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Abstract 

Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population 
and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treat‑
ment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. 
Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. 
Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current 
advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with 
their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving dif‑
ferent biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive 
hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to 
provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.

Keywords  Adhesive hydrogel, Osteoarthritis (OA), Functional additives, Cartilage regeneration, Interdisciplinary 
therapy

Background
Osteoarthritis (OA) is the most common type of degen-
erative joint disease affecting 7% of the global population 
and more than 500 million people worldwide [1–3]. The 
number of people affected by OA continues to increase 
because of rising life expectancy [4]. Over the last three 
decades, the number of OA-affected people have risen 
by 48%. This makes it the 15th most significant cause of 
disability worldwide, imposing a high cost on patients 
and the healthcare system. The statistics are particularly 
alarming for women, some racial and ethnic groups, 
and for individuals of lower socioeconomic status [5]. 
In addition to suggestions on moderate exercise and a 
healthy diet, current clinical therapeutic procedures vary 
from oral drug administration and intra-articular injec-
tion to surgery. Intra-articular injection mainly involves 
the local administration of functional components, like 
dexamethasone (DEX), growth factors or lubricants [6–
8]. However, oral drug taking causes systemic toxicity to 
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the gastrointestinal and cardiovascular systems [3]. The 
intra-articular injection of functional components also 
has limited efficacy because of their fast clearance and 
the ease of moving to other places due to joint motion 
[9, 10]. When the OA induces cartilage defects, patients 
are more likely to undergo surgeries, including microf-
racture, cell transplantation, and tissue transplantation 
[11, 12]. These surgical procedures, however, are annexed 
with problems such as a limited number of donors, low 
chondrogenic efficiency, and poor integration with sur-
rounding cartilage tissue [13].

Hydrogels are crosslinked polymer networks with a 
high-water content, and can be fabricated to simulate 
the physicochemical properties of cartilage tissue [14]. 
These approaches provide a new avenue for research in 
cartilage regeneration [15]. There are two frontline trends 
of hydrogel-based therapies for OA therapy [15, 16]. The 
first one is using a hydrogel-based tissue scaffold implants 
for cartilage tissue regeneration, which falls within the 
scope of tissue engineering [17–19]. The second one is to 
develop hydrogel-based systems for delivering functional 
additives to the injured cartilage and maintain the stabil-
ity of those active ingredients at the site over a prolonged 
time. Both strategies aim at promoting tissue regenera-
tion through different mechanisms. However, they have 
significant challenges: achieving a stable integration of 
those delivery systems or appropriate implantation into 
the injury site [12]. The newly formed cartilage sur-
rounding the scaffold will lack stability without adequate 
bonding, thus unable to integrate with the host tissue. 
This would result in the failure of functions in synovial 
joints under cyclic compressive and shear stress [20, 21]. 
Furthermore, it also leads to fibrosis between the host 
implant and cartilage, causing failure of the neo-carti-
lage to integrate with native cartilage [22]. Moreover, the 
interfaces between the hydrogel systems and wounds eas-
ily disjoin. Resultantly, functional additives do not remain 
stable on the site, thereby decreasing their efficacy.

Adhesive hydrogels with inherent tissue adhesive-
ness have immense potential for OA therapy. They can 
stay stable at the site where they are applied [23]. Vari-
ous methods of fabricating adhesive hydrogels have 
already been used for wound closure, tissue sealing, and 
medical device fixation [23, 24]. Thus, applying adhesive 
hydrogel in OA therapy is an excellent way to overcome 
the weak integration between biomaterials and cartilage 
tissue. There is an increasing interest in using adhesive 
hydrogels as tissue scaffolds or as delivery systems in 
OA therapy [20, 25–27]. Few reports have summarized 
the commonly used adhesive hydrogels strategies for OA 
treatment, although it is widely understood that proper 
integration between implants and cartilage tissue in OA 
therapy is critical [20, 26, 28].

This review provides an overview of OA treatment 
using adhesive hydrogels. This includes the commonly 
used adhesion mechanisms and compounds in adhe-
sive hydrogels. It is generally recognized that the ability 
to modulate biological functions is essential for tissue 
regeneration. Attempts to understand the biological 
functions of adhesive hydrogels are also summarized. 
These features result from the functional components of 
the adhesive hydrogels or are exhibited by the functional 
additives. Finally, the future trends of adhesive hydrogels 
in OA therapy are presented from both material and clin-
ical perspectives. This review can facilitate innovations 
in OA therapy by clarifying adhesive hydrogels’ chemical 
and biological functions.

OA pathophysiological features
OA is an abnormal molecular disorder of joint tissue fol-
lowed by physiologic derangements, mainly resulting 
from age, obesity, trauma, occupational joint overuse, 
heredity and infections (Fig.  1a) [29]. The pathology of 
OA is characterized by cartilage degradation, subchon-
dral bone remodeling and joint inflammation, which 
culminates in the narrowing of the joint space, forma-
tion of osteophytes, chronic pain and loss of normal joint 
function [30, 31]. Figure  1b summarizes three common 
pathogenic mechanisms of OA and the related signaling 
pathways, including cellular senescence, metabolic disor-
der and mechanical stress [32, 33].

Chondrocyte senescence plays a considerable role in 
the impaired integrity and function of the cartilage. The 
accumulation of senescent cells within joint tissue results 
in the dysfunction of articular cartilage homeostasis [34]. 
It is also involved in the overproduction of reactive oxy-
gen species (ROS) [35], and thereby induces cumulative 
DNA damage and oxidative stress via the activation of 
the p38 mitogen-activated protein kinase (MAPK) signal-
ing [36, 37]. In addition, the downregulation of survival 
promoting insulin-like growth factor-1 (IGF-1)-mediated 
RACα serine/threonine protein kinase (AKT) amplifies 
the expression of primary pro-inflammatory mediators of 
OA [38], including prostaglandin E2 (PGE2), and induc-
ible nitric oxide synthase (iNOS), collectively known as 
the senescence-associated secretory phenotype (SASP). 
These factors contribute to chondrocyte apoptosis and 
drive further positive feedback of senescence [39].

In addition to the aging phenotype, OA pathogenesis is 
also caused by metabolic disorders. The energy metabo-
lism in joint tissue switches from oxidative phosphoryla-
tion to anaerobic glycolysis when exposed to nutrient 
stress [40]. The activity of the mechanistic target of 
rapamycin complex 1 (mTORC1) is upregulated which 
reduces mesenchymal stem cell (MSC) autophagy and 
its anti-catabolic effect on chondrocyte and extracellular  
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matrix (ECM). Besides, 5' -monophosphate (AMP)-activated  
protein kinase (AMPK) signaling activity is downregu-
lated, disrupting the differentiation process of chondro-
cytes from MSC [41, 42].

Cartilage biomechanical function depends on ECM, 
which responds to normal weight-bearing forces [43]. 
Aberrant mechanical stress from obesity or joint injury is 
expected to contribute to the upregulation of the nuclear 
factor kappa-B (NF-κB) pathway [44], thereby regulating 
the ECM degradation via osteoclastic resorption. This is 
promoted by upregulation of osteoblastic receptor acti-
vator of NF-κB ligand (RANKL) that mediates bone mar-
row mononuclear cell (BMMC) differentiation. The loss 
of cartilage integrity leads to unstable mechanical condi-
tion and further excessive loading. Then, the deactivated 
Hippo loses control over YAP/TAZ, which translocates 
into the nucleus to develop transcript factor Sox 9 for 
chondrocyte differentiation [43]. All these mediators dis-
rupt the osteoimmune environment in joint tissue [32] 
which results in the progressive destruction of articular 
cartilage and sclerotic bone formation [45].

The clinical indications for OA therapy include mod-
erate exercise, healthy diet, medicines, intra-articular 
injection, and surgery (Fig. 1c). The oral uptake of medi-
cine and intra-articular injection are the most often used 
methods. However, the systematic toxicity caused by 
available drugs due to high dose needed and their fast 
clearance limits their effects. Therefore, the adhesive 
hydrogels will be relevant for future therapeutic strate-
gies, which retain the functional components and ensure 
a stable integration. Subsequently, a stable integration 
will also improve the stability of mechanical restoration. 
In addition, considering the complex pathogenic features 
of OA (Fig. 1b), adhesive hydrogels must have biological 
functions to achieve desirable therapeutic effects.

Adhesion mechanisms of hydrogel in OA
Adhesive hydrogels, because of their inherent adhesion 
toward the tissue, can retain stability where applied and 
extend the functional duration of loaded additives in OA 
treatment. The review’s first aim is to understand the 
adhesion mechanisms behind different adhesive hydro-
gels for OA. Because of the cartilage’s structure, mate-
rials’ adhesion to tissue’s surfaces can be categorized 
depending on the scale, which includes mechanical inter-
locking on macro level and intermolecular bonding on 
molecular level (Fig. 2a) [46].

Mechanical interlocking
As shown in Fig.  2a, the term mechanical interlock-
ing refers to how adhesive hydrogels infiltrate pores and 
irregularities on tissue surfaces. It relates to the micro-
scopic roughness of the tissue surface [47]. Getting 

suitable tissue adhesion through mechanical interlock-
ing in healthy cartilage tissue is challenging as tissue 
structure is flat, slippery, and firm. However, this struc-
ture becomes rougher and uneven due to pathogenic 
changes, thus providing pores and irregularities for 
mechanical interlocking. Thermo-responsive hydro-
gels commonly use this mechanism. Before application, 
these hydrogels are in a liquid state. Once applied, they 
flow through the irregularities of the tissue surface and 
undergo phase transition due to changes in temperature 
under physiological conditions. Li et al. [48] fabricated a 
Pluronic F127-based thermo-sensitive hydrogel for OA-
induced cartilage injury. The hydrogel provides strong 
adhesion for long-term retention because of the temper-
ature-induced in  situ gelation. Rey-Rico et  al. [49] used 
Pluronic F68/Tetronic 908 with hyaluronic acid (HA)/
chondroitin sulfate (CS) to generate a thermo-sensitive 
hydrogel for recombinant adeno-associated virus (rAAV) 
vector delivery in cartilage regeneration.

Pros and cons: Mechanical interlocking is a straight-
forward way to achieve tissue adhesion. This mechanism 
requires the fluid to flow into the irregular structure 
before gelation occurs. The injectable hydrogels can be 
in the liquid state upon injection and become solid for 
fixation. Most in  situ injectable hydrogels can achieve 
adhesion through mechanical interlocking by adjusting 
the gelation behaviour [46, 47]. However, the mechani-
cal interlocking relies fundamentally on the topological 
structure of the cartilage tissue. It is thus influenced by 
the tissue’s condition and stage of disease and varies from 
tissue to tissue. Furthermore, the adhesive hydrogels 
and tissue do not integrate at molecular level due to the 
lack of intramolecular interactions. Therefore, mechani-
cal interlocking hinders in achieving the high adhesion 
strength around cartilage tissue.

Intermolecular bonding
Compared with mechanical interlocking on macro scale, 
intermolecular bonding relates to molecular interactions 
resulting from forces and bonds of atoms/molecules 
between adhesive hydrogels and the tissue surfaces. 
These bonds can be primary or secondary forces, includ-
ing non-covalent and covalent ones. Intermolecular 
bonding is the primary adhesion mechanism for adhesive 
hydrogels in OA therapy.

Non‑covalent bonding
The non-covalent bond is a bond between macromol-
ecules which does not share pairs of electrons [50]. It is 
paramount in maintaining the structure of tissue proteins 
which have many sites for developing non-covalent bond-
ing. Non-covalent bonding includes hydrogen bonding, 
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Fig. 1  (See legend on next page.)



Page 5 of 26Duan et al. Military Medical Research            (2023) 10:4 	

electrostatic interactions and van der Waals interac-
tions. Among them, hydrogen bonding and electrostatic 
interactions are the most used adhesion mechanism in 

cartilage tissue adhesive hydrogels, so we only discuss 
these two mechanisms below.

Fig. 2  Main adhesion mechanisms, components, and potential functions of adhesive hydrogels in OA therapy. a Two common adhesion 
mechanisms behind adhesive hydrogels for OA therapy. The first one is mechanical interlocking formed on macro level. Irregular tissue or pores are 
needed for relatively weak adhesiveness. The second is intermolecular bonding including non-covalent and covalent ones formed on molecular 
level. Non-covalent bonding includes hydrogen bonding from a hydrogen atom covalently bonded to electronegative atom such as N and O, 
and electrostatic attraction between two oppositely charged molecules. Covalent bonding includes biological and biochemical couplings (Amide 
bond and Disulfide bond), Schiff-base, NHS-ester, Thiol-ene and Phenol groups. b A list of components for fabricating adhesive hydrogels, including 
nature-based polymers (Gelatin, HA, CS and their modification products, etc.) and synthetic polymers (PVA, PLGA, various modification products 
of PEG, etc.). c Potential functions of adhesive hydrogels in OA therapy. OA osteoarthritis, CS chondroitin sulfate, GelMA methacrylated gelatin, HA 
hyaluronic acid, HA-NB o-nitrobenzyl alcohol-modified HA, PEG polyethylene glycol, PVA polyvinyl alcohol, PLGA polylactic-co-glycolic, ECM extra 
cellular matrix. It was created utilizing the templates on BioRender.com as a reference

(See figure on previous page.)
Fig. 1  Risk factors, pathogenic mechanisms, and common treatments for OA. a Common risk factors that can lead to OA include aging, obesity, 
trauma, overuse due to occupational reasons, heredity, and infection. b Common pathophysiological changes in OA progress. Pathogenic pathways 
include MAPK, AKT, mTORC1, AMPK, Hippo, NF-κB, etc., regulated by cellular senescence, metabolic disorder and mechanical stress. They have 
shown to accelerate OA progress thorough chondrocyte apoptosis and ECM degradation. c The indications for OA therapy include moderate 
exercise, a healthy diet, medicine, intra-articular injection of functional components, and surgery. OA osteoarthritis, IGF-1 insulin-like growth 
factor-1, MAPK mitogen-activated protein kinase, AKT serine/threonine kinase Akt, also known as protein kinase B, SASP senescence-associated 
secretory phenotype, mTORC1 mammalian target of rapamycin complex 1, MSC mesenchymal stem cell, ECM extra cellular matrix, AMPK adenosine 
5’-monophosphate (AMP)-activated protein kinase, Sox 9 SRY-related high mobility group-box 9, NF-κB nuclear factor kappa-B, RANKL receptor 
activator of NF-κB ligand, BMMC bone marrow mononuclear cell. It was created utilizing the templates on BioRender.com as a reference
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Hydrogen bonding: The hydrogen bonding is a particu-
lar type of dipole-dipole attraction between molecules. 
It results from the attractive force between a hydrogen 
atom covalently bonded to a strongly electronegative 
atom such as N, O, or F or another highly electronega-
tive atom [51]. In biological tissue, hydrogen bonding 
often occurs between N and O [52]. Typically, the hydro-
gen bonding in adhesive hydrogels for OA therapy comes 
from polymers with plenty of hydroxyl groups, such as 
polyvinyl alcohol (PVA) [53–55].

Electrostatic interactions: Electrostatic interactions 
include attractive and repulsive interactions. The engag-
ing interactions between two oppositely charged mol-
ecules lead to adhesion. Polysaccharides in OA therapy, 
including chitosan and CS, interact with cartilage tissue 
through electrostatic interactions [56]. Gelatin is also a 
polymer that can bind with tissue through electrostatic 
interactions. JointRep® (Oligo Medic Inc., Laval, Quebec, 
Canada) is a bioadhesive gel designed for cartilage regen-
eration. It possesses good tissue adhesion to the cartilage 
because of the ionic bonds formed between chitosan and 
the tissue [57].

Pros and cons: The non-covalent bonding is advanta-
geous because of less chemical modifications or chemical 
crosslinkers. Biological properties of rare materials are 
less likely to change and toxic components are avoided 
[58]. Moreover, although rarely mentioned in OA ther-
apy, the reversibility of non-covalent crosslinking enables 
repeated attachment to the biological tissue [59]. How-
ever, the overall adhesion strength is weak because of low 
bond energy of non-covalent crosslinking [60].

Covalent bonding
Covalent interactions produce the strongest bonding in 
nature [61]. As a result, adhesion through covalent bonds 
is often very stable. The commonly used covalent strate-
gies in OA therapy are listed below.

Biological and biochemical couplings: Biological and 
biochemical couplings are the molecule-molecule inter-
actions involved in the daily metabolic activity of organ-
isms [62]. There are two typical examples. The first 
one is the last step of clotting cascades involved in the 
fibrinogen-thrombin interactions of Fibrin glue. Fibrin 
glue mainly contains two components, fibrinogen and 
thrombin [63]. Upon mixing, thrombin catalyzes the for-
mation of amide bonds between glutamine and lysine 
amino acids in fibrin polymer chains. The fibrin poly-
mer also crosslinks with the surrounding tissue causing 
adhesion [64]. Li et al. [65] used polylactide-co-glycolide 
(PLGA)/Fibrin glue to develop a system for combining 
gene therapy with tissue engineering. The system deliv-
ered both genes and MSCs to cartilage injuries. Fibrin gel 

not only offered tissue adhesion but also enabled slower 
gene release, which led to a higher cell loading density. 
It was found that transforming growth factor-β1 (TGF-
β1) expression was upregulated by Fibrin gel. After get-
ting treated for 12 weeks using this system, full-thickness 
defects of cartilage were resurfaced by neo-tissue with a 
structure like that of surrounding tissue.

Another commonly existing crosslinking in biology 
is the disulfide bond formed between two thiol groups, 
which maintains the stereo structures of native proteins. 
Because of the thiol groups in native protein, thiol-mod-
ified polymers show tissue adhesion via disulfide bond 
formation. This is extremely important for mucoadhe-
sion. Suchaoin et al. [66] used cysteine (cys) to modify CS 
for fabricating the bioadhesive agent for OA therapy. The 
CS-cys adhesive showed a 5.37-fold increase in adhesion 
strength when tested with porcine articular cartilage. The 
adhesive demonstrated cytocompatibility against Caco-2 
cells and rat primary articular chondrocytes. CS-cys 
might be a promising intra-articular agent for OA treat-
ment because of the increased bioadhesive properties.

Schiff-base: Schiff-base is formed by the reaction 
between aldehyde/ketone groups and amino groups [67, 
68]. As many amino groups are there in tissue proteins, 
modifying compounds with aldehyde groups is preferred 
to fabricate hydrogels that can adhere to cartilage tis-
sue. Chen et  al. [22] made aldehyde and methacrylate-
modified HA. The increased tissue anchoring with the 
Schiff-base promoted integration between neo-cartilage 
and host tissue, significantly improving the cartilage 
regeneration. O-nitrobenzyl alcohol-modified HA (HA-
NB) conjugate generates aldehyde groups upon light 
irradiation through a photo-triggered imine-crosslinking 
reaction where o-nitrobenzene is converted to o-nitros-
obenzaldehyde upon 365 nm illumination. Liu et al. [69] 
used HA-NB with platelet-rich plasma (PRP) to generate 
PRP-loaded o-nitrobenzyl alcohol-modified HA adhe-
sive hydrogel to overcome the unstable fixation and burst 
release of PRP. In  vivo studies proved that PRP-loaded 
o-nitrobenzyl alcohol-modified HA adhesive hydrogels 
achieved higher therapeutic efficacy than thrombin-acti-
vated PRP hydrogels.

N-hydroxysuccinimide-ester (NHS-ester): NHS-ester is 
an active ester which is highly reactive toward nucleo-
philic attack. Together with N-hydroxysulfosuccinim-
ide-ester (Sulfo-NHS-ester), they show high reactivity 
for primary amines and thiol groups under mild condi-
tions. They are widely used in several bioconjugation 
techniques, like peptide synthesis, fluorescence label-
ling, etc. [70, 71]. They have also been used in fabricat-
ing adhesive hydrogels for cartilage regeneration because 
of their strong reaction toward the primary amines and 
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thiol groups. The commonly used NHS-ester-contain-
ing polymer is polyethylene glycol (PEG). With 4-arm-
PEG-NHS and gelatin microgels, Li et al. [25] fabricated 
NHS-treated assembled (NHSA) microgels, a 3D con-
struct with tissue adhesiveness to the cartilage tissue. 
NHSA-microgels upregulated chondrogenic markers at 
the gene and glycosaminoglycan (GAG) expression lev-
els. Moreover, hyaline-like cartilage tissue was formed in 
NHSA-microgels.

Thiol-ene: Thiol-ene is a type of click chemistry having 
high thermodynamic driving forces and rapid reaction. 
As there are thiol groups in the tissue proteins, ene-mod-
ified polymers can also react with them to provide tissue 
adhesion [72]. Although MSCs are promising in repairing 
cartilage injury, the methods for delivering and maintain-
ing them on-site remain to be devised. Li et al. [73] used 
acrylate-modified PEG and thiol-modified HA to fab-
ricate hydrogel for MSCs delivery. The hyper-branched 
structure of the acrylate-modified PEG functioned as the 
adhesive precursor because of forming links with tissue 
via thiol-ene reaction. MSCs were loaded in the adhesive 
hydrogel for better therapeutic outcomes. It could signifi-
cantly repair full-thickness cartilage defects in rat model 
after 8 weeks of implantation [73]. Using dithiobis (pro-
panoic dihydrazide), thiol groups can be introduced into 
the polysaccharide. Li et al. [72] synthesized an adhesive 
hydrogel by thiol-modified CS and acrylate-containing 
hyperbranched PEG. MSCs loading in the hydrogel had 
increased cell viability and improved chondrogenesis. 
Additionally, the adhesive hydrogels showed anti-inflam-
matory response because of the CS, thus suggesting great 
promise in cartilage tissue engineering.

Phenol groups: Phenol groups are popular candidates 
for wet adhesion including monophenol-based tyrosine, 
maritime species-inspired dopamine (DOPA) chemistry, 
and plant-inspired polyphenols such as tannic acid and 
pyrogallol [23]. Although cartilage tissue engineering 
products have been authorized for clinical usage, weak 
tissue adhesion is still a problem. Feng et  al. [26] fabri-
cated a dynamic nanocomposite hydrogel with micropo-
rosity, injectability and tissue adhesive properties that 
target OA-induced cartilage injury. DOPA-modified 
HA was used to coat the hydrogel systems via dynamic 
crosslinking to promote tissue adhesion. Kartogenin 
and bone mesenchymal stem cells (BMSCs) were loaded 
into the adhesive hydrogels for a better therapeutic out-
come. Animal studies revealed that the functional addi-
tives-loaded adhesive systems promoted the cartilage 
regeneration in which the newborn cartilage presented 
typical characteristics of articular cartilage. Other adhe-
sion groups have also been used with phenol groups to 
further increase the adhesion strength. Zhang et al. [74] 
fabricated the mussel-inspired adhesive and injectable 

hydrogels for cartilage regeneration. DOPA-modified alg-
inate was used to introduce wet adhesion in their design. 
The adhesion strength was further enhanced by using 
NHS-ester-modified CS and regenerated silk fibroin con-
taining lysine and tyrosine. The resulting adhesive hydro-
gel provided comparative lap shear strength of 120 kPa. 
Later, the exosomes were loaded into the adhesive hydro-
gel, suggesting that BMSCs were recruited to the adhe-
sive hydrogel and neo-cartilage.

Pros and cons: Covalent bonding is the most robust 
bonding for the interactions in tissue adhesion. Among 
them, biological interactions, Schiff-base and NHS-ester 
are the strategies employed in currently used clinical 
products, like Tisseel® (Biological interactions), Coseal® 
and Duraseal® (NHS-ester), Bioglue® (Schiff-base). How-
ever, although they generate strong interactions with 
host tissue, none of the reports show a breakthrough in 
achieving very large adhesive strength. Furthermore, 
some require complex preparatory steps and even special 
storage conditions, compromising their cost-effective-
ness. NHS-ester is easy to hydrolyze, so it must be stored 
in powder form and in dry environment. Phenol groups 
easily get oxidized and thus require controlled storage 
environment. Additionally, the colour change after oxi-
dation and the potential neurological effects of phenol-
based strategies may hinder their use in tissue adhesion.

Components of the adhesive hydrogels
Components of adhesive hydrogels play a vital role in the 
end application. Several materials have been used to fab-
ricate adhesive hydrogels for OA therapy. Based on their 
properties, these materials are classified into two cat-
egories: nature-based polymers and synthetic polymers 
(Fig. 2b). These materials are discussed in detail below.

Nature‑based polymers
Nature-based polymers extracted from plants, animals, 
or microorganisms have been used in biomedical appli-
cations due to their biocompatibility and biofunctions 
[75]. Hydrogels prepared from nature-based polymers 
have similar advantages as natural ECM [76, 77]. They 
can improve cellular behavior and are thus used in tissue 
regeneration [78, 79]. Here, the natural components of 
adhesive hydrogels commonly used in OA treatment are 
discussed below.

Hyaluronic acid: HA, a linear polysaccharide, is one of 
the major components of cartilage ECM and has been 
widely studied in cartilage regeneration and OA therapy 
[80]. It has lubrication function and is involved in vari-
ous cellular processes, like modulating the inflamma-
tory response, cell adhesion, migration, proliferation, 
differentiation, angiogenesis, and tissue regeneration 
[81, 82]. In clinic, HA solutions are given weekly for 
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viscosupplementation and pain relief [83]. However, 
since 2013, the American Academy of Orthopaedic Sur-
geons no longer recommends intra-articular injection of 
HA for OA treatment due to its negligible effects com-
pared to the control groups [84]. Generally, HA solutions 
consist of non-crosslinked HA that do not maintain the 
desired volume and structural integrity, leading to lim-
ited retention time and reducing their ability to deliver 
functional additives. As a result, HA is chemically modi-
fied to fabricate hydrogels [85]. However, although HA 
has shown to have mucoadhesive properties, the result-
ing HA-based hydrogel shows weak adhesion to the tis-
sue [86–88]. Various adhesive functional groups have 
been grafted to HA for raising retention time and thera-
peutic efficacy, e.g., catechol groups [89], methacrylate 
[90], aldehyde [91], tyramine [92], and o-nitrobenzyl 
alcohol [69]. The stable adhesion of HA-based adhesive 
hydrogels significantly promotes integration between 
neo-cartilage and host tissue, increasing the therapeu-
tic efficacy [22]. Chen et  al. [22] used aldehyde groups 
to modify HA, and photo-crosslinking was employed to 
generate the adhesive hydrogel. The resulting adhesive 
hydrogel showed significantly higher adhesion strength 
than Fibrin glue. In vivo experiments demonstrated that 
adhesive hydrogels significantly promoted the integration 
between neo-cartilage and host tissue and improved car-
tilage regeneration compared to non-adhesive control.

Alginate: Alginate, extracted from brown algae or bac-
teria, has applications in biomedical science and engi-
neering due to its biocompatibility and ease of gelation 
[93]. Alginate hydrogels have weak adhesion to tissue, 
so chemical modifications are needed to improve that 
property [94, 95]. Currently, the most used modification 
method is the generation of aldehyde groups in alginate 
polymer chains via oxidation. Subsequently, the adhe-
sive hydrogel is formed by the reaction between alde-
hyde-modified alginate and another amino-containing 
crosslinker. Since alginate hydrogels are promising can-
didates for cell and gene delivery [96–98], alginate-based 
adhesive hydrogels have also been used to deliver cells 
for OA treatment and the regeneration of cartilage tis-
sue [99]. Kreller et  al. [100] designed an oxidized algi-
nate and gelatin-based 3D printing hydrogel (ADA-GEL) 
for cartilage tissue engineering in OA treatment. ADA-
GEL with shape stability and fidelity could be printed 
in complex hierarchical scaffolds for cell encapsula-
tion and mimick the intrinsic hierarchical structure of 
natural articular cartilages, which is promising in OA 
therapy. In addition to nature-based crosslinkers with 
amino groups, synthetic polymers having amino groups 
can also be crosslinked with aldehyde-modified alginate. 
This further expands the functions of alginate-based 
adhesive hydrogels. Yan et  al. [101] prepared injectable 

adhesive hydrogels with aldehyde-modified alginate and 
hydrazide-modified poly(l-glutamic acid). By chang-
ing the solid contents and the oxidation degree of algi-
nate, the resulting adhesive hydrogels showed adjustable 
mechanical properties and degradation rates. Compared 
with chondrocyte injection alone, the chondrocyte-load-
ing adhesive hydrogel resulted in more cartilage-like tis-
sue with improved ability to maintain the desired shape.

Chitosan: The partial deacetylation of chitin results in 
chitosan formation [102]. Due to its abundance, versatil-
ity, biodegradability, biocompatibility and antimicrobial 
properties, it has been used in tissue engineering and 
regeneration. Moreover, it also exhibits tissue adhesion, 
antioxidant properties, antibacterial activity and antican-
cer effects as the only positively charged naturally occur-
ring polysaccharide [103, 104]. Hoemann et al. [105] used 
the tissue adhesiveness of chitosan to develop a chitosan-
based adhesive hydrogel for cell delivery. The adhesive 
gel system remained stable for one week after injecting in 
osteochondral defects of rabbits. Apart from its biological 
functions, chitosan can be chemically modified to vari-
ous derivatives, such as thiolated chitosan, hydroxyalkyl 
chitosan, etc., to further expand its applications [106]. 
Scognamiglio et  al. [107] fabricated lactose-modified 
chitosan hydrogel through boric acid crosslinking (CTL-
hydrogel). The chitosan adhesive hydrogel showed better 
stability compared with the traditionally administered HA 
solution, thus providing long-term viscosupplement for 
OA treatment. Additionally, lactose-modified chitosan 
has antioxidant properties which make CTL-hydrogel a 
high-capacity ROS scavenging system in OA therapy.

Chondroitin sulfate: CS, a sulfated GAG consisting of 
N-acetylgalactosamine and glucuronic acid, is a major 
component of ECM of cartilage tissue, which is inher-
ently anti-inflammatory, antioxidative and anti-apoptotic 
[108–110]. It contributes to the synthesis of hyaluronan, 
collagen and glucosamine and inhibits ECM degrada-
tion [111]. It has also been used as a dietary supplement 
for OA for decades to relieve pain and regenerate car-
tilage. Although CS has tissue adhesion because of its 
hydroxyl, carboxyl and amide groups, its intrinsic adhe-
sion strength is relatively low [112]. Therefore, CS are 
chemically modified with tissue adhesive groups (such 
as thiol and aldehyde) to achieve higher tissue adhe-
siveness [66]. To increase bonding strength between 
implants and cartilage tissue, Wang et  al. [113] used 
methacrylate and aldehyde groups to create a CS-based 
adhesive which chemically bridges the implants and tis-
sue proteins through two-fold covalent link. The adhesive 
application significantly improved the therapeutic out-
come compared with untreated empty cartilage defects 
after 6 months. The work also showed the importance of 
implant integration in the repair of cartilage tissue.
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Gelatin:  Gelatin is a natural water-soluble polymer 
derived from collagen hydrolysis. Collagen can protect 
against the onset of joint damage through induction and 
migration of T regulatory cells and the production of 
anti-inflammatory cytokines [113, 114]. There are col-
lagen-based hydrogels for OA-induced cartilage defects 
[15]. However, collagen hydrogels usually have weak 
mechanical properties and degrade rapidly [115]. More-
over, the chemical modification of collagen is complex 
because of poor water solubility and low thermostability. 
This may also be why collagen-based adhesive hydrogels 
have seldom been reported in OA treatment [116].

In contrast, gelatin is widely explored in tissue regener-
ation and engineering because of its well-proven biocom-
patibility, biodegradability, low immunogenicity, water 
solubility and ease of modification [99, 117, 118]. Also, 
gelatin-based materials show suitable tissue adhesion 
through electrostatic interactions produced by carboxyl 
and amino groups. Zhang et al. [28] used gelatin to fab-
ricate microcryogels for MSCs delivery, which enhanced 
the retention of MSCs in the knee joint of mice compared 
with MSCs injection alone. However, the non-covalent 
crosslinking of gelatin alone was still relatively weak. 
Therefore, gelatin has also been used with other materi-
als of adhesive groups, like aldehyde-containing materi-
als, to fabricate adhesive hydrogels for OA therapy [100, 
119]. In addition, the amino and carboxyl groups of gela-
tin can be easily modified. Lim et al. [20] used tyramine 
and methacryloyl to modify carboxyl and amine groups 
for increasing the tissue adhesion of gelatin. Later, they 
used photo-crosslinking method to fabricate an adhe-
sive hydrogel for cartilage repair. The adhesive hydrogel 
showed 15-fold increment in the adhesive strength than 
methacrylated gelatin (GelMA) alone because of the 
chemical bonding of tyramine to native cartilage pro-
teins. A high collagen type-II/I ratio was observed in 
articular chondroprogenitor cells encapsulated GelMA-
Tyr hydrogel, indicating the chondrogenic phenotype.

Mussel adhesive proteins (MAP): Marine mussels can 
attach tightly to foreign surfaces in turbulent seawater 
due to secreted MAP via DOPA-mediated interfacial 
bonding [120, 121]. These adhesive proteins have been 
used for wound closure and cell adhesion. [122, 123]. 
Tissue engineering-based on stem cell therapy for carti-
lage regeneration in OA has been developed and used for 
over 20 years. However, low viability and high possibility 
of injected cells’ dispersion to target defect sites remain 
challenging. A report showed that adipose stem cells 
(ASCs) fixed by MAP on focal chondral defect survived 
longer than those immobilized with Fibrin glue [124]. 
Ko et al. [125] used MAP-based adhesive to strongly fix 
chondrogenic-enhanced human ASCs at the lesion site of 

the defective cartilage and extend the survival time of the 
implanted cells at the defect site so that the cells could 
differentiate into chondrocytes. The prolonged survival 
of implanted stem cells, in turn, could exert prolonged 
paracrine effects and/or engraftment with chondrogenic 
differentiation.

Fibrin glue: Fibrin glue is a two-component topi-
cal hemostat and sealant consisting of fibrinogen and 
thrombin [63]. It is in the market since the late 1970s 
and is now an FDA-approved tissue sealant for hemosta-
sis, burn wound skin graft attachment and colon sealing 
[126]. The fibrin, formed after the crosslinking, has struc-
ture like that of natural ECM with good biocompatibility, 
biodegradation and binding capacity to cells and tissue 
[127]. It is widely used in functional additives delivery 
and tissue engineering for cell delivery. Clinical study has 
shown that Fibrin glue with MSCs implantation improves 
the therapeutic outcome in patients with OA compared 
with MSCs implantation alone, as graded by the scale 
from International Cartilage Repair Society grade [128]. 
However, there is risk of transmitting serological disease 
from the donors as the components of the Fibrin glue 
come from the blood of humans or animals.

Pros and cons: Nature-based compounds are preferred 
in biomedical applications due to biocompatibility and 
biodegradation. Moreover, they come from nature and 
have certain inherent biological functions, including anti-
inflammation, antibacterial activity, antioxidant proper-
ties, and the ability to promote cell migration. However, 
nature-based compounds are often limited by batch-to-
batch variability, complex structures, and complicated 
and costly extraction processes [129]. In addition, these 
natural compounds usually need modifications to fab-
ricate adhesive hydrogels. It is rarely reported how this 
modification influences the compound structure of the 
natural compounds, which is an important considera-
tion as even the molecular weight of the compounds can 
affect their biological properties [130].

Synthetic polymers
Synthetic polymers are more biologically inert and have 
fewer biological functions than natural polymers. How-
ever, they have the tunability, various forms, controllable 
structures, and ease of modifications [131]. Hence, syn-
thetic polymers as engineered adhesive hydrogels for OA 
therapy are also explored.

Polyethylene glycol (PEG): PEG is a candidate in bio-
materials fabrications for tissue engineering applications 
due to its biocompatibility, non-immunogenicity, and 
antifouling properties [132]. PEG-based hydrogels are 
widely explored in tissue adhesives, wound healing and 
tissue regeneration, including the commercially available 
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Duraseal® and Coseal® [133–135]. Because of the ease 
of modification through terminal hydroxyl groups, PEG 
can be modified with adhesive groups including DOPA, 
acrylate, thiol, NHS-ester, aldehyde, hydrazine and oth-
ers, some of which have been explored in OA therapy 
[25, 64, 73, 136–138]. Li et  al. [73] synthesized hyper-
branched PEG with acrylate groups for tissue adhesion. 
Later, they used thiol-modified HA to fabricate the adhe-
sive hydrogel and loaded MSCs for cartilage regenera-
tion. Significantly, the MSC-loading adhesive hydrogel 
repaired full-thickness cartilage defects better than non-
treatment and hydrogel alone, providing a promising 
method for cartilage tissue engineering.

Poloxamer and poloxamine: Poloxamer (Pluronic®) 
and poloxamine (Tetronic®) are amphiphilic blocks of 
copolymers constituted by polyethylene oxide and poly-
propylene oxide [139]. The copolymers exhibit thermally 
induced phase transition in aqueous solutions due to dif-
ference in chemical polarities of different blocks [140]. 
These polymers have been explored in tissue engineer-
ing and drug delivery because of their thermoreversible 
behavior at physiological temperatures and their accept-
able biocompatibility and tunability [141]. The precur-
sor solutions of poloxamer or poloxamine are injected 
at the injury site. Then, the thermally induced phase 
transition occurs, and the solution becomes a hydrogel. 
It is easy to flow into irregular places of injured carti-
lage as it is in solution state when injected. It then forms 
solid state because of phase transition, resulting in the 
mechanical interlocking between hydrogel and tissue. As 
a result, most of these hydrogels show adhesion through 
mechanical interlocking. These polymers used in OA 
therapy include Pluronic F127, Pluronic F68, Tetronic 
908, etc. [48, 49, 142]. Nascimento et al. [143] developed 
a sulforaphane-loaded HA-poloxamer hybrid hydrogel 
for OA therapy. The drug-loaded hydrogel increased 
type II collagen expression, inhibited proteoglycan con-
sumption, downregulated NF-κB pathway and inhibited 
PGE2 production in chondrocytes. Generally, mechani-
cal interlocking is relatively weak and other functional 
groups can be conjugated to these polymers through 
hydroxyl groups. Lee et  al. [144] used thiol groups to 
modify Pluronic F127 and later fabricated adhesive 
hydrogel by mixing DOPA-modified HA and thiolated 
Pluronic F127, which showed excellent tissue adhesion 
properties.

Aliphatic polyester:  Aliphatic polyesters are the bio-
degradable polymers explored in tissue engineering, 
drug delivery, and medical devices [145]. Aliphatic 
polyesters include polylactide (PLA), polyglycolide 
(PGA), polycaprolactone (PCL) and their copolymers. 

Generally, polyesters have weak tissue adhesion as 
they are hydrophobic and lack functional groups that 
form covalent and non-covalent crosslinkings. How-
ever, either by physical mixture or by chemical grafting 
with PEG, these polymers show tissue adhesion through 
mechanical interlocking induced by phase transition 
at the physiological temperature. Behrens et  al. [146] 
mixed PLGA with PEG in acetone, which underwent a 
fibrous mat-to-membrane transition at a temperature 
of around 31 °C, resulting in mechanical interlocking-
induced tissue adhesion. The sealant has higher burst-
ing pressure than that of Fibrin glue. Another choice 
is to add PEG into polymeric chain during synthesis 
to fabricate thermo-responsive adhesives for additives 
release. CircRNA3503 promotes chondrocyte survival 
by inhibiting apoptosis, modulating cartilage ECM 
synthesis, and alleviating ECM degradation, showing 
great promise in preventing OA progression. Tao and 
co-workers [147] used thermo-responsive poly (D,L-
lactide)-b-poly(ethylene glycol)-b-poly (D,L-lactide) 
(PDLLA-PEG-PDLLA, PLEL) triblock copolymer-based 
gels to slowly release circRNA3503-loaded small extra-
cellular vesicles, which protected cartilage and delayed 
the progression of OA.

Polyvinyl alcohol (PVA): PVA is a synthetic polymer 
used in industrial, commercial, medical and food appli-
cations since the 1930s and is included in the Hand-
book of Pharmaceutical Excipients [148]. PVA has been 
reported to be used in multiple biomedical applications 
such as contact lenses, wound dressings and drug deliv-
ery because of its good biocompatibility [149]. Moreo-
ver, PVA chain has many hydroxyl groups which give 
it the potential to form hydrogen bonding with tissue 
[53]. PVA-based hydrogel can be used as lubricant in 
OA treatment [54]. It can also be combined with other 
components to simulate tissue structure. Thangprasert 
et al. [119] used PVA and gelatin to mimic the structure 
and function of the natural cartilage tissue. The tissue-
mimicking hybrid hydrogel supported the adhesion and 
proliferation of pre-osteoblast cell line MC3T3-E1 with 
greater osteogenic density of calcium deposition after 
mixing with gelatin.

Pros and cons: Synthetic polymers have advantages 
in some studies because of their well-defined structure, 
strength, and reproducibility. In addition, their chemical 
inertness enables them to resist chemical breakdowns, 
increasing the convenience of chemical modification. 
However, synthetic polymers are mostly biologically inert 
and additional steps are needed to introduce biological 
functions in OA therapy.
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Biological functions of the adhesive hydrogels 
in OA therapy
Inherently, adhesive hydrogels have two functions: to 
act as functional scaffolds and to be delivery vehicles 
(Fig.  2c). They can provide highly hydrated microenvi-
ronment and mimic native ECM for solutes and nutrient 
transfer. They also maintain integration between loaded 
materials and the tissue. Some are even used as lubricants 
for viscosupplementation. However, due to the high com-
plexity of OA and the complex pathophysiology involved, 
the introduction of biological functions in OA therapy is 
important to achieve good therapeutic outcomes. There 
are two common approaches to introduce biological 
functions in adhesive hydrogels. The first is fabricating 
the adhesive hydrogels using polymers or components 
with intrinsic biological activity such as HA, gelatin, algi-
nate or CS. The second is to add functional additives.

Functional components
Some polymers used to fabricate adhesive hydrogels 
have inherent biological functions. These functional 
components are HA, gelatin, alginate, and CS. Table  1 
summarizes examples of these components, respective 
molecular pathways and pre/clinic state.

The amount of HA is often lower in synovial fluid of 
osteoarthritic joints than in healthy joints. Hence, intra-
articular injection of HA is an FDA-approved method to 
treat OA for enhancing lubrication and reverse the proin-
flammatory pathways [153]. In OA therapy, HA reduces 
the production of pro-inflammatory cytokines and SASP 
factors like interleukin (IL)-1β and IL-6, as well as tumor 
necrosis factor α (TNF-α); it suppresses MMPs and PGE2 
syntheses via CD44 receptor. HA also downregulates p65 

NF-κB and IκBα phosphorylation activated by LPS via 
intercellular adhesion molecule-1 receptor [150]. It was 
shown that HA could effectively maintain the chondro-
genic phenotype in pig model and change the trabecular 
structure of subchondral bone in rod-like way, reduc-
ing cartilage loading during mechanical impact [163, 
164]. HA also facilitates cell migration and angiogenesis 
[153], thus promoting tissue regeneration [165] in dose-
dependent manner. As a result, using HA to fabricate 
adhesive hydrogels introduces inherent biological func-
tions [166].

Gelatin is native to ECM. It is a product of collagen 
hydrolysis and is less immunogenic than collagen [167]. 
Besides, it has instructive signals, including the arginine-
glycine-aspartic acid sequence, promoting cell adhesion, 
proliferation, and differentiation [168]. In OA therapy, 
recent studies indicated that gelatin supports chondro-
genesis as shown by increased staining of chondrogenic 
lineage differentiation of bone marrow MSCs cultured on 
gelatin [169, 170].

Alginate is a nature-based polymer promoting the 
mineralization of ECM in vitro [95]. Igarashi et al. [171] 
showed that alginate (1000 kDa) had the potential for OA 
prevention and treatment by reducing the joint friction 
coefficient and alleviating articular cartilage degenera-
tion. Animal experiments demonstrated that alginate-
gelatin scaffolds had excellent mechanical and relaxation 
properties which provided favorable physical environ-
ment for ECM remodeling [74], and inducing cartilage 
differentiation [97, 172, 173].

CS is another component of ECM that exerts biologi-
cal functions essential to meniscus microstructure and 
mechanical properties. Downregulation of GAG content 

Table 1  Functional components for biological functions

CD44 cluster determinant 44, CS chondroitin sulfate, Erk1/2 extracellular signal-regulated kinase 1/2, HA hyaluronic acid, HSP70 heat shock protein 70, ICAM-1 
intercellular adhesion molecule-1, IL interleukin, NF-κB nuclear factor kappa-B, iNOS inducible Nitric oxide synthase, MMP matrix metalloproteinase, p38 MAPK p38 
mitogen-activated protein kinase, PGE2 prostaglandin E2, TLR toll-like receptor, TNF-α tumor necrosis factor α, N/A not applicable

Functional 
components

Function Molecular pathways Pre/clinic state References

HA Anti-inflammation; Pain relief Combined with TLR-2 and TLR-4→TNF-α, 
IL-1β, IL-17, MMP-13, iNOS↓

Humans, mice, rats [150–152]

Chondrogenesis; Inhibition of degradation; 
Adaptation to mechanical stress

Combined with ICAM-1→NF-κB↓→IL-6↓
Combined with CD44→PGE2↓, HSP70↑

Guinea pigs,
rabbits, mice

[151]

Promotion of angiogenesis Combined with CD44→IL-1β↓→MMP 
1,2,3,9,13↓

Rabbits, rats, mice [152–154]

Improvement of cell proliferation N/A Mice [150–152, 154, 155]

Gelatin Cell proliferation N/A Mice [155, 156]

Alginate Adaptation to mechanical stress N/A Mice [96, 97]

Improvement of cell proliferation N/A Mice, horses [97, 157]

CS Anti-inflammation; Pain relief; Cell prolifera‑
tion

p38 MAPK, Erk1/2↓ Rats, humans, rabbits [158–162]
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and collagen fibre tissue disrupts the impact loading and 
collagen sliding [174], resulting in OA [175]. Moreover, 
the energy metabolism of chondrocytes in OA switches 
from oxidative phosphorylation to anaerobic glycoly-
sis under the imposition of nutrient stress [40], inhibit-
ing 5'-AMPK signaling and increasing the pro-catabolic 
responses to IL-1β and TNF-α in chondrocytes [176]. 
Furthermore, chronic hyperglycemia induces overpro-
duction of advanced-glycation end products in joint tis-
sue, accelerating the formation of joint contracture [177]. 
Based on the above-mentioned background, highly puri-
fied CS can decrease p38 MAPK and signal-regulated 
kinase 1/2 phosphorylation stimulated by IL-1β, NF-κB 
[158], TNF-α, COX-2 and iNOS [159]. The inflamma-
tion is then reduced due to metabolic and mechanical 
disorders, preventing the progression of OA. The positive 
effects of CS in 3D fibrin-alginate hydrogels on cartilage 
matrix production and chondrocyte proliferation have 
been demonstrated in pig models [178].

Functional additives
In addition to the components used in fabricating adhe-
sive hydrogels, functional additives can also be added 
to the adhesive hydrogels for introducing various bio-
logical functions. These additives which have been and 
potentially can be loaded into adhesive hydrogels are 
summarized with their functions (Fig.  3; Table  2). It 
is worth noting that these additives can be used alone 
or together, and herein, they are discussed separately 
for clarity. They can be categorized as: drugs and cell-
related additives.

Drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) and 
corticosteroids are the two major drugs of OA treatment, 
which reduce inflammation and relieve pain (Fig.  3). 
However, oral NSAIDs increase the incidence of gas-
trointestinal disorders [213]. Corticosteroids are known 
to bring adverse effects such as infection and bone loss 
[214]. Other inflammation-modulating drugs like metho-
trexate, hydroxychloroquine and DEX, are also effective 
in OA animal models [180, 181, 187], which reduce joint 
swelling and inhibit OA progress.

Pros and cons: Drugs are generally applied for symptom 
management. Few can reverse OA pathologic progress. 
Furthermore, powerful side effects like non-selectivity, 
chondronecrosis and infection make repeated injections 
inappropriate. If the drugs could remain in the joint over 
a longer time, beneficial effects could be maximized and 
systemic adverse effects minimized. As a result, carriers 
like adhesive hydrogels will be needed.

Cell‑related additives
Cells: Cell therapy is among the most promising tech-
niques for repairing damaged or destroyed tissue [215]. 
Chondrocytes and stem cells are the most used cells for 
getting injected in the joints. The former is direct supple-
mentation for cartilage injury, and latter can be induced 
to differentiate into bone cells and chondrocytes in spe-
cific situation. MSCs reduce local inflammation, prevent 
chondrocyte hypertrophy and apoptosis, and differenti-
ate into chondrocytes that form cartilage [192]. MSCs 
also induce macrophage polarization to M2 phenotypes 
and increase the secretion of IL-10, thereby inhibiting 
inflammation [73]. It was reported that intra-articular 
injection of autologous MSCs provided pain relief to 
patients with knee OA [192, 194].

Cytokines and peptides: As the two main cytokines 
used for tissue regeneration for decades, TGF-β and 
fibroblast growth factor have been injected to stimulate 
native chondrocyte proliferation or chondrogenic dif-
ferentiation of resident progenitor or stem cells [216, 
217]. Zhou et al. [200] fabricated injectable and thermos-
responsive hydrogel to load TGF-β for cartilage repair. 
They found that the system promoted full-thickness 
defect regeneration on rat knees. In osteonecrotic OA 
rabbit model of hip joint, basic fibroblast growth factor-
loaded gelatin showed improved Mankin scoring (degree 
of articular cartilage degeneration) by promoting OA 
repair [218]. In rabbits, the short-term release of con-
nective tissue growth factor recruited synovial MSCs to 
the loss site and formed an integrated fibre matrix with 
continuously released TGF-β. Moreover, it remodeled the 
fibrous matrix into fibrocartilage matrix, repaired menis-
cus tissue and improved its function [202]. Other anti-
inflammatory cytokines, for example, interleukin IL-4, 
IL-10, and IL-13, have also been loaded to hydrogels to 
treat OA [219].

A few peptides were found to have the ability to induce 
chondrogenesis without inducing chondrocyte hyper-
trophy, which can be used for cartilage repair in OA. 
CK2.1, a mimetic peptide of bone morphogenetic pro-
tein receptor, is one of these peptides with the potential 
to induce ECM secretion and chondrogenesis without 
the induction of hypertrophy [203]. LL37 is a peptide 
known for antimicrobial function, immune modulation, 
and the ability to promote bone healing by MSC recruit-
ment [220]. Liu et  al. [221] used a composite scaffold 
to load CK2.1 at upper layer for cartilage regeneration 
and LL37 at bottom layer for bone regeneration. The 
composite scaffold enhanced the repair of cartilage and 
subchondral bone defect, offering a novel therapeutic 
strategy for patients with articular osteochondral defect. 
In mice model, biphasic system of CK2.1 peptide-coated 
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β-glycerophosphate/chitosan and LL37-modified layered 
double hydroxide/chitosan induced cartilage formation 
without provoking chondrocyte hypertrophy. This may 
be one of few peptides developed or proteins found with 
this ability and can be used for cartilage repair in OA 
related cartilage loss [203, 221].

Platelet-rich plasma (PRP): PRP is a type of concen-
trated platelets, isolated by centrifuging autologous 
whole blood [222]. PRP contains hundreds of cytokines, 
adhesive proteins, small molecules, ions and abundant 
autologous growth factors. In the joint, intra-articular 

injection of PRP affects local and infiltrating cells. It 
stimulates cartilage formation and improves the symp-
toms of knee OA by regulating the microenvironment, 
cell composition and proliferation [69, 206]. Besides, 
PRP has anti-inflammatory properties through its effects 
on canonical NF-κB signaling pathway in chondrocytes 
and macrophages [223]. Its components, like TGF-β and 
PDGF, interact with cells involved in immune response 
and angiogenesis and regulate ECM’s microenvironment. 
It is, therefore, a popular candidate as a functional addi-
tive for OA therapy [69].

Fig. 3  Functional additives-based treatments and main biological mechanisms involved in OA treatment. a Common functional additives in 
OA treatment. These additives contain drugs, and cell-related additives, including cells, cytokines and peptides, PRP, genes and exosomes. b The 
main biological mechanisms of additives and their functions in OA therapy. The biological mechanisms include: 1) anti-inflammation and pain 
relief; 2) cartilage regeneration and protection; 3) modulation of osteoimmune environment. The functions include: 1) anti-inflammation; 2) 
immunoregulatory function; 3) chondrogenesis; 4) inhibition of degradation; 5) inhibition of osteoclasts; 6) pain relief; 7) adaption to mechanical 
stress; 8) cell proliferation. OA osteoarthritis, LZ and SMS Chinese medicine Lingzhi and San-Miao-San, MSCs mesenchymal stem cells, HBMSCs 
human bone mesenchymal stem cells, ASCs adipose stem cells, HUCBMSCs human umbilical cord blood derived mesenchymal stem cells, 
HUCMSCs human umbilical cord mesenchymal stem cells, CTGF connective tissue growth factor, TGF-β transforming growth factor-β, PRP 
platelet-rich plasma, IL-1Ra interleukin-1 receptor antagonist, IGF-1 insulin-like growth factor-1, Sox 9 SRY-related high mobility group-box 9, BMSC 
bone mesenchymal stem cell. It was created utilizing the templates on BioRender.com as a reference
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Table 2  Functional additives for biological functions

Categories Name Function Pre/clinic State Hydrogel References

Drugs Colchicine Anti-inflammation; Immu‑
noregulatory function

Rats Chitosan [179]

Methotrexate Pain relief; Anti-inflammation Rats HA [180]

Dexamethasone Chondrogenesis; Anti-inflam‑
mation; Inhibition of ECM 
degradation

Rats HA [181]

Ibuprofen Pain relief; Anti-inflammation Mice
Rats

Carbopol® 934; PLGA/gela‑
tin/PVA

[182, 183]

Chinese medicine Lingzhi and 
San-Miao-San

Differentiation of osteogenic; 
Anti-inflammation; Chondro‑
genesis

Rats HA [184]

Kartogenin Chondrogenesis; Cell prolif‑
eration

Rabbits
Rats

PLGA-PEG-PLGA; Gelatin [185, 186]

Hydroxychloroquine Anti-inflammation; Cell 
proliferation

Mice MMP-13/pH-responsive fer‑
ritin nanocages (CMFn)

[187]

Triamcinolone acetonide Anti-inflammation; Pain relief 
(some scholars do not recom‑
mend it)

Rats
Human

PLA/methoxy-PEG-PDL
None

[188, 189]

Simvastatin Chondrogenesis; Anti-inflam‑
mation

Mice Gelatin [156]

Chitooligosaccharide-salicylic 
acid conjugate

Antioxidation Mice Alginate, Gelatin [190]

Eicosapentaenoic acid Immunoregulatory function; 
Chondrogenesis

Mice Gelatin [191]

Cells MSCs Chondrogenesis; Inhibition of 
ECM degradation

Rats HA [192]

Human bone mesenchymal 
stem cells

Chondrogenesis Rat Gelatin [160]

Membrane-modified MSCs by 
transglutaminase 2

Chondrogenesis; Inhibition of 
ECM degradation

Rabbits N/A [193]

Adipose-derived stem cells Chondrogenesis; Pain relief Human
Rabbits

None
HA-PNIPAAm-CL

[194, 195]

Allogeneic human umbilical 
cord blood derived MSCs

Chondrogenesis Human HA [196]

Human umbilical cord mes‑
enchymal stem cells

Chondrogenesis; Immu‑
noregulatory function

Pigs HA [197]

Allogenic chondrocytes Chondrogenesis; Inhibition 
of ECM degradation; Cell 
proliferation

Human
Rabbits

Type I collagen
Chitosan

[198, 199]

Cytokines and Peptides TGF-β1, BMP-2 Chondrogenesis; Inhibition of 
ECM degradation; Inhibition 
of osteoclasts

Rabbits; Rat PCEC [200, 201]

CTGF, TGF-β3 Chondrogenesis; Inhibition of 
ECM degradation; Inhibition 
of osteoclasts

Rabbits PLGA [202]

Biphasic CK2.1 (QIKIWFQN‑
RRKWKKMVPSDPSYEDMGGC, 
95%)

Chondrogenesis Mice β-glycerophosphate chitosan [203]

Type I collagen Chondrogenesis Cells Sodium alginate [204]

Platelet lysate supplementa‑
tion

Chondrogenesis; Cell prolif‑
eration

Cells Dextran-tyramine [205]

PRP PRP Pain relief; Chondrogenesis; 
Inhibition of ECM degrada‑
tion

Rabbits, Human PRP [69, 206]
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Genes: Gene therapy is the term for delivering nucleic 
acids to the tissue of interest by viral [224] and non-viral 
vectors [225]. Combining gene transfer with hydro-
gels may provide promising tools for human tissue 
engineering and regenerative medicine strategies [49]. 
Transcription factor Sox 9 enhances differentiation of 
chondrocytes [208, 209]. In  vitro study showed that 
mRNA encoding Sox 9 strongly induced synthetic carti-
lage and the expression of muscle-specific markers [210]. 
Madry et  al. [27] prepared thermosensitive hydrogel-
based on PEO-PPO–PEO poloxamers. The hydrogels 
controllably released therapeutic (Sox 9) rAAV vectors to 
improve the repair of full-thickness chondral defects in 
minipig.

Exosomes: Exosomes are natural membrane-bound 
nanocarriers that contain diverse biomolecules such 
as proteins, lipids, and nucleic acids [226]. Exosomes 
are derived from various cells through exocytosis and 
transfer biological signals between local or distant cells, 
exhibiting a variety of biological regeneration functions 
[227]. The exosomes derived from MSC inhibit immune 
response, and enhance cartilage differentiation of pro-
genitor cells and cartilage tissue regeneration, which 
can be delivered by hydrogels [228]. They are an effec-
tive alternative treatment for OA in osteochondral tis-
sue [13, 212, 229]. A report showed that BMSC-derived 
exosomes, loaded in DOPA-modified alginate, CS, and 
regenerated silk fibroin adhesive hydrogel, could recruit 
BMSCs to migrate and expand. This promoted prolif-
eration and differentiation of BMSC, accelerating the 
regeneration of in  situ cartilage defects, and reshaping 
ECM [74]. Many studies have proved the effectiveness 
and feasibility of MSC-derived exosomes in OA therapy. 

However, there is a lack of consensus on the best method 
for obtaining high yields of pure exosomes, in addition to 
the cumbersome purification process, which adversely 
affects the potential of clinical translation [230].

Pros and cons: Compared with drugs, cell-related addi-
tives have more biological functions that promote tissue 
regeneration and reverse the OA progression. However, 
none of these additives performs up to the mark. Cells 
suffer from low viability during injection, poor cell tar-
geting, and unsatisfactory stem cell differentiation. PRP 
has large batch-to-batch variations in preparation which 
compromises the reproducibility. For gene therapy, safety 
and transfection efficiency require improvements. For 
exosomes, the lack of best method for obtaining high 
yields of pure exosomes and a cumbersome purification 
process reduces the therapeutic effects of exosomes.

Perspective and outlook
OA is a degenerative disease and one of the leading 
causes of disability worldwide. Trauma, age, genetics, 
inflammation, metabolic dysfunction, occupational fac-
tors and unhealthy living habits are related to the occur-
rence and development of OA. Tissue engineering and 
drug administration are among the most promising ther-
apeutic strategies for OA management where hydrogels 
play a pivotal role. Tissue engineering-based approaches 
have flourished in the last decade to fulfil all the needs 
for treating OA. Hence, the development of cell-free 
scaffolds like MaioRegen [231] or Trufit [232] have been 
clinically tested in articular cartilage repair with prom-
ising outcomes that can be applied in OA management. 
As a scaffold in tissue engineering, hydrogels provide 
physical support to cells while being compatible and 

Table 2  (continued)

Categories Name Function Pre/clinic State Hydrogel References

Genes IL-1Ra and IGF-1 gene Inhibition of ECM degrada‑
tion; Anti-inflammation; 
Adaptation to mechanical 
stress

Rabbits Chitosan [207]

Sox 9 gene Chondrogenesis Mice PEO and PPO [208, 209]

mRNA encoding Sox 9 Chondrogenesis Cells Gene-activated matrixes 
(GAM)

[210]

Exosome MSC-derived exosomes Anti-inflammation; Chondro‑
genesis; Immunoregulatory 
function

Rabbits
Rats

HA-NB/Gelatin
None

[211]
[212]

BMSC-derived exosomes Chondrogenesis; Inhibition of 
osteoclasts; Cell proliferation

Rats Alginate, chondroitin sulfate 
and silk fibroin

[74]

BMSC bone mesenchymal stem cell, BMP-2 bone morphogenetic protein-2, CS chondroitin sulfate, CTGF connective tissue growth factor, ECM extracellular matrix, HA 
hyaluronic acid, HA-NB o-nitrobenzyl alcohol-modified HA, IGF-1 insulin-like growth factor-1, IL-1Ra interleukin-1 receptor antagonist, MSCs mesenchymal stem cells, 
PCEC poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone), PDL poly(δ-decalactone), PEG polyethylene glycol, PEO poly(ethylene oxide), PLA polylactide, 
PLGA polylactide-co-glycolide, PPO poly(propylene oxide), PRP platelet-rich plasma, PVA polyvinyl alcohol, Sox 9 SRY-related high mobility group-box 9, TGF-β 
transforming growth factor-β, N/A not applicable
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biodegradable with porous 3D structure [233]. Although 
very promising, there are still a limited number of clini-
cal products in OA therapy, like CaReS® [234], BioSeed® 
[235] and Hyalograft® C [236]. In addition to cell viabil-
ity, scaffold biomechanics, and the method for implan-
tation, another issue is how to achieve stable or proper 
tissue adhesion and integration between the scaffolds and 
the cartilage tissue.

Topical or oral NSAIDs are the common approaches 
for managing pain and discomfort during the early stages 
of OA [3]. When the disease progresses, a more inva-
sive therapy is needed, and the intra-articular injection 
of corticosteroids or viscosupplements is used to relieve 
the patient from inflammation and pain [237]. However, 
as discussed, these additives have short half-life, and are 
eliminated from synovial fluid in less than 4 h. This leads 
to poor bioavailability and the need for higher doses with 
undesired side effects [238]. Hence, drug delivery systems 
overcoming the weakness of the free drug are of great 
interest and, and for this purpose, hydrogels, micelles 
or polymeric particles have been tested in clinical trials 
including liposome-based [239–241], PLGA-based [242], 
and HA-based [243–245] systems.

Adhesive hydrogels are promising candidates in OA 
therapy as they possess cartilage tissue-like properties 
with inherent adhesiveness. These hydrogels are used as 
tissue scaffolds, functional additive carriers, and lubri-
cants. Some of the hydrogels in clinical trials exhibit 
adhesion to tissue, like the polyacrylamide-based ones 
(Table 3).

As discussed in this manuscript, adhesive hydrogels 
improve therapeutic outcomes through offering sta-
ble integration between tissue and implants. However, 
achieving stable and strong integration in a highly humid 
environment remains a challenge. Traditional OA adhe-
sive hydrogels, with mechanical interlocking-induced 
adhesion, ‘passively’ rely on the state of cartilage tissue. 
Therefore, some newly developed ‘positive interlock-
ing methods’, including the gecko-inspired and micro-
needle-based adhesion, can be excellent alternatives for 
more stable integration. Inspired by endoparasite Pom-
phorhynchus laevis, Yang et al. [246] developed biphasic 
microneedle array that mechanically interlocked with tis-
sue through swellable microneedle tips. The needles are 
inserted to tissue in dry state, and they swell upon con-
tact with body fluids to offer mechanical interlocking. 
However, nearly all mechanical interlockings, including 
gecko and microneedle-based, need irregular surfaces or 
soft structures. Because cartilage tissue is relatively hard 
and firm, mechanical interlocking may result in limited 
adhesion. A combination of mechanical interlocking 
and intermolecular interaction can be another solution. 
Ma et al. [247] created a gecko-like adhesive and added 

a polymer coating containing catechol groups to achieve 
high underwater adhesion strength.

Intermolecular interactions integrate at molecule level. 
The double-network-based strategy is one of the strong-
est interactions. Double-network hydrogels are com-
posed of two networks with contrasting structures, which 
can promote elasticity and stiffness. They are needed 
because single-network gels are either too brittle or too 
soft [248, 249]. This strategy achieves higher adhesion 
by introducing an energy dissipation network in cohe-
sion design. Furthermore, due to energy dissipation, such 
adhesives have high bulk strength, making them mechan-
ically robust to withstand significant compressions [250, 
251].

However, because double-network-based adhesive 
hydrogels are frequently pre-made, site delivery may be 
challenging. Open surgery may be required to place the 
materials, limiting their clinical applications. They are, 
therefore, not appropriate for translation from stand-
points of production, patients, and clinicians. Given the 
strength of ‘Double-network-based technique’, one-step 
process for fabricating double-network hydrogel, with 
physical interactions created in a physiological environ-
ment, may broaden the applicability of traditional dou-
ble-network adhesive in OA therapy [252, 253]. This also 
reminds us that ease of use must be considered when 
developing adhesive hydrogels.

When designing adhesive hydrogels for OA therapy, a 
‘tuneable approach’ is suggested, recognizing these adhe-
sive hydrogels’ functions and the OA’s pathogenic state. 
For example, for lubricants or drug delivery applications, 
the adhesive hydrogels need stable adhesion under the 
stress caused by joint movement. However, for adhesive 
hydrogels that mechanically support the joints, especially 
in critically injured cartilage, higher bulk strength and 
high adhesion strength are required. The concept of liv-
ing glues produced through bacterial engineering offers 
a good way to design tuneable bioadhesives. Zhang et al. 
[254] used Bacillus subtilis with genetic engineering and 
materials science to generate tuneable living glues. The 
engineered Bacillus subtilis biofilms had adhesive com-
ponents from three marine systems including barnacle, 
mussel and sandcastle worm. By inducible enzymatic 
modification, these adhesives show tuneable adhesion 
performance. However, as OA is a highly inflamma-
tory environment, avoiding immune response caused by 
residual bacteria or bacterial secretions in living adhe-
sives may be a problem to overcome before this tech-
nique can impact OA therapy.

As OA is a disease with highly complicated patho-
genesis and multiple molecular pathways, introducing 
biological functions to the adhesive hydrogels will accel-
erate the tissue healing. Over recent years, increasing 
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evidence has shown that OA is closely associated with an 
innate immune system, which makes immunomodula-
tion important in OA therapy. Currently, there are three 
immunomodulatory strategies: autologous or allogenic 
cell delivery, genetic engineering or gene therapy for 
resident and exogenous cell population modulation, and 
biomaterial-based immunomodulation [255]. Stems cells, 
biomaterials, genes, and cytokines are reported to func-
tion as immunomodulators. Thus, from immunomodu-
lation aspect, containing those functional additives is a 
good option for the OA-targeting adhesive hydrogels sys-
tems. According to clinicaltrial.gov website, there are 179 
clinical trials testing MSCs in OA therapy, 133 using PRP, 
more than 60 testing intra-articular injection of corticos-
teroids, 24 involving gene therapy and 1 using exosomes. 
All these bioactive entities provide characteristics for 
improving OA conditions. Many, however, deal with a 
short half-life and easy clearance from the intended site, 
leading to low bioavailability. Thus, the combination of 
adhesive hydrogels and those functional additives can not 
only incorporate biofunctions to the adhesives but also 
overcome this major limitation of the existing therapies 
used in the clinic.

Diverse functional additives can be used for compl-
exation to improve therapeutic outcomes. It has been 
reported that including TGF-β1/DEX/celecoxib together 
promotes cartilage formation of human MSCs in  vitro 
and reduces OA symptoms of articular cartilage in ani-
mal models [256]. Additionally, the full articular carti-
lage defects repaired by TGF-β1/DEX/celecoxib complex 
are resurfaced by neo-tissue with similar thickness, cell 
arrangement, and color to the normal neighboring carti-
lage and abundant GAG after 12 weeks [65, 257].

Recent advances in high throughput analysis, such 
as genomics, proteomics and glycomics, can assist in 
understanding the molecular basis of OA pathogenesis 
and effects of current treatments. Additionally, clinical 
studies comparing the efficacy of the new approaches 
with traditional ones would, in the long-term, greatly 
enhance the advances in OA management. Moreover, 
studies on action mechanisms of the current adhesive 
hydrogel-based treatments will likely enable the develop-
ment of more sophisticated therapies. While information 
from mechanistic aspects is lacking, it has been reported 
that adhesive hydrogels help in pain management and 
improve the patient’s life quality [15]. Indeed, only two 
current clinical trials have focused primarily on carti-
lage and/or wound healing biomarkers (Table 3). Besides, 
there is a need for study on adhesive hydrogels about 
how different adhesion mechanisms and components 
influence the OA microenvironment. For example, the 
oxidation of phenol-modified polymers has traditionally 
been considered to provide tissue adhesion to soft tissue 

[258–260]. However, as oxidative stress is closely asso-
ciated with inflammation, the influence of the oxidants 
used during adhesive hydrogel formation should be thor-
oughly investigated. This parameter of tissue responses 
should be one of the key factors that define adhesive 
hydrogels for OA, as with adhesive strength, bursting 
pressure, swelling ratio and degradation properties.

Material science does not address the metabolic disor-
ders caused by hypoxia and metabolic syndrome which 
contribute to the progression of OA [261, 262]. The 
hypoxia-inducible factors-2α expression causes OA by 
promoting Fas-mediated chondrocyte apoptosis [261]. 
Induced by chronic excess of glucolipid metabolism, syn-
ovium secretes adipokines, such as free fatty acids, leptin, 
and adiponectin, which increase the expression of carti-
lage-degeneration-related genes in chondrocytes [262, 
263]. Reseland et al. [264] reported that leptin is released 
upon local mechanostimulation, which might be associ-
ated with osteoblastic development in subchondral bone 
remodeling. These findings can offer new pathways for 
OA therapy.

Conclusions
The functions the future adhesive hydrogel-based treat-
ment must fulfil are: 1) tuneable adhesion between 
implants and cartilage tissue according to various condi-
tions, aiming at offering rigid integration for mechanical 
stability and additives delivery; 2) biological functions 
achieved by functional additives and/or the functional 
components. While most current research attempts to 
meet these expectations, developing more clinically ori-
ented functional adhesive hydrogels in OA treatment 
needs further work. Multiple pathways are involved in 
OA, and current state of the art in adhesive hydrogel 
development is far away from true biological functional 
replacement (Fig. 1). A multimodal approach is needed to 
achieve breakthroughs in OA therapy, adhesive hydrogel 
development for clinically successful OA therapy requires 
a highly interdisciplinary framework that includes disci-
plines of chemistry, pharmaceutics, biology, and clinical 
medicine.
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