory research
ST has been widely used in the study of lung develop-
ment and respiratory disease mechanisms due to the 
great interest in the molecular structure of the res-
piratory system. This section summarizes the emerg-
ing applications of the respiratory system, such as lung 
development, lung atlas, lung cancer, and lung injury 
(Fig. 3) [63–69].

Lung development
Ljungberg et al. [67] using spatial in situ hybridization 
attempted to elucidate gene expression patterns in pre-
natal and postnatal murine lungs to describe the details 
of lung development at critical stages of alveolarization 
and improve data for LungMap. A recent study applied 
in  situ hybridization analysis to determine the origin 
of clonogenic mesenchymal cells in the human lung, 

Fig. 2 Sequencing‑based ST strategies. a LCM‑seq integrates LCM and scRNA‑seq to realize regional sequencing. b ZipSeq uses light activation tags 
for labeling, isolation, and scRNA‑seq of ROIs. c Image‑seq allows location‑specific live cells to be harvested for sequencing by living microscope. d 
Stereo‑seq utilizes DNA nanoballs with spatial barcodes for transcription spatial localization. e sci‑Space uses spatial barcodes for imaging, labeling 
and transcriptome sequencing of nuclei in tissue slices. f Seq‑Scope and Pixel‑seq based on illumina clustering and sequence reading. g DBiT‑seq 
utilizes microfluidic channels for orthogonal coding, and similar techniques include xDBiT, CBSST‑seq and Matrix‑seq. h STRS utilizes the 10 × Visium 
platform for total transcriptome analysis. ST spatial transcriptomic, LCM laser capture microdissection, scRNA‑seq single cell RNA sequencing, ROI 
regions of interest, Stereo‑seq spatio‑temporal enhanced resolution omics‑sequencing, Pixel‑seq polony‑indexed library‑sequencing, DBiT‑seq 
deterministic barcoding in tissue for spatial omics sequencing, CBSST‑seq cross‑amplified barcodes on slides for spatial transcriptomics sequencing, 
STRS spatial total RNA‑sequencing, FACS fluorescence activated cell sorting, UMI unique molecular identifier, MID molecular identifiers, CID 
coordinate identity, mRNA messenger RNA, lncRNA long noncoding RNA, miRNA microRNA, snoRNA small nucleolar RNA, tRNA transfer RNA, ATP 
adenosine triphosphate, yPAP yeast poly(A) polymerase, xDBiT multiplexed deterministic barcoding in tissue
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especially from an adventitial fibroblast subset. The 
spatial heterogeneity of mesenchymal cells and their 
potential characteristics have also been described [70].

Cellular composition and spatial atlas of lung
The Human Cell Atlas (HCA) aims to establish atlas 
data of different organs and tissues in healthy indi-
viduals at single-cell resolution [71, 72], including the 
Human Cell Lung Atlas (HCLA), which focuses on the 
respiratory system. In respiratory research, the cell 
atlas identifies previously undefined cell catalogues 
and their phenotypes and interactions, enhancing our 
understanding of respiratory and lung diseases [73, 74]. 
Combined with scRNA-seq, many studies have gener-
ated lung molecular cell atlases of health and disease, 
such as LungMAP [75], discovAIR [76], etc. [4, 77, 78]. 
Researchers have defined 58 different cell types and 
gene expression profiles in the human lung using drop-
let- and plate-based scRNA-seq [79]. However, these 
data are inaccurate due to the lack of spatial context 
and resolution required to describe the extreme cellu-
lar heterogeneity of lungs’ anatomical features. Indeed, 

a recent study used ST to distinguish 80 cell types and 
states, including 11 cell populations that had not been 
annotated in previous lung atlas studies, and define a 
gland-associated immune niche [80]. Combined with 
the gene expression profile of scRNA-seq and the spa-
tially resolved transcriptomics on the complete tissue 
section, Sountoulidis et al. [81] constructed a compre-
hensive topographic atlas of the early development of 
human lung, describing the development track leading 
to significant heterogeneity of lung cell. We believe that 
the spatial diversity of the lung at the mRNA level is 
associated with the proteome and, further, with physi-
ological functions. In addition, several in  situ hybridi-
zation techniques, such as proximity ligation in  situ 
hybridization technology (PLISH) [82] and SCRIN-
SHOT [83] have been developed and used for identify-
ing and localizing lung and airway cell types in mice, 
including the recently discovered ionocytes. In the 
distal airways and alveoli, 15 markers were robustly 
used to identify macrophages and epithelial cells, such 
as AT1 and AT2 cells, club cells, and neuroendocrine 
cells.

Fig. 3 Applications of ST to respiratory research. ST is used to construct lungs spatial atlas and identify cellular composition. In lung cancer, 
the tumor microenvironment [63] and heterogeneity [64], evolution and metastasis [65], and further localization of intratumoral microbiota 
origin [66] have been revealed by ST. Other applications of ST include gene expression patterns in lung development [67], and the pathogenesis 
of pulmonary fibrosis [68] and COVID‑19 pneumonia [69]. ST spatial transcriptomic, COVID‑19 corona virus disease 2019, NK cell natural killer cell
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Lung cancer
In the past few centuries, tumors have been considered a 
highly organized “organ” instead of a simple aggregation 
of abnormally proliferating cells [84]. Lung cancer is the 
main cause of death from tumor diseases [85]. A signifi-
cant challenge for medical research is to identify normal 
cellular trajectory points at the start and progression of 
lung pathologies and analyse the cellular responses after 
treatment [86].

Lung cancer microenvironment
Immune checkpoint (ICP)-targeted therapy has shown 
considerable success in lung cancer, including non-small 
cell lung cancer (NSCLC), lung adenocarcinoma (LUAD), 
squamous and non-squamous carcinoma. However, 
studies have shown that the rate of positive responses in 
patients receiving targeted drugs remains low, with a pos-
sibly high degree of immune-related adverse events [87]. 
In addition, clinical benefits are often prevented by resist-
ance to ICP-targeted drugs in the primary tumor [63]. 
Increasing evidence suggests that TME is strongly related 
to tumor development, metastasis, and recurrence and 
is more critical than ICPs in immune evasion [88, 89]. 
Therefore, it is urgent to improve the understanding 
regarding TME to better classify patients and deter-
mine new treatment targets to improve prognosis. The 
cell catalogue transcriptome of the TME in lung tumors 
is available at single-cell resolution, and its phenotypes 
and concerted behavior have been described [90]. Spa-
tial transcription analysis can reveal the spatial distri-
bution preference of stromal cells in the lung TME. For 
example, 10 × Chromium and in  situ imaging were used 
to explore the loss of Tgfbr2 leading to TME remodeling 
and promoting immune exclusion in a lung cancer mouse 
model [91]. Tumor-associated macrophages (TAMs), one 
of the most abundant immune cells in the TME [92], are 
essential regulators of anti-tumor immunity. However, 
the mechanisms regulating their abundance in the TME 
remain to be explored. Larroquette et  al. [93] analysed 
preconditioned tumor samples from advanced NSCLC 
patients undergoing ICP blocker therapy, reporting that 
tumor compartment enrichment in TAMs was associ-
ated with immunotherapy resistance. A spatial analysis of 
78 in situ transcripts from 16 tumor specimens was per-
formed using NanoString GeoMx. The results revealed 
that the prognostic effect of TAMs in NSCLC was 
directly related to the distance from tumor cells, and the 
three significantly up-regulated genes CD27, CCL5, and 
ITGAM in tumors with high-level TAM infiltration might 
be potential targets for immunotherapy. Furthermore, 
applying multiplex immunohistochemistry (mIHC) and 
digital spatial profiler (DSP) has been observed for TME 

analysis in samples of NSCLC patients following immune 
checkpoint inhibitor (ICI) treatment [94].

Heterogeneity of lung cancer
Many studies based on scRNA-seq have revealed the het-
erogeneity of lung cancer cells [95–97]. With advances in 
spatial transcription analysis and integration of scRNA-
seq, researchers have combined specific molecular 
phenotypes with unknown cell interaction patterns or 
clinical manifestations to classify tumor cell subgroups. 
For example, Sinjab et  al. [64] identified cell lineages, 
states, and transcriptomic features that evolved geospa-
tially from normal tissue regions to LUAD, where signifi-
cant expression of CD24 in epithelial cells drives primary 
tumor features. Their data provided a spatial atlas of 
LUAD to identify potential targets for early interception. 
Zhang et  al. [98] used the Visium platform to identify 
spatial location-specific subclones in the lung squamous 
cell carcinoma (LUSC). The results showed that the 
immune cell composition of the tumor subclones was 
significantly different from the tumor proportion, and 
the tumor purity was contrary to the trend of tumor epi-
thelial-mesenchymal transition (EMT). The effect of high 
intratumoral heterogeneity (ITH) on therapy efficacy in 
advanced lung cancer has recently been reported [99].  
The innovative use of DSP has provided compelling 
evidence for improved prediction of therapeutic out-
comes in dual-specificity antibody therapy by integrating 
genetic information from the stromal region.

Development and metastasis of lung cancer
Cancer development involves tumor cells’ adaptation to 
the environment and is the inevitable and continuous 
result of life [14]. To date, tracking cancer evolution in 
humans has focused on DNA mutations. However, gen-
otypes are not necessarily phenotypes [100], and cancer 
cell populations within a tumor often exhibit significant 
differences and transcriptional diversity [101, 102]. In 
this line, lung cancers exhibit more complex molecular 
and morphological heterogeneity and different combina-
tions of subclone mutations, reducing the reproducibility 
of lung cancer research and posing a challenge for effec-
tive treatment [103]. Zhu et al. [65] integrated RNA-seq 
and ST techniques and constructed a single-cell spa-
tiotemporal multi-omics atlas of LUAD to explore the 
dynamic evolution trajectory of early LUAD. The results 
suggested that LUAD might originate from Clara and 
AT2 cells, eventually evolving into the  UBE2C+ cancer 
cell subpopulation, in which UBE2C mediates the pro-
liferation and metastasis of tumor cells. As LUAD pro-
gresses from adenocarcinoma in  situ (AIS) to invasive 
adenocarcinoma (IAC), the spatial distribution of cancer 
cells may be more important than their type. This finding 
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compensates for the absence of spatial information for 
immunotyping LUAD by scRNA-seq. Furthermore, stud-
ies have reported the mechanisms of brain metastasis 
(BrMs) in NSCLC based on DSP. These findings high-
light the highly immunosuppressive microenvironment 
associated with BrMs lesions, as compared to primary 
tumors, characterized by the reduced abundance of B 
and T cells and increased infiltration of neutrophils, pro-
viding a framework for the spatial heterogeneity of BMS 
in lung cancer and identifying the characteristic genes of 
metastasis to predict patients’ prognosis [104].

Intratumoral microbiota
Lung cancers have a unique microbial composition [105]. 
Several studies have shown that bacterial populations 
within tumors are tumor type-specific and might directly 
regulate cancer initiation and progression [106]. Wong-
Rolle et  al. [66] obtained spatial macro transcriptome 
information from 12 lung cancer patients to understand 
the spatial distribution of the microbiota in lung can-
cers and its effect on host cell heterogeneity, reporting 
that bacteria were significantly concentrated in tumor 
cells, and the content increased from normal tissues and 
tertiary lymphoid structures (TLS) to tumor cells and 
peaked in the airway, suggesting that the bacteria in lung 
cancer may be derived from the airway rather than the 
intestinal flora. Further gene expression correlation anal-
ysis showed that bacterial content positively correlated 
with the CTNNB, HIF1A, and VEGFA genes. In addi-
tion, several signaling pathways related to tumorigenesis 
also positively correlated with bacterial content in lung 
cancer. We believe that spatial transcriptome and local 
interaction group analysis can predict individual tumor 
behavior and provide useful resources for understanding 
and reversing lung cancer progression.

Pulmonary fibrosis
Pulmonary fibrosis is a highly heterogeneous end-stage 
pathological change of the lung, whose pathogenesis has 
not been fully elucidated [107, 108]. The first published 
study of pulmonary fibrosis using ST focused on epithe-
lial cells [68], demonstrating the unique molecular sig-
nature of epithelial cell/fibroblast foci sandwiches from 
typical interstitial pneumonia/idiopathic pulmonary 
fibrosis (IPF) patients. The pathogenesis of IPF is asso-
ciated with epithelial dysfunction. Another study used 
the GeoMx DSP platform to explore the transcriptional 
differences between fibroblastic foci and fibrous and 
normal areas in IPF cases and identified new fibrogenic 
biomarkers expressed in fibroblastic foci [109]. The spa-
tiotemporal analysis brings hope for the development of 
pulmonary fibrosis. For example, Shi et al. [110] explored 
the spatiotemporal distribution of heterogeneous 

fibroblasts in the progression of secondary pulmonary 
fibrosis due to silica inhalation. The results showed that 
GREM1, as a driving factor causing inflammation, is 
involved in changes in this pulmonary condition and may 
be a potential target for the early treatment of silicosis.

Pneumonia
The corona virus disease 2019 (COVID-19) pandemic, 
induced by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV2), has caused millions of cases of 
severe acute respiratory illness worldwide [111, 112], the 
pathogenesis of which is not fully understood, and the 
host response to its infection should be better defined. 
ST provides new insights into identifying cell types and 
elucidating heterogeneity after SARS-CoV2 infection, 
as shown in Table 1 [69, 113–124]. The Broad Institute, 
in collaboration with Harvard Medical School and oth-
ers, created the post-infection lung spatial transcriptome 
atlas [69], revealing extensive remodelling of the lung 
epithelial, immune, and stromal compartments and map-
ping cell types and genes associated with disease sever-
ity. Analysis of COVID-19-infected patients highlighted 
two stages of the disease that lead to death in patients. 
Desai et al. [113] showed that RNA levels were associated 
with disease duration, reporting significant spatiotempo-
ral heterogeneity in viral load and immune response. It 
is estimated that COVID-19 infection will lead to various 
complications and post-acute sequelae of SARS-CoV2 
(PASC). Dinnon et al. [114] constructed a mouse model 
and identified the transcriptional profiles of acute and 
chronic disease stages using RNA-ISH and GeoMx DSP, 
providing strategies for testing and improving the “long 
COVID”. Moreover, DSP data obtained from lung tissues 
in areas affected by acute respiratory distress syndrome 
(ARDS) induced by SARS-CoV2 and H1N1 indicate 
unique transcriptional signatures, thus identifying novel 
therapeutic targets [115].

Other respiratory diseases
In situ sequencing and capture techniques have been 
applied to the mechanistic study and therapeutic target 
discovery of tuberculosis [125–127] and influenza infec-
tions [128]. For example, a study used mice infected with 
H1N1 as the model for studying ARDS [129], demon-
strating that over-activated fibroblasts could produce 
extracellular matrix remodelling enzymes, thereby pro-
moting the infiltration of immune cells and leading to 
compromised lung function. Many studies have evaluated 
other respiratory diseases, such as pulmonary arterial 
hypertension [130], asthma [131], and chronic obstruc-
tive pulmonary disease (COPD) [132], using scRNA-seq. 
The introduction of space omics technology is expected 
to deepen our understanding of respiratory diseases.



Page 9 of 19Wang et al. Military Medical Research           (2023) 10:38  

Challenges and perspectives
Although ST and related frontier bioinformatics analysis 
have entirely changed the research on complex organs 
and tissues and brought great hope for developing sys-
tems and disease mechanisms, several challenges should 
still be addressed to develop its potential beyond these 
(Fig. 4).

Preparation and treatment of samples
The stability and availability of pre-sequencing sam-
ples might be a major obstacle limiting ST. Any intact 
tissue containing mRNA is suitable for the spatial  
transcriptome [10]; however, the sample preparation 
regimen should be further optimized according to the 
characteristics of different tissues. Morphological differ-
ences between tissue types should also be considered. 
For example, single cell/tissue spots significantly affect 
transcription levels, and hyperpigmentation in skin cell 
samples can negatively affect image acquisition due to 
light absorption [133]. Similarly, lung tissues with alveo-
lar sacs must be handled carefully when frozen [134]. In 
addition, the sample collection, storage, and processing 
methods have measurement deviations from the origi-
nal transcriptional data. One study explored the tem-
poral and spatial gene expression map of the developing 
human heart [135]. Heart tissue was chopped up and 
cultured in a suspension using trypsin and collagenase 
to produce individual cells. Some studies have applied 
exogenous reagents for isolation [136, 137]; however, 
they have hardly mentioned whether physicochemical-
based isolation and unnatural processing would affect 
the cells’ transcription levels, reducing the reliability of 

the generated scRNA-seq data [138]. Concerning spatial 
transcriptome technologies, in situ capture and sequenc-
ing-based strategies [51, 139, 140] have achieved tissue 
dissection-free sequencing, significantly reducing the risk 
of sample preparation. However, the effect of tissue slice 
preparation on the transcriptome should also be consid-
ered from a macroscopic perspective. Therefore, further 
innovations are necessary in sample preparation. Ideally, 
the upstream processing of tissue sections for sequencing 
is automated and accessible to nonprofessional users.

A growing body of evidence suggests that ST can 
potentially aid in clinical diagnosis, understanding 
human disease, and making proper decisions concern-
ing medicines [141]. Formalin-fixed paraffin-embedded 
(FFPE) tissue blocks are the gold standard of human tis-
sue preservation methods for clinical diagnosis. The rapid 
development of space transcriptomics is compatible with 
FFPE blocks, a breakthrough in the in-depth pathologi-
cal analysis of more than one billion FFPE sections in 
the sample library [142, 143]. Unfortunately, RNA mol-
ecules in samples are often seriously degraded; therefore, 
a platform that can analyze FFPE samples is urgently 
needed. The 10 × Genomics Visium and NanoString DSP 
have demonstrated their compatibility with FFPE blocks 
[144, 145]. The Visium Cytassist, launched in late 2022 
by 10 × Genomics, enables automated transfer analy-
sis of tissue sections in 30 min, with simultaneous tran-
scriptome and protein analysis of one FFPE sample [146].  
Nevertheless, since FFPE tissue blocks are usually stored 
in a fixing solution, and the time from biopsy to fixa-
tion may differ between samples, the integrity of RNA 
will also be much lower than that of fresh frozen tissue. 

Table 1 Study of mechanisms and complications of COVID‑19 using spatial transcriptomics

RNA-ISH RNA-in situ hybridization, GeoMx DSP GeoMx digital spatial profiler, ACE2 angiotensin converting enzyme 2, COVID-19 corona virus disease 2019, SARS-CoV2 
severe acute respiratory syndrome coronavirus 2, ARDS acute respiratory distress syndrome, COPD chronic obstructive pulmonary diseases, PASC post-acute sequelae 
of SARS-CoV2, DAD diffuse alveolar damage

Strategy Species Application Ref.

RNA‑ISH and GeoMx DSP Human Spatiotemporal heterogeneity of SARS‑CoV‑2 infection [113]

RNAscope and GeoMx DSP Human Revealed distinct ACE2 expression loci [116]

GeoMx DSP Human Mechanism of ARDS by SARS‑CoV‑2 [115]

RNAscope and GeoMx DSP Human Generate COVID‑19 related lung spatial atlas [69]

GeoMx DSP Human Identification of COVID‑19 therapeutic target [117]

RNAscope and GeoMx DSP Human Investigation of the pathogenesis of SARS‑COV‑2 [118]

GeoMx DSP Human SARS‑COV‑2 infection up‑regulates inflammatory response in COPD patients [119]

RNA‑ISH and GeoMx DSP Mouse Mechanism of PASC [114]

RNAscope Human Revealed the responses to SARS‑CoV‑2‑induced exudative DAD [120]

Visium Mouse A dynamic change in the location of T helper cells as well as their corresponding chemokines [121]

RNAscope and GeoMx DSP Human Construction of immune‑mediated histopathology model of COVID‑19 [122]

Visium Human The interaction between chemokines and receptors in the pathogenesis of COVID‑19 lung niche [123]

Visium, RNAscope and GeoMx DSP Human Map Immune Responses to SARS‑CoV‑2 [124]
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In addition, since the quality of data may depend on the 
specific sample, its reliability and robustness should be 
improved before clinical applications.

High‑throughput full‑length transcriptome
The ST has solved the problem of losing spatial loca-
tion information by cell dissociation in the scRNA-seq 
method. However, apart from spatial addressing, the 
transcription coverage and depth of these methods are 
still in their early development stages. Most ST meth-
ods can only retrieve single-ended transcripts rather 
than full-length ones [147]. The residual sequence in the 
polyadenylated RNA molecule and the spectrum of non-
polyadenylated transcripts have not been detected, hin-
dering the study of the immune cell receptor spectrum 

and alternative splicing (AS). Microdissection-based 
methods exhibit ideal coverage but suboptimal through-
put and spatial resolution of transcription, with a trade-
off between the coverage of tissue sections and the 
detection sensitivity of transcripts. ISH-based methods 
exhibit excellent spatial resolution and detection effi-
ciency; however, they are difficult to use for large tissue 
sections and high throughput. ISS has a high resolution 
but sacrifices the transcript capture depth. Recently, a 
method of vast transcriptome analysis of single cells by 
dA-tailing was proposed [148], namely, VASA-seq, which 
is the only single-cell sequencing technology to combine 
high sensitivity, full-length transcriptome coverage, and 
high throughput. However, VASA-seq cannot obtain the 
spatial location information of cells. In addition, although 

Fig. 4 The challenges and perspectives of spatial transcriptomics (ST). ST moves toward high‑throughput and full‑length transcriptome, in vivo 
analysis of living cells, and integrates multi‑omics and spatiotemporal omics, enabling the construction of 3D spatial atlas with the help of sample 
processing and bioinformatics tools and providing powerful new techniques for interrogating tissue structure and function
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combining high-throughput microfluidics and barcode 
index improves the throughput, the quality of RNA might 
decrease due to cell fixation and permeability treatment. 
In addition, the cell/bead co-encapsulation efficiency 
should be improved. Therefore, techniques with higher 
gene coverage, lower detection deviation, and higher 
spatial resolution down to the single-cell level are highly 
anticipated [55].

3D spatial atlas
Currently, most advanced space technologies are limited 
to displaying cell organization and gene expression on a 
2D pattern rather than an actual 3D spatial atlas, which 
cannot summarize the highly complex spatial cell envi-
ronment. Tomo-seq performs RNA-seq on different tis-
sue slices to obtain spatial information [149]. Similarly, 
Geo-seq is combined with the LCM technique to study 
the transcriptome of small samples with geographi-
cal positions. Peng et al. [150] used it to construct a 3D 
transcriptome atlas of murine embryos and accurately 
map single ectodermal cells back to their in  vivo loca-
tions. However, the Geo-seq operation is complicated 
and requires continuous tissue sections, partitioning by 
LCM technology, and the sequencing process of database 
construction [39]. Recently, NanoString’s GeoMx DSP 
and STRP-seq have been developed to combine bioinfor-
matics tools to reconstruct 3D structural maps such as 
murine brains [151], and human hearts [152, 153]. How-
ever, these technologies are limited by spatial resolution 
and large sample sizes. We believe that high-precision 
reconstruction and characterization of 3D structures will 
further provide a solid foundation for clinical application 
and research.

Living cells/tissue in vivo
The current ST methods cannot be applied to in vivo his-
tological research on living cells because they investigate 
only cell snapshots at a certain time in fixed samples. The 
observed gene expression profile may only be the prod-
uct of expression heterogeneity [154]. These technolo-
gies limit the cell to the active transcriptional state at a 
single time point, while other cells with similar functions 
may be dormant. Therefore, their ability to correctly infer 
cells at the individual gene level and time scale is still 
controversial. Some research groups have tried to study 
the transcriptome of living cells in  vitro. For example, 
TIVA has pioneered the capture of mRNA in living cells 
for transcriptional analysis [42]. However, this method 
is currently not applicable to the analysis of many cells. 
ZipSeq marks DNA codes (Zipcodes) on living cells of 
intact tissue using photocaged oligonucleotides and spe-
cific patterned illumination to explore its spatial hetero-
geneity [43]. However, its low spatial resolution limits its 

application scope. Similarly, Live-seq is the first to real-
ize continuous observation of whole gene expression in 
living cells [155]. However, some problems remain, such 
as inapplicability in  vivo and the limitation of multiple 
sampling. Therefore, the next research direction is how to 
infer the future or correlate past events with current gene 
expression, realize the exploration of spatial omics in liv-
ing cells or tissues in vivo, and track mRNA dynamics in 
real time with minimal cell disturbance.

SM‑omics and spatiotemporal omics
ST is progressing rapidly towards multi-omics data 
and achieving single-cell resolution. This advancement 
enables the retrieval of comprehensive information 
encompassing splicing variation, genetic and epigenetic 
changes, proteomics, and time-dimension data, all within 
a single experimental setup [15]. This will assist in under-
standing cell–cell interactions and the overall cell phe-
notype/state to solve the tissue function from multiple 
spatial scales [156]. As mentioned previously, the most 
robust strategy to obtain a more comprehensive multi-
omics profile is to process continuous tissue sections, in 
which each section is queried by different omics. How-
ever, continuous tissue section sampling might give rise 
to sample heterogeneity deviation.

Researchers have significantly advanced in developing 
of various single-cell multi-omics technologies, as exem-
plified in Table 2 [157–181]. Furthermore, multiple data-
bases have been specifically curated to cater to human 
single-cell omics, providing comprehensive analytical 
tools for data analysis and interpretation [182, 183]. On 
this basis, SM-omics technologies, including multi omic 
single-scan assay with integrated combinatorial analysis 
(MOSAICA) [184], SM-omics [185], spatial molecular 
imaging (SMI) [186], DBiT-seq [56] and spatial protein 
and transcriptome sequencing (SPOTS) [187], which 
retain spatial information coordinates, have been devel-
oped. Developing new technologies such as mIHC [188] 
and cytometry by time of flight (CyTOF) [189], also pro-
motes joint analysis with ST. At present, SM-omics is on 
Nature’s annual technologies list in 2022. Nevertheless, 
SM-omics sequencing is still in its infancy. Splicing vari-
ants have traditionally been difficult to detect at the RNA 
level because most techniques are based on single-ended 
transcription analysis. At the protein level, the analysis 
of targeted proteins is limited by the number of available 
variants, such as fluorescent dyes, barcodes, or antibod-
ies, and is limited to the analysis of targeted proteins. 
In addition, histone modification, chromatin accessibil-
ity, and metabolomics research still lack spatial coun-
terparts. The integrated approach requires high-quality 
acquisition of multiple parameters, such as gene cover-
age, throughput, accuracy, and sequencing depth. Finally, 
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how to achieve actual single-cell resolution should also 
be considered.

On the other hand, gene expression in biological sys-
tems is highly dynamic [190], and analysing cellular inter-
actions and regulatory mechanisms from temporal and 
spatial dimensions assists in understanding the rules in 
complex systems, namely, spatiotemporal omics. RNA 
metabolic labelling strategies were introduced in RNA-
seq to distinguish new mRNA from old ones, such as 
4-thio-uridine (4sU) [191] and 5-ethynyl-uridine (5-EU) 
[192]. In addition, RNA timestamps bind RNA-seq to 

infer the “age” of RNA in hours [193]. However, these 
methods are only suitable for describing short time 
scales or points in time characteristics of cells. Therefore, 
continuous analysis and spatial localization of the same 
cell make spatiotemporal omics possible, such as “high-
throughput Patch-seq” [194] and “Live-seq with spatial 
context” [155].

Bioinformatics support
Increased spatial dimensionality, data volume, and 
complexity present formidable challenges during the 

Table 2 Single cell multi‑omics analysis

G&T-seq genome and transcriptome sequencing, DR-seq gDNA-mRNA sequencing, SIDR simultaneous isolation of genomic DNA and total RNA, DMF-DR-seq digital 
microfluidics gDNA-mRNA sequencing, scM&T-seq single-cell genome-wide methylome and transcriptome sequencing, scMT-seq single-cell methylome and 
transcriptome sequencing, scTrio-seq single-cell triple omics sequencing, sc-GEM single-cell analysis of genotype, expression and methylation, scNMT-seq single-cell 
nucleosome, methylation and transcription sequencing, snDrop-seq single-nucleus droplet-based sequencing, scTHS-seq single-cell transposome hypersensitive site 
sequencing, sciCAR  single-cell combinatorial indexing of chromatin accessibility and mRNA, Paired-seq parallel analysis of individual cells for RNA expression and DNA 
accessibility by sequencing, SNARE-seq single-nucleus chromatin accessibility and mRNA expression sequencing, scCAT-seq single-cell chromatin accessibility and 
transcriptome sequencing, PLAYR  proximity ligation assay for RNA, PEA/STA proximity extension assays/specific (RNA) target amplification, CITE-seq cellular indexing 
of transcriptomes and epitopes by sequencing, REAP-seq RNA expression and protein sequencing assay, Apt-seq aptamers and single cell sequencing, ECCITE-seq 
expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing, INs-seq intracellular staining and sequencing, SCITO-seq single-
cell combinatorial indexed cytometry sequencing, inCITE-seq intranuclear cellular indexing of transcriptomes and epitopes, SNVs single nucleotide variants, DNA 
deoxyribonucleic acid, mRNA messenger RNA

Method Year Application Ref.

Transcriptome and genome

G&T‑seq 2015 Detection of SNVs and cell chromosome rearrangement [157]

DR‑Seq 2015 DNA copy‑number variations within the cancer genome [158]

SIDR 2018 Copy‑number and single‑nucleotide variations [159]

TARGET‑seq 2019 The distinct transcriptional signatures of tumor genetic subclones [160]

DMF‑DR‑seq 2022 The genome variation‑induced abnormal transcriptome expression [161]

Transcriptome and epigenome

scM&T‑seq 2016 Associations between transcriptional and epigenetic variation [162]

scMT‑seq 2016 Correlation between DNA methylation and gene transcription [163]

scTrio‑seq 2016 Epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas [164]

sc‑GEM 2016 Epigenetic variations within and between different cell types [165]

scNMT‑seq 2018 Epigenome interactions during a developmental trajectory [166]

snDrop‑seq and scTHS‑seq 2018 Identification of region‑specific neuronal and non‑neuronal cell types [167]

sciCAR 2018 Compare the pseudotemporal dynamics of chromatin accessibility [168]

Paired‑seq 2019 Analyze the dynamic and cell‑type‑specific gene regulatory programs [169]

SNARE‑seq 2019 Reconstruct the transcriptome and epigenetic landscapes of cells [170]

scCAT‑seq 2019 Regulatory relationships between cis‑regulatory elements and the target genes [171]

Transcriptome and proteome

PLAYR 2016 The interplay between transcription and translation [172]

PEA/STA 2016 Proximity extension assays and complementary DNA synthesis [173]

CITE‑seq 2017 Cellular indexing of transcriptomes and epitopes [174]

REAP‑seq 2017 The costimulatory effects of a CD27 agonist on human  CD8+ lymphocytes [175]

Apt‑seq 2018 Differentiate distinct cell types [176]

ECCITE‑seq 2019 Clonotype‑aware multimodal phenotyping of cancer samples [177]

INs‑seq 2020 Immunosuppressive role of Trem2 in cancer [178]

SCITO‑seq 2021 Cell surface protein abundance [179]

inCITE‑seq 2021 Identification of gene regulatory targets of nuclear proteins in tissues [180]

Multi‑Paired‑seq 2022 Dynamic expression and correlations between mRNAs and proteins in individual cells [181]
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data analysis phase. Numerous bioinformatics tools 
employed for scRNA-seq analysis can be readily adapted 
for spatial analysis, encompassing deconvolution, clus-
tering, cell type annotation [195, 196], and other essen-
tial processing steps [197]. However, it ignores spatial 
location and structural characteristics; therefore, the 
current bioinformatics pipeline must be improved to 
analyze the unique properties of ST. Bioinformatics 
analysis software for ST is emerging endlessly. Trend-
seek [198], SpatialDE [199], graph laplacian-based 
integrative single-cell spatial analysis (GLISS), and 
SpaGCN [200] have been developed to analyze the rela-
tionships between spatial location and gene expres-
sion. Methods for studying the interactions between 
cells include Graph Convolutional Neural networks 
for Genes (GCNG), spatial variance component analy-
sis (SVCA) [201], novaSpaRc [202], and SpaOTsc [203].  
Methods like stLearn, BayesSpace [204], spatial clustering 
using the hidden Markov random field based on empiri-
cal bayes (SC-MEB) [205] and MULTILAYER [206]  
are used for spatial clustering. It is anticipated that 
advancements in spatial omics technologies will result in 
the proliferation of analytical computing tools, facilitat-
ing the harmonization of data across diverse platforms 
and fostering the integration of information tools such as 
machine learning and image segmentation. This integra-
tion is crucial for a deeper understanding of intricate spa-
tial structures and expanding availability to a wide array 
of available data sources [207].

With the exception of commercial platforms like 
10 × Visium, Stereo-seq, and GeoMx DSP, the majority 
of the aforementioned ST techniques are generally con-
fined to laboratory settings. This limitation is expected, 
given the recent publication of these methods and the 
high costs associated with translating experiments into 
diagnostic applications. Standardizing experimental pro-
cedures and data analysis pipelines is anticipated to facil-
itate the commercialization and widespread accessibility 
of spatial omics analysis techniques. Moreover, ongoing 
efforts to integrate automated sample processing, 3D 
structure, deep section scanning, and time series data 
will further advance this field by revealing new cell struc-
tures and expanding our understanding of biological pro-
cesses. Given that the future progress of ST necessitates 
the convergence of multiple disciplines, close collabora-
tion is imperative between researchers in bioinformat-
ics analytics, automation devices, clinical translational 
research, and biomedical fields [208].

Conclusions
This review presented cutting-edge technologies in 
ST and their applications to organ/tissue physiologi-
cal and pathological processes. As a newer iteration of 

scRNA-seq, the field of ST is expanding rapidly, signifi-
cantly improving our understanding of developmental 
biology and pathogenesis and transforming our ability 
to diagnose, understand, and treat diseases. With this 
growing panoply and collaborative efforts of bioinfor-
matics, engineering, and SM-omics, we expect to obtain 
high-throughput molecular information concerning 
full-length transcriptomes when the cost significantly 
decreases. These data will provide a more comprehensive 
view for clarifying interactions between cell biological 
mechanisms within tissue ecosystems.
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