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Abstract 

The application of single-cell RNA sequencing (scRNA-seq) in biomedical research has advanced our understand‑
ing of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies. 
With the expansion of capacity for high-throughput scRNA-seq, including clinical samples, the analysis of these huge 
volumes of data has become a daunting prospect for researchers entering this field. Here, we review the workflow 
for typical scRNA-seq data analysis, covering raw data processing and quality control, basic data analysis applicable 
for almost all scRNA-seq data sets, and advanced data analysis that should be tailored to specific scientific questions. 
While summarizing the current methods for each analysis step, we also provide an online repository of software and 
wrapped-up scripts to support the implementation. Recommendations and caveats are pointed out for some specific 
analysis tasks and approaches. We hope this resource will be helpful to researchers engaging with scRNA-seq, in par‑
ticular for emerging clinical applications.
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Background
Complex tissues consist of a variety of cell types that 
occur in a huge variety of mixtures and states. The func-
tional genomic information contained within each cell 
is often quite different from the neighboring cell popu-
lations and even cells of the same type. This means that 
the molecular analyses of cell populations in bulk tissues 
are inherently unreliable and insensitive. The incredible 
sensitivity and specificity that can be achieved by quan-
tifying molecular alterations at single-cell resolution 
have led to unprecedented opportunities for uncovering 
the molecular mechanisms underlying the pathogen-
esis and progression of the disease [1]. Since its incep-
tion, single-cell RNA-sequencing (scRNA-seq) has been 
shown to be a powerful tool for profiling gene expression 
in individual cells [2–4], in both physiogenesis [5, 6] and 
pathogenesis [7–9]. For example, by utilizing scRNA-seq 
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in cancer biology [10, 11], researchers have been able 
to determine the origin of cancer cells in various tumor 
types [12, 13]. Moreover, from the treatment and progno-
sis respect, subpopulations of malignant cells with clini-
cally significant features, such as the poor prognosis in 
nasopharyngeal carcinoma with dual epithelial–immune 
characteristics have been discovered [14]. Similarly, 
strong epithelial-to-mesenchymal transition (EMT) and 
stemness signatures were observed in metastatic breast 
cancer cells [15, 16]. With the assistance of scRNA-seq, 
the quality and validity of organoid systems can also be 
accurately assessed and systematically evaluated [17–19]. 
Patient-derived organoid models are currently being 
applied to the dissection of disease pathology [20] and 
facilitating drug screening for personalized treatment 
[21, 22]. Furthermore, distinct cellular states along tumor 
progress were discovered and drug-resistant cell subsets 
were identified by joint application of patient-derived 
organoid and scRNA-seq [23, 24]. In the current coro-
navirus disease 2019 (COVID-19) pandemic, scRNA-seq 
accelerates the research for characterizing the molecu-
lar basis and, therefore, understanding the pathology of 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). A variety of scRNA-seq-based studies have 
revealed the cell subtypes targeted by SARS-CoV-2 [25], 
profiled gene expression changes in immune cells upon 
infection [26, 27], quantified the alteration of cell-to-cell 
interaction between different cell types [26, 28], and pro-
vided important resources for the development of poten-
tial treatment of COVID-19 [26, 28].

Since the emergence of commercial single-cell plat-
forms, including those offered by 10 × genomics [29, 30] 
and Singleron [31, 32], scRNA-seq services provided by 
core facilities of research institutes or third-party com-
panies, are making the technology more accessible, 
affordable and in some cases a routine technique for bio-
medical researchers and clinicians [33]. While these ser-
vice providers typically perform data quality-control and 
execute basic pipelines for data processing, the high-level 
data analysis needed for specific research objectives and 
scientific questions, is not usually available. Thus, most 
biomedical researchers need to come to grip with the full 
scope of scRNA-seq data analysis by identifying the most 
suitable computational tools to dissect their data.

To overcome the barriers in scRNA-seq data analysis, 
in particular for biomedical studies, this review aims to: 
1) summarize the recent advances in algorithm develop-
ment and benchmarking results for every analysis task in 
analyzing biomedical scRNA-seq data, and 2) introduce 
a workflow comprised of recommended software tools 
that are more appropriate for biomedical applications. 
The workflow covers basic scRNA-seq data processing, 
quality control (QC), feature selection, dimensionality 

reduction, cell clustering and annotation, trajectory infer-
ence, cell–cell communications (CCC), transcription fac-
tor (TF) active prediction and metabolic analysis. Along 
with the recommended workflow, we also provide exam-
ple computational scripts together with the software 
environment setting, which may facilitate researchers to 
conduct the data analysis locally. The computational code 
is available at https://​github.​com/​WXlab-​NJMU/​scrna-​
recom. To accommodate upcoming advanced approaches 
and more application scenarios, we will keep the compu-
tational scripts updated.

General tasks of single‑cell RNA‑seq data analysis
Typical data analysis steps of scRNA-seq can be gener-
ally divided into three stages: raw data processing and 
QC, basic data analysis applicable for almost all scRNA-
seq data sets, and advanced data analysis that should be 
tailored to specific research scenarios. While basic data 
analysis steps include data normalization and integration, 
feature selection, dimensionality reduction, cell cluster-
ing, cell type annotation and marker gene identification. 
The advanced data analysis tasks consist of trajectory 
inference, CCC analysis, regulon inference and TF activ-
ity prediction, and metabolic flux estimation.

Experimental design
ScRNA-seq experiments need to be carefully designed 
to optimize the capability in addressing scientific ques-
tions [34]. Before starting the data analysis, the following 
information related to the experiment design needs to be 
gathered. (1) Species. For biomedical studies and clini-
cal applications, human samples derived from patients 
are usually collected for sequencing [35–37]. In some 
cases, to study the underlying molecular mechanisms, 
mouse and other model organisms are also used [38]. 
Since the gene names and related data resources are dif-
ferent between humans and other species, it is important 
to specify the species for data analysis. For simplicity, we 
will focus on the data derived from human samples. (2) 
Sample origin. According to the scientific questions and 
sample accessibility, the sample types can be varied in 
different studies. For instance, to study solid tumors like 
hepatocellular carcinoma, tumor biopsies and peritumor 
samples are collected from patients for a case–control 
design [39]. Whereas the above design is feasible to some 
extent, peripheral blood mononuclear cells (PBMCs) are 
more easily accessible and widely used for scRNA-seq 
[40, 41]. In addition, cells from patient-derived organoids 
are often used to study the impact of personal genetic 
variants on the development of specific organs, which 
can also be the origin of particular diseases [42, 43]. 
Knowing the sample origin facilitates particular analy-
sis, such as cell clustering and cell type annotation. (3) 

https://github.com/WXlab-NJMU/scrna-recom
https://github.com/WXlab-NJMU/scrna-recom


Page 3 of 24Su et al. Military Medical Research            (2022) 9:68 	

Experiment design. To study disease pathogenesis and 
the effectiveness of particular treatments, a case–con-
trol design is mostly adopted, like the tumor-versus-per-
itumor design [39]. For diseases such as COVID-19, no 
normal samples can be obtained from the same patients, 
thus healthy people with matched age and gender serve 
as a control group [40]. To control possible covariates 
between the patients and the control groups, the number 
of individuals in each group needs to be carefully consid-
ered [44]. In (prospective) cohort studies, the sample size 
is usually considerably larger, so that scRNA-seq cannot 
be applied to every sample from individual donors; in this 
case, nested case–control studies [45] and sample mul-
tiplexing [46] are often applied. In general, data analysis 
strategies need to be adjusted according to the types of 
the experiment design.

Raw data processing
Raw data processing steps include: sequencing read QC, 
read mapping [47], cell demultiplexing and cell-wise 
unique molecular identifier (UMI)-count table genera-
tion [48]. Whilst standardized data processing pipelines 
are provided with the release of scRNA-seq platforms, 
such as Cell Ranger for 10 × Genomics Chromium [49] 
and CeleScope (https://​github.​com/​singl​eron-​RD/​CeleS​
cope) for Singleron’s systems, alternative tools including 
UMI-tools [48], scPipe [50], zUMIs [51], celseq2 [52], 
kallisto bustools [53], and scruff [54] can also be used 
for this procedure. The choice between these pipelines 
seems less important than the downstream steps accord-
ing to a recent study benchmarking scRNA-seq analysis 
[55]. In any case, we would not recommend raw data pro-
cessing on personal computers, as these pipelines need 
massive computational resources and are optimized for 
high-performance computing architectures [56]. Third-
party companies usually provide processed data, includ-
ing UMI count matrices and QC metrics, which enable 
the researchers to focus on downstream data analysis for 
addressing scientific questions.

QC and doublet removal
The purpose of cell QC is to make sure all the ‘cells’ being 
analyzed are single and intact cells. Damaged cells, dying 
cells, stressed cells and doublets need to be discarded 
[57, 58]. In ultrahigh-throughput scRNA-seq, quantita-
tive metrics used for bulk RNA-seq QC, including read 
mappability, fraction of reads mapped to exonic regions 
are computed at only the sample/library level, thus can-
not be used for cell QC. Instead, the three mostly used 
metrics for cell QC are: the total UMI count (i.e., count 
depth), the number of detected genes, and the fraction of 
mitochondria-derived counts per cell barcode [56, 59]. 
Cell Ranger [49] and CeleScope (https://​github.​com/​singl​

eron-​RD/​CeleS​cope) usually perform a first-round cell 
QC, which distinguishes potentially authentic cells from 
background cell barcodes by examining the distribution 
of count depth in a scRNA-seq library. One caveat is that, 
when the damaged cells or cell debris take a consider-
able proportion in the library, the threshold of a mini-
mum count depth for valid cells is hard to be determined. 
Possible solutions include the consideration of multiple 
QC metrics at the same time [56], and the application of 
more sophisticated approaches to rule out background 
and low-quality cells [60]. Typically, low numbers of 
detected genes and low count depth indicate damaged 
cells, whereas a high proportion of mitochondria-derived 
counts is indicative of dying cells. By contrast, too many 
detected genes and high count depth can be indicative of 
doublets [57, 58]. While R packages like Seurat [61–63] 
and Scater [64] implement functions to facilitate cell QC, 
the thresholds of the QC metrics are largely dependent 
on the tissue studied, cell dissociation protocol, library 
preparation protocol, etc.. Referring to publications with 
similar experiment designs would help to determine the 
thresholds, and advanced researchers may also inspect 
the joint distribution of the QC metrics. Notably, accu-
mulated expression of genes encoding ribosomal proteins 
is not a typical QC metric, as the variation of ribosomal 
protein expression can be biologically meaningful [65].

In addition, various sources of contamination need to 
be considered and controlled during the QC step. For 
example, libraries derived from PBMCs and solid tissues 
can be contaminated by red blood cells, and thus cells 
expressing a high level of hemoglobin genes (e.g., HBB) 
are usually discarded [66, 67]. Another source of con-
tamination is cell-free or ambient RNA, as evidenced by 
reads mapped back to specific genes in cell-free droplets 
or wells in high-throughput scRNA-seq [68, 69]. Meth-
ods and tools for estimating and removing such contami-
nation have been recently developed, including SoupX 
[68], DecontX [69], fast correction for ambient RNA 
(FastCAR) [70] and CellBender [71]. Removal of the 
background signal caused by ambient RNA in single-cell 
gene expression improves downstream analyses and bio-
logical interpretation [69, 71].

In high-throughput scRNA-seq experiments, it is not 
uncommon to observe a high rate of doublets, which may 
reach up to 40% of cell barcodes [72, 73]. For this reason, 
a filtering step that only considers count depth and the 
number of detected genes is not adequate, particularly 
when the cell type composition is complex such that the 
count depth distribution of singlets is not distinct from 
that of doublets. Doublets composed of distinct cell types 
are likely to confound downstream analysis, particularly 
in cell clustering, differential expression analysis, and 
trajectory inference [56, 74]. Fortunately, a number of 
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sophisticated approaches have been developed to dis-
entangle these confounding signals [72]. These meth-
ods consider the gene expression profiles of individual 
cell barcodes and report doublet scores as an indicator. 
The doublet scores are calculated based on either arti-
ficial doublets [such as single-cell remover of doublets 
(Scrublet) [74], doubletCells [75], binary classification 
based doublet scoring (bcds) [76], DoubletDetection 
[77], DoubletFinder [78], Solo [73], DoubletDecon [79]] 
or gene co-expression [such as co-expression based dou-
blet scoring (cxds) [76]]. In a recent study, benchmarking 
the available computational doublet-detection methods 
with a comprehensive set of synthetic and real data [72], 
the tool Doubletfinder [78] was recommended because 
it achieved both the highest detection accuracy and the 
best performance in downstream analysis.

Expression normalization
The variability of total UMI counts per cell depends on 
a range of both technical and biological parameters [56]. 
The technical factors relate to the efficiency of RNA 
capture, reverse transcription, cDNA amplification and 
sequencing depth, whereas the biological factors mostly 
relate to cell size and cell cycle phase. Because of this 
variation, it is almost impossible to obtain the absolute 
number of RNA molecules unless external spike-in RNA 
control is added to the sequencing libraries [80, 81]. Like 
bulk RNA-seq, relative RNA abundance is commonly 
adopted for comparing gene expression profiles between 
individual cells; therefore, scRNA-seq data are typically 
normalized by global-scaling methods with scaling fac-
tors developed for bulk RNA-seq [82–84], which suppress 
partially the technical effects [56]. Popular global-scaling 
methods for bulk RNA-seq include transcript per mil-
lion (TPM) [85], upper quartile (UQ) normalization [86], 
trimmed mean of M values (TMM) normalization [87], 
and the DESeq normalization method [88], however, 
are not appropriate for scRNA-seq due the tendency for 
distortion through zero inflation [81]. Normalization 
methods tailored for scRNA-seq, including single-cell 
differential expression (SCDE) [84] and model-based 
analysis of single-cell transcriptomics (MAST) [82], can 
specifically model dropout events in differential expres-
sion analysis of scRNA-seq data. Another approach, 
Scran [75], overcomes the issues of scaling factor estima-
tion (affected by too many zero counts) by pooling cells 
of similar gene expression profiles [89]. Moreover, Cen-
sus estimates the total number of RNA molecules per cell 
without spike-in controls and uses these estimates as the 
scaling factors [90]. While simulation studies carried out 
by Vallejos et  al. [81] suggested Scran’s pooling strategy 
outperforms compared tools in scaling factor estimation, 

the TPM-/count depth-scaling method is widely used in 
practice [91].

Following scaling factor-based normalization, the 
resulting values are typically added to one pseudo-count 
and log-transformed [56, 62]. This step is practically 
useful and statistically sound, as it mitigates the mean–
variance relationship in scRNA-seq count data and also 
reduces the skewness in expression data [56, 64]. Toward 
better variance stabilization, SCTransform was recently 
developed by the Seurat team, which applies regularized 
negative binomial regression for scRNA-seq data nor-
malization and variance stabilization [92].

Some known biological effects, such as cell cycle and 
cell stress (featured by overexpression of mitochondrial 
genes), may hinder the characterization of the particular 
biological signal of interest [56]. Hence, normalizing or 
correcting expression profiles against known biological 
may help interpret the data. For instance, correcting the 
effects of the cell cycle can improve developmental tra-
jectory reconstruction [93, 94]. The procedure account-
ing for biological effects can be achieved by scoring 
related biological features (e.g., cell cycle scores [95]), 
followed by a simple linear regression against the calcu-
lated scores as implemented in Seurat [61, 62]. In addi-
tion, dedicated tools such as single-cell latent variable 
model (scLVM)/factorial single-cell latent variable model 
(f-scLVM) [93, 96] and cell growth correction (cgCorrect) 
[97] can also be used for this purpose. Of note, correct-
ing biological effects for one particular analysis (e.g., cell 
differentiation) may unintentionally hinder the signals for 
another (e.g., cell proliferation) [56]; care should be taken 
when choosing data normalization strategies for particu-
lar analysis tasks.

Data integration
As mentioned in the ‘Experiment design’ section, bio-
medical studies usually make case versus control com-
parisons [39]. Usually, batches of samples obtained from 
different medical centers or hospitals should be inte-
grated before downstream analysis. For studies using 
patient-derived organoids, data integration also applies to 
cells harvested at different time points to depict organoid 
development [98]. In these cases, one other unwanted 
technical factor, batch effects, cannot be avoided because 
cells and library preparation were handled by different 
persons, at different time points, or with a different batch 
of reagents [91, 99]. In scRNA-seq, batch effects can be 
nonlinear, which may not be easily disentangled by state-
of-the-art batch correction tools, such as ComBat [100]. 
Therefore, numerous methods have been recently devel-
oped for batch effect correction in scRNA-seq data inte-
gration, trying to relieve or remove the effects caused by 
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batch-specific biases while preserving biological varia-
tions [56, 99]. The batch effect correction methods can 
be classified into a few categories: 1) tools developed 
for bulk expression analysis, including ComBat [100] 
and limma [101]; 2) approaches based on mutual near-
est neighbors (MNN) in high-dimensional gene expres-
sion space or its subspace, such as mnnCorrect [102], 
fastMNN [102], Scanorama [103] and batch balanced k 
nearest neighbours (BBKNN) [104]; 3) methods that try 
to align cells with correlated/shared features in dimen-
sionality-reduced spaces, including canonical correla-
tion analysis (CCA) [61, 62], Harmony [105], and linked 
inference of genomic experimental relationships (LIGER) 
[106]; and 4) methods based on deep generative models, 
such as scGen [107]. Besides, depending on the choice 
of integration anchors, the algorithms can also be sorted 
into different types, such as genomic features as the 
anchor and cells as the anchor [108].

Recently, Tran et al. [99] compared 14 batch-effect cor-
rection methods available at that time on 10 datasets 
under 5 different integration scenarios. Among them, 
Harmony [105], LIGER [106], and CCA implemented in 
Seurat 3 [62] were recommended according to their over-
all performance [99]. Together with our experience, it 
is suggested to perform data integration with Harmony, 
Seurat3/4-CCA, and LIGER in order. This is because 
there is no clear winner among the three strategies when 
dealing with distinct datasets [99]. Harmony runs faster 
than the other tools, suitable for initial exploration; 
Seurat3/4-CCA is moderate in mixing cells from differ-
ent batches, whereas LIGER makes the best efforts in 
batch mixing, sometimes at the cost of cell type purity. Of 
note, if one wants to evaluate the effectiveness of batch-
effect correction or assess the extent of the batch effects 
in the data, it can be achieved by comparing clustering 
or visualization results based on batch-effect corrected 
analysis and that from directly merging cells derived 
from multiple samples (e.g., merge function in Seurat), 
and by computing test metrics such as k-nearest-neigh-
bor batch-effect test (kBET) [91].

Feature selection
While cell QC removes background cells and problem-
atic cells, the feature section is concerning genes. In the 
human genome, more than 20,000 genes are annotated, 
and mapped reads are counted for individual gene loci to 
yield the UMI count matrix. However, not all the > 20,000 
genes are informative in characterizing cell-to-cell het-
erogeneity or distinguishing cell types/states [56]. There-
fore, the term ‘feature selection’ was borrowed from the 
fields of statistics and machine learning to describe the 

process of selecting biologically informative genes for 
downstream analysis. This process is typically unsuper-
vised, meaning that no information related to cell types 
or other biological processes of interest is needed.

Considering the relatively high noise level in scRNA-
seq data, feature selection usually identifies genes with 
stronger biological variability than technical noise [58]. 
Since the technical noise largely depends on the mean 
expression of genes [109], highly variable genes (HVGs) 
were originally identified by examining the relation-
ship between the coefficient of variation and expression 
means [58]. Due to its usefulness in reducing technical 
noise and relieving the computational demand in down-
stream analysis, such as cell clustering and dimensional-
ity reduction for visualization [110], many other tools for 
HVG identification were developed and comparatively 
evaluated [111–113]. Instead of identifying HVGs, alter-
native feature selection methods consider dropouts and 
prioritize genes with a higher-than-expected number of 
observed zeros [114].

The number of genes selected for downstream analysis 
is theoretically dependent on the complexity of cellular 
composition in the samples studied. While approaches for 
HVG identification can determine the number of HVGs 
at a given significance level, identifying a fixed number of 
HVGs is becoming popular, and typically the HVG num-
ber is between 1000 and 5000 [56]. Studies have shown 
that downstream analysis is not sensitive to the exact 
number of HVGs [110, 115]. Notably, some unfavorable 
covariates such as batch effect may distort HVG identi-
fication [82]. Therefore, HVG selection should be per-
formed after correction for the covariates. In the presence 
of batch effects, feature selection may also be conducted 
in individual samples before data integration [56].

Dimensionality reduction and visualization
With 1000–5000 HVGs selected, the dimensional-
ity of the expression data is still high, thus obstructing 
manual inspection of the dataset, such as visualization, 
clustering and cell type annotations [116]. To this end, 
the dimensions of the expression matrixes can be fur-
ther reduced by dimensionality reduction techniques, 
which project the cells from a high-dimensional space 
into a low-dimensional embedding space, and preserve 
the biological information on cell-to-cell variability [56, 
59]. The widely used methods for dimensionality reduc-
tion include principal component analysis (PCA) [117], 
non-negative matrix factorization (NMF) [118], multi-
dimensional scaling (MDS) [119], t-distributed stochastic 
neighbor embedding (t-SNE) [120] and uniform manifold 
approximation and projection (UMAP) [121].
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PCA is a general technique for dimensionality reduc-
tion and denoising, and has been widely used in scRNA-
seq data analysis [122, 123]. With the linear projection 
of the original expression matrix to its subspace, PCA 
gives the principal components (PCs) in order of signifi-
cance. While the first two or three PCs can be used for 
visualization, a few more PCs are typically retained for 
downstream analysis, such as cell clustering and trajec-
tory inference. The number of PCs for retention largely 
depends on the complexity of the dataset [59], and can be 
determined by the “elbow” method [56] or the jackstraw 
permutation-test-based method [95, 124]. Nevertheless, 
PCA cannot take into account the dropout events in the 
analysis, which leads to the development of several new 
methods. Zero-inflated factor analysis (ZIFA) is one of 
such methods based on factor analysis, which explicitly 
models the dropout characteristics and outperforms the 
comparative methods [125]. Similar to PCA, NMF is a 
linear projection method for dimensionality reduction, 
and showed robust performance in cell clustering based 
on scRNA-seq [118].

For visualization, nonlinear dimensionality reduction 
methods are more suitable, which allow a global nonlin-
ear embedding in a two-/three-dimensional space [126]. 
MDS is one of the nonlinear dimensionality reduction 
methods and preserves the distance among the cells 
in the original space [119]. However, MDS can be not 
scalable to large-scale scRNA-seq data because calcu-
lating the pairwise distances becomes computation-
ally demanding when the number of cells is huge [127]. 
Emerging evidence suggests t-SNE and UMAP are more 
suitable for scRNA-seq data, which have been widely 
used in single-cell analysis for data visualization and cell 
population identification. However, t-SNE usually suffers 
from limitations such as slow computation time for large-
scale scRNA-seq datasets [128] and global data structure 
was not preserved [121]. With advantages in the above 
two respects, UMAP currently becomes the most popu-
lar choice for dimensionality reduction. UMAP not only 
helps visualize the cell clusters but also facilitates anno-
tating the cell clusters. It is worth noting, however, that 
while UMAP strikes a balance between preserving global 
data structure and capturing local similarity, the cell-
to-cell distance in the resulted space is not preserved. 
Hence, downstream analysis like clustering and pseudo-
time inference is typically executed based on the PCA 
results with several to dozens of PCs.

Identification of cell subpopulations
One of the key applications in single-cell transcrip-
tomics is to determine cell subpopulations based on 
cell clustering or classification [129, 130]. Due to the 
high level of noise in the scRNA-seq data, applying 

dimensionality reduction approaches to scRNA-seq 
matrix data may facilitate cell clustering. Whilst PCA 
is commonly used for bulk RNA-seq, the true biologi-
cal variability of gene expression among cell subpopu-
lations may not be readily distinguished by a small 
number of PCs. To better account for this variation, 
NMF was adapted to disentangle subpopulations in 
single-cell transcriptome data [118, 131], and has been 
shown to outperform PCA with greater accuracy and 
robustness (Fig.  1). Likewise, SinNLRR was developed 
to provide robust clustering of gene expression sub-
space by non-negative and low-rank representation 
[132].

State-of-the-art clustering methods, such as the 
k-means algorithm, have also been applied to scRNA-
seq datasets, and based on this application, the sin-
gle-cell consensus clustering (SC3) approach was 
developed [133] (Fig. 1). Another category of popularly 
used methods for cell clustering in scRNA-seq is com-
munity detection methods based on a nearest-neighbor 
network for the cells [134], and was adopted and imple-
mented in the Seurat R package [61] (Fig.  1). Besides, 
the community has developed a diversity of approaches 
for cell clustering. For instance, BackSPIN takes advan-
tage of the biclustering technique to avoid unfavora-
ble pairwise comparisons in hierarchical clustering 
[135], single-cell interpretation via multikernel learn-
ing (SIMLR) is based on multi-kernel learning [136], 
clustering through imputation and dimensionality 
reduction (CIDR) [137] utilizes imputation to mitigate 
the impact of dropouts in scRNA-seq, and Single-cell 
Aggregated Clustering via Mixture Model Ensemble 
clustering (SAME-clustering) [138] ensembles cluster-
ing results from multiple methods. Nevertheless, two 
independent benchmarking studies have shown that 
SC3 and the clustering method in Seurat perform simi-
larly to each other and outperform all other compara-
tive methods [139, 140].

Similarity or distance metrics are crucial for clustering 
cells in scRNA-seq, which can be specific to experiment 
platforms or particular samples. It has been shown that, 
compared to unsupervised clustering methods, super-
vised methods for cell type identification suffered less 
from batch effects, number of cell types, and imbalance 
in cell population composition [141]. Mechanistically, 
the supervised methods rely on a comprehensive refer-
ence database with known cell types annotated, based on 
which a classification model is trained for predicting the 
cell types in an unannotated dataset [142, 143]. CellAs-
sign [144], scmap [145], single cell recognition (SingleR) 
[146], characterization of cell types aided by hierarchical 
classification (CHETAH) [147], and SingleCellNet [148] 
are methods of this category. Albeit the clear strength of 
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the supervised methods, unsupervised methods are gen-
erally better at identifying unknown cell types and have 
higher computational efficiency [141]. Therefore, the 
clustering methods implemented in Seurat have the best 
overall performance, and are suggested as the first choice 
of cell type identification [141].

Another important issue for single-cell clustering 
analysis is the detection of rare cell types, which play an 
important role in complex diseases but have a low abun-
dance. RaceID [129], GiniClust [149], SINCERA [150] 
and DendroSplit [151] are clustering algorithms specifi-
cally designed to identify rare cell types in scRNA-seq 
data analysis.

Cell type annotation
Assigning cell identities to cell subpopulations, a pro-
cess known as cell type annotation, is a critical step in 

scRNA-seq data analysis [152]. Manual annotation of cell 
types is time-consuming and potentially subjective. Thus, 
emerging computational tools have been developed for 
automatic cell type annotation [143, 152]. These compu-
tation methods usually can be classified into three main 
groups (Fig. 2).

The first type is marker gene-based, which relies on 
the availability of cell type-specific markers in public 
databases or literature. CellMarker [153] and PanglaoDB 
[154] are commonly used online resources storing the 
markers for a large variety of cell types in the tissues of 
humans and mouse. CellMarker deposits over 13,000 
cell markers of about 500 cell types of humans by manu-
ally curating over 100,000 published papers [153], and 
PanglaoDB is a community-curated cell marker com-
pendium, containing 6000 markers for different cell 
types from over 1000 scRNA-seq experiments [154]. 
Moreover, the TF-Marker database was developed for 

Fig. 1  Typical computational strategies and methods for clustering cells using scRNA-seq data. With the processed scRNA-seq data, the SC3 
approach, the Seurat clustering implementation based on the community detection method, and the NMF method are popular choices. scRNA-seq 
single-cell RNA sequencing, SC3 single-cell consensus clustering, NMF non-negative matrix factorization, PC principal component, SNN shared 
nearest neighbor, scVDMC variance-driven multitask clustering of scRNA-seq data, SIMLR single-cell interpretation via multikernel learning, UMAP 
uniform manifold approximation and projection, t-SNE t-distributed stochastic neighbor embedding
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providing cell or tissue-specific TFs and related markers 
for humans [155]. These databases are valuable resources 
for cell type annotations. Meanwhile, a number of tools 
have been developed to use the marker genes for cell 
type annotations, such as ScType [156], scSorter [157], 
semi-supervised category identification and assign-
ment (SCINA) [158], single-cell cluster-based automatic 
annotation toolkit for cellular heterogeneity (scCATCH) 
[159] and CellAssign [144]. Some of these methods apply 
sophisticated statistical models to make use of the prior 
knowledge of marker genes. For example, SCINA builds 
a semi-supervised model to exploit previously identified 
marker genes with the expectation–maximization (EM) 
algorithm [158], and CellAssign leverages a probabilis-
tic graphical model to annotate cells into predefined or 
novel cell types based on prior knowledge of cell-type 
marker genes, while accounting for batch and sample 
effects [144].

The second group of methods is reference transcrip-
tome-based, which uses cell type-labeled scRNA-seq 
datasets as input for cell type annotation, via the search 
for the best correlation between the queried data and 
the reference data. Popular tools of this group include 
CHETAH [147], scmap [145], scMatch [160] and SingleR 

[146]. The CHETAH algorithm is based on a hierarchical 
tree built by reference profiles of known cell types, and 
searches for a cell’s best annotation by stepwise travers-
ing the tree from the root node to a leaf node [147]. By 
calculating the correlation coefficients between the input 
cell and two tree branches under consideration based on 
the 200 most discriminating genes for the two branches, 
a profile score and confidence score are calculated for 
selecting tree branches to continue tree traversing. The 
SingleR approach correlates each unannotated single-
cell transcriptome with the reference transcriptomes of 
known cell types based on HVGs among cell types in the 
reference data [146]. SingleR assigns cell identity in an 
iterative manner, and in each iteration the reference set 
is reduced to refine the assignment. Notably, the compre-
hensiveness of the reference transcriptomics data is criti-
cal for this group of methods. The reference data from 
Blueprint [161], Encode [162] and the Human Primary 
Cell Atlas [163] are commonly used.

Lastly, the third group leverages supervised machine 
learning-based approaches, where classifiers trained by 
a labeled reference are then applied to predict cell types 
of unannotated cells. For instance, SingleCellNet uses 
multi-class random forest classifiers [148], automated 

Fig. 2  Typical strategies and representative methods for annotating cell subpopulations identified by scRNA-seq. In addition to manual annotation, 
which is potentially time-consuming and subjective, automated cell type annotation can be mainly sorted into three categories: marker 
gene-based, reference transcriptome-based, and supervised machine learning-based approaches. The example approach names are listed in 
the plot. scRNA-seq single-cell RNA sequencing, scCATCH single-cell cluster-based automatic annotation toolkit for cellular heterogeneity, SCINA 
semi-supervised category identification and assignment, CHETAH characterization of cell types aided by hierarchical classification, SingleR single 
cell recognition, OnClass ontology-based single cell classification, ACTINN automated cell type identification using neural networks
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cell type identification using neural networks (ACTINN) 
uses artificial neural networks [164], scPred uses support 
vector machine (SVM) [165], and scClassify uses ensem-
ble learning [166] for cell type annotation. Furthermore, 
ontology-based single cell classification (OnClass) may 
also accurately annotate cell types absent in the training 
dataset, through identifying the nearest cell type in low-
dimensional embeddings resulting from the Cell Ontol-
ogy and the unannotated cells [167].

Automated methods for cell type annotation have been 
applied in a broad range of biomedical studies, including 
cancer research. However, a recent benchmarking study 
has demonstrated that every computational method pos-
sesses specific advantages over the others under different 
scenarios [142], making it however difficult for clini-
cal users to select the appropriate tools. Integrating the 
annotation results from multiple tools may be a solution 
to the above issue, and probably achieve more accurate 
cell types annotation. Therefore, ImmCluster has been 
developed recently for immune cell clustering and anno-
tation, integrating seven reference-based and four marker 
gene-based computational methods, supported by manu-
ally curated marker gene sets [168]. Comparative studies 
have shown that ImmCluster provides more accurate and 
stable cell type annotation than individual methods [168].

Marker gene identification
Marker genes of a particular cell cluster or cell type are 
an important resource for characterizing its function. In 
reverse, as shown above, marker genes can also be used 
for cell type annotation. The typical methods to identify 
cell cluster/type-specific genes are those to identify dif-
ferentially expressed genes (DEGs) among the clusters 
based on statistical tests. For example, the scRNA-seq 
analysis pipelines Seurat [169] and SINCERA [150] use 
the nonparametric Wilcoxon’s rank-sum test to identify 
highly expressed genes of specific cell types. It has been 
shown that Wilcoxon’s rank-sum test is of low false posi-
tive rates than dedicated methods for sequencing-based 
DEG analysis [e.g., DESeq2 [170] and empirical analy-
sis of digital gene expression (DGE) in R (edgeR) [171] 
when the sample size is large [172]]. In addition, the 
nonparametric Kruskal–Wallis test was adopted in SC3 
[133] for comparisons of more than two groups of cells. 
Considering dropouts in scRNA-seq and differences in 
gene expression distribution between cell types or status, 
many other methods have been developed for marker 
genes identification, such as MAST [82], SCDE [84], and 
DEsingle [173].

There is one more category of methods, which identify 
cell-specific genes simultaneously with the process of cell 
clustering rather than a step thereafter. As introduced in 
the earlier section, BackSPIN is based on a biclustering 

approach [135], which clusters highly expressed genes 
together when clustering cells. Similarly, iterative cluster-
ing and guide-gene selection (ICGS) first identifies guide 
genes by pairwise correlation of expressed genes, and 
then performs iterative clustering with the guide genes 
[174]. Moreover, DendroSplit considers marker genes’ 
significance level in identifying sub-clusters [151]. Finally, 
statistically modeling the distribution of gene expres-
sion across individual cells, methods like variance-driven 
multitask clustering of scRNA-seq data (scVDMC) 
[175], BPSC [176] and bias-corrected sequencing analy-
sis (BCseq) [177] have been developed to improve both 
cell subtype identification and differential expression 
analysis.

Regarding the best choice of DEG tools in scRNA-seq, 
a recent study compared 36 approaches and found fun-
damental differences between the methods compared 
[178]. It has been pointed out that prefiltering of lowly 
expressed genes may help DEG analysis, and the meth-
ods used for bulk RNA-seq analysis in general have com-
parable performance to those specifically developed for 
scRNA-seq. Overall, the nonparametric Wilcoxon’s rank-
sum test ranks high in most application scenarios, except 
for complex experimental designs.

Functional enrichment analysis
To facilitate the interpretation and organization of 
marker genes identified in each cell type, functional 
enrichment analysis is commonly performed. Compu-
tational methods developed for bulk transcriptomics 
can be easily applied to this analysis, such as Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) [179]. This kind of analysis requires a hard cut-
off on statistical significance to define the marker genes; 
in contrast, the widely-used gene set enrichment analysis 
(GSEA) is a cutoff-free approach [180, 181]. GSEA begins 
with ordering genes based on differential expression sta-
tistics between cell populations of interest, followed by 
statistically assessing if a functionally meaningful gene 
set or pathway is significantly overrepresented toward 
the top or bottom of the ranked list. To facilitate GSEA 
analysis, Molecular Signatures Database (MSigDB) pro-
vides a series of annotated gene sets, including pathways 
and hallmark gene signatures [182].

Besides the above scenarios where the functional 
annotation is performed based on marker genes or dif-
ferential expression between two groups of cells, this 
analysis can also be carried out at the single-cell level. 
Single sample GSEA (ssGSEA) and gene set variation 
analysis (GSVA) [183], which are analogues to GSEA and 
designed for enrichment analysis of single bulk samples, 
have now been widely used in scRNA-seq to compute 
signature scores [184, 185]. Besides, accounting for its 
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characteristics in scRNA-seq, more specific tools includ-
ing Vision [186], Pagoda2 [187], AUCell [188], single-cell 
signature explorer (SCSE) [189] and jointly assessing sig-
nature mean and inferring enrichment (JASMINE) [190] 
have been proposed, and in general more suitable for 
signature scoring in scRNA-seq [190]. In addition, these 
signature-scoring methods can also be used for pathway 
activity inference [185].

Trajectory inference and RNA velocity
In addition to the cell-to-cell heterogeneity that can be 
captured by scRNA-seq, the dynamics of transcriptomes 
may also reflect the developmental trajectory or cell state 
transitions. Trajectory inference [191], pseudo-time esti-
mation [192], and RNA velocity modeling [193] are all 
helpful to reveal molecular characteristics and regulatory 
mechanisms during cell differentiation or activation.

Trajectory inference is a popular research field in the 
past years, with approximately a hundred computational 
tools developed [191], facilitating studies in developmen-
tal biology, as well as cancer development and immune 
response status alterations. Furthermore, applying this 
category of methods may also facilitate the objective 
identification of new cell types [194], and the inference 
of regulatory networks during the development or status 
transition [188]. According to the types of trajectories, 
the trajectory inference methods can also be classified 
into different categories, including linear methods [e.g., 
SCORPIUS [195], tools for single cell analysis (TSCAN) 
[196], Wanderlust [197]], bifurcating methods [e.g., dif-
fusion pseudotime (DPT) [198], Wishbone [199]], multi-
furcation methods [e.g., FateID [200], STEMNET [201], 
mixtures of factor analysers (MFA) [202]], tree meth-
ods (e.g., Slingshot [203], scTite [204], Monocle [205]), 
and graph methods [e.g., partition-based graph abstrac-
tion (PAGA) [206], rare cell type identification (RaceID) 
[129], selective locally linear inference of cellular expres-
sion relationships (SLICER) [207]]. Currently, the trajec-
tory inference methods are maturing, particularly for the 
linear and bifurcating methods [191]. Based on a recent 
benchmarking study, guidelines for practical applica-
tions are given so that biomedical researchers can choose 
the appropriate methods according to prior knowledge 
on the expected topology in the data [191]; otherwise, 
PAGA, Monocle, RaceID, and Slingshot are recom-
mended for an initial investigation.

Per existing biological knowledge on the starting point 
of inferred developmental or transition trajectory, cells 
along the trajectory can be ordered in a pseudo-tempo-
ral order. If there are bifurcation, multifurcation, or tree 
structures in the trajectory, multiple routes should be 
applied to go through tree branches separately. In this 
manner, it is easy to investigate gene expression dynamics 

along the pseudo time. Methods have been developed 
to conduct the trajectory-/pseudotime-based differen-
tial expression analysis [208, 209], which may reveal the 
dynamic regulation of lineage/status specification.

An alternative way to capture transcriptome dynamics 
is to use RNA velocity, which is based on the relationship 
between matured and unmatured transcripts (i.e., with 
unspliced introns) in the same cell. If there are relatively 
more unspliced transcripts in a cell, the gene is under 
upregulation, and vice versa. Jointly quantifying the 
ratio between matured and unmatured transcripts, and 
the gene expression changes during status changes, the 
direction of cell transition can be thus determined [192]. 
This rationale has been realized in the first RNA veloc-
ity method Velocyto [210], and improved in the follow-
up method scVelo, where a likelihood-based dynamical 
model was adopted [211]. Furthermore, recently devel-
oped methods [212, 213] have combined RNA velocity 
with trajectory inference, resulting in directed trajectory 
inference independent of prior knowledge. For instance, 
CellRank takes advantage of both the robustness of tra-
jectory inference and the directional information from 
RNA velocity, enabling the detection of previously 
unknown trajectories and cell states [212]. CellPath is 
another method integrating single-cell gene expression 
dynamics and RNA velocity information for trajectory 
inference [213].

Cell–cell communications
CCC events play important roles in organism develop-
ment and homeostasis, as well as disease generation and 
progression. For example, tumor microenvironments are 
complex ecosystems composed of tumor cells, stromal 
cells and a variety of immune cells, such that abnormal 
or disrupted communication among these cells may pro-
mote tumor growth. To this end, various computational 
tools have been developed to infer CCC using scRNA-seq 
data [214]. The communication between cells commonly 
depends on ligand-receptor (LR) interactions, which are 
usually quantified by LR co-expression.

To facilitate the above investigation, known ligand-
receptor interactions (LRIs) have been manually curated 
and deposited in databases (Fig.  3a). To date, there 
are quite a few LRI databases, including CellPhoneDB 
[215], ICELLNET [216], CellTalkDB [217], SingleCell-
SignalR [218] and Omnipath [219]. The last updated 
CellPhoneDB (version 4) includes nearly 2000 high-
confidence interactions between ligand and receptor 
proteins, as well as heteromeric protein complexes [215, 
220]. CellTalkDB is another comprehensive LRI database 
in humans and mouse, including 3398 human LR pairs 
and 2033 mouse LR pairs [217]. Meanwhile, scRNA-seq 
data are processed using methods mentioned previously 
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for cell clustering and annotation (Fig.  3b). Integrat-
ing the annotated scRNA-seq data with known LRIs, 
sample-specific LR scores are typically calculated, quan-
tifying the interaction potential. Based on LR co-expres-
sion, there are a few categories of LR scoring functions 
[221], including expression thresholding, expression 
correlation, expression product, and a combination of 
differential expression [222]. For example, Camp et  al. 
[223] only considered LR pairings if the expression val-
ues of both the ligand and receptor were above a certain 
threshold [log2(FPKM) ≥ 5]. By contrast, the method 

SingleCellSignalR is based on the product of LR gene 
expression levels [218].

Recently, computational methods for predicting CCC 
based on scRNA-seq data have been continuously devel-
oped [221]. The CCC inference tools can be categorized 
into three main classes according to their special fea-
tures (Fig.  3c), that is network-based, machine learn-
ing-based and spatial information-based approaches 
[221]. Network-based approaches, including NicheNet 
[224], cell–cell communication explorer (CCCExplorer) 
[225], scConnect [226] and network analysis toolkit for 

Fig. 3  The data resources, computational pipelines, and visualization methods used for cell–cell communication (CCC) inference with scRNA-seq 
data. Typical analysis steps include the collection of ligand-receptor pairs (a), cell clustering and annotation in scRNA-seq (b), computational 
prediction of CCC (c), followed by results visualization and downstream analysis (d). The CCC inference tools can be categorized into three main 
classes: network-based, machine learning-based and spatial information-based approaches. LRI ligand-receptor interaction, scRNA-seq single-cell 
RNA sequencing, CCCExplorer cell–cell communication explorer, NATMI network analysis toolkit for multicellular interactions, histoCAT histology 
topography cytometry analysis toolbox, SoptSC similarity matrix-based optimization for single-cell data analysis, PyMINEr Python maximal 
information network exploration resource, Squidpy spatial quantification of molecular data in Python
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multicellular interactions (NATMI) [227], leverage the 
connection network between genes to predict CCC. For 
instance, NicheNet integrates single-cell expression data 
with prior knowledge of signaling pathways and gene 
regulatory networks [224], featured by the application 
of personalized PageRank algorithm, which was used 
to calculate ligand–target regulatory potential scores 
[228]. Various types of machine learning algorithms are 
adopted in the machine learning-based approaches, 
such as SingleCellSignalR [218], similarity matrix-based 
optimization for single-cell data analysis (SoptSC) [229] 
and Python maximal information network exploration 
resource (PyMINEr) [230]. Besides, reference compo-
nent analysis (RCA)-CCA [231], linear regression [232] 
and decision tree classifiers [233] were also used for CCC 
prediction. Cell localization in space or spatial proximity 
between cells is the prerequisite of CCC; hence, account-
ing for spatial information would improve the accuracy 
of CCC inference. With the rapid development of spatial 
transcriptomics, many CCC inference approaches inte-
grate scRNA-seq data with spatial transcriptomic and/
or image data for identifying CCC. CellTalker scored 
communication among cell types by counting the num-
ber of LRIs, which was then assessed by spatial proximity 
between cells using image data [234]. In addition, spatial 
quantification of molecular data in Python (Squidpy) 
[235] and histology topography cytometry analysis tool-
box (histoCAT) [236] provide analysis frameworks for 
spatial omics data, where intercellular communication 
can be investigated through cellular proximity or neigh-
borhood analysis. Moreover, the authors of CellChat take 
the spatial information as the gold standard to evaluate 
different CCC inference approaches, and showed that 
CellChat performs better at predicting stronger interac-
tions [237]. Finally, the inference results are usually visu-
alized by heatmap, circus plot, Sankey plot and bubble 
plot (Fig. 3d).

The emerging computational methods for identifying 
CCC have improved our understanding of the micro-
environment for disease development. However, all the 
methods depend on prior knowledge of LRIs and statisti-
cal or machine learning models to predict potential CCC 
events. Alternatively choosing LRI resources and predic-
tion approaches may result in different results, yet the 
impact of the choice on the results is largely unknown. 
To address this issue, one recent study systematically 
compared 16 resources and 7 methods for CCC infer-
ence, as well as the consensus of the compared methods 
[214]. The comparison demonstrated that different LRI 
resources covered a varying fraction of the collective 
prior knowledge, and the predicted CCC were largely 
inconsistent with each other, suggesting the need for 

continued efforts to improve CCC-inference resources 
and tools.

Regulon inference and TF activity prediction
TFs play essential roles in gene expression regulation, 
and are involved in various physiological and pathologi-
cal processes of humans [238]. It has been realized in 
scRNA-seq to identify co-expression modules that were 
directly regulated by TFs of interest, and these modules 
were defined as regulons [188]. Therefore, it has been 
made possible to chart the cell type-specific regulons and 
to reconstruct regulation-based regulatory networks in 
individual cells (Fig. 4).

One important resource in recognizing regulons is the 
TF-target databases. The Animal Transcription Factor 
DataBase (AnimalTFDB) [239], JASPAR [240], transcrip-
tional regulatory relationships unravelled by sentence-
based text-mining (TRRUST) [241], KnockTF [242], and 
Cistrome Data Browser (Cistrome DB) [243] are widely 
applied TF annotation databases, covering most human 
and mouse TFs. Based on these databases, a simple way 
to build cell type-specific transcriptional regulatory net-
works is to identify up-regulated TFs and/or differentially 
expressed TF-target genes. For instance, a recent scRNA-
seq study identified differentially expressed TFs based on 
AnimalTFDB TF annotation, and revealed that the reac-
tivation of TFs expressed in fetal epithelium may be the 
cause of Crohn’s disease [244].

Integrating single-cell gene expression and the com-
prehensive TF-target information, there have been many 
methods developed for inferring regulons and TF activity. 
Coexpression analysis, such as weighted gene co-expres-
sion network analysis (WGCNA) [245], has been widely 
used in bulk samples to detect gene modules that likely 
are regulated by the same TF(s). Recently, this approach 
has also been applied to scRNA-seq data, to discover, for 
example, the gene modules whose expression changed 
significantly over the course of HIV infection [246]. The 
single cell regulatory network information and cluster-
ing (SCENIC) method is the earliest method for regulon 
inference based on scRNA-seq data [188], and has now 
been used to study regulatory networks of many diseases 
such as cancer and COVID-19 [247, 248]. In SCENIC, co-
expression modules between TFs and their target genes 
are first inferred with machine learning methods such as 
random forest regression, followed by regulon identifica-
tion through TF’s binding motif analysis, and only their 
direct targets in the co-expression modules are kept to 
form the regulons. Finally, binarized scores are calculated 
to indicate TF’s activity in each cell. The other meth-
ods, including SCODE [249] and SINCERITIES [250], 
take advantage of the pseudo-temporal information 
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reconstructed in scRNA-seq and infer TF-target regula-
tory networks based on ordinary differential equations 
or stochastic differential equation models. Moreover, 
machine learning techniques have also been applied for 
transcriptional regulation analysis. For example, while 
SIGNET [251] adopts multiple-layer perceptron bagging 
to identify regulons, DeepDRIM [252] utilizes supervised 
deep neural network to reconstruct gene regulatory net-
works. In particular, DeepDRIM is shown to be tolerant 
to dropout events in scRNA-seq and identify distinct 
regulatory networks of B cells in COVID-19 patients with 
mild and severe symptoms.

Despite many methods developed for gene regulation 
analysis based on scRNA-seq, a rigorous judgment on the 
inferred results needs to be made, due to the complexity 
of transcriptional regulation and the insufficient informa-
tion provided by scRNA-seq data. Performing validation 

experiments may make the inferred results more solid 
[253, 254].

Metabolic analysis
Metabolism is at the core of all biological processes, and 
metabolic dysregulation is a hallmark of many diseases 
including cancer, diabetes, and cardiovascular disease 
[255]. Although single-cell metabolomics technologies 
are under rapid development, they are now too prema-
ture for large-scale applications [256]. Instead, metabolic 
analysis based on single-cell transcriptomics is a prom-
ising alternative approach. For example, researchers may 
use scRNA-seq to monitor the gene expression changes 
of key metabolic genes under different treatments [257] 
or during important physiological/pathological processes 
[258].

Fig. 4  Different strategies and approaches developed for regulon inference and TF activity prediction with scRNA-seq. To achieve regulon and TF 
activity prediction, the TF databases and TF-target databases are important resources, and the computational strategies include co-expression gene 
module identification, dynamic and stochastic modeling of TF versus target expression changes, and application of machine learning approaches. 
TF transcription factor, scRNA-seq single-cell RNA sequencing, AnimalTFDB Animal Transcription Factor DataBase, Cistrome DB Cistrome Data 
Browser, WGCNA weighted gene co-expression network analysis, SCENIC single cell regulatory network information and clustering, TRRUST 
transcriptional regulatory relationships unravelled by sentence-based text-mining
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The computational tools for scRNA-seq-based meta-
bolic analysis can be classified into two major categories: 
pathway-based analysis and flux balance analysis (FBA)-
based methods [256] (Fig.  5). For the first category, the 
standard functional enrichment analysis approaches are 
generally used (refer to the subsection entitled Functional 
enrichment analysis). In particular, the R package scMe-
tabolism provides an integrated framework for quantita-
tive analysis of metabolic pathway activity in scRNA-seq, 
with the ability to account for dropouts, and compatible 
with multiple tools designed for single-cell functional 
enrichment analysis [259], including ssGSEA [183, 184], 
Vision [186], and AUCell [188].

The other category is the FBA-based methods, where 
constraint-based mathematical models are utilized to sys-
tematically simulate metabolism in reconstructed meta-
bolic networks [260]. The reconstruction of metabolic 
networks is usually based on curated databases, such 
as Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[261] and Reactome [262]; thereafter, FBA computes 
static metabolic fluxes in the system with constraints 
on the input and output fluxes satisfied [263]. Expres-
sion levels of individual enzymes in single cells may not 
directly affect metabolic fluxes in the networks, because 
they are mostly dependent on the network topology and 
constraints [256]. To our knowledge, single-cell flux bal-
ance analysis (scFBA) was the first computational tool 
that combines scRNA-seq data and FBA to estimate sin-
gle-cell fluxomes [264]. Later, Compass [265] and single-
cell flux estimation analysis (scFEA) [255] were proposed. 
Compass is based on Recon2’s reconstruction of human 
metabolism [266] and solves constraint-based optimi-
zation problems with linear programming, to score the 
potential activity of each metabolic reaction in individual 
cells [265]. By contrast, scFEA introduces a probabilistic 
model to consider the flux balance constraints, a multi-
player neural network to model the nonlinearity of flux 
changes and enzymatic gene expression changes, and 
a graph neural network to solve the optimization prob-
lem [255]. The analysis result by scFEA enables a variety 
of biologically meaningful downstream analysis, such as 
cell–cell metabolic communications.

A collected resource for scRNA‑seq data analysis 
with biomedical applications
With the above overview of the analysis steps and tools 
for scRNA-seq data, this review may help biomedical 
researchers to design the data processing and analy-
sis frameworks. However, it would still be challenging 
for researchers without a bioinformatics background to 
implement the analysis tasks for their data. For instance, 
scRNA-seq data analysis requires the installation of 
specific software tools and running through the scripts 

written in programming languages such as R and Python. 
To this end, we collected a range of widely-used software 
tools in scRNA-seq, and provided practical guidance for 
installing and running through the analysis with simple 
commands. The software collection, practical examples, 
brief description of the analysis results are available at 
https://​github.​com/​WXlab-​NJMU/​scrna-​recom. Nota-
bly, due to time and space constraints, we are unable to 
incorporate all popular tools into the analysis pipelines 
on the GitHub site; however, we provide a list of cur-
rently available tools with accessible links for users’ con-
venience (Additional file 1: Table S1). We are also open to 
suggestions from the community and will adjust the pipe-
lines accordingly. Currently, there are still a few research 
domains in scRNA-seq data analysis that are under posi-
tive development, we will keep updating related software 
and adjusting the scripts to implement the favorable pro-
gress made in these research domains.

Discussion
Focusing on single-cell transcriptomics, we have 
reviewed almost all respects of typical analysis of scRNA-
seq data, ranging from QC, basic data processing, to 
high-level analysis including trajectory inference, CCC 
estimation and metabolic analysis. To facilitate research-
ers conducting the analysis on their data, we have con-
structed an online software/script repertoire for these 
analysis steps, and will keep it updated to cover more 
research scenarios. We also offer a step-by-step com-
mand line interface (CLI) for wrapping up the R and 
Python scripts for scRNA-seq analysis. The step-wise 
commands can be flexibly combined and tailored for spe-
cific applications due to the diversity on scientific ques-
tions and experimental design. Moreover, incorporating 
cutting-edge technologies, the analysis steps reviewed 
above may not cover every specifically required task. 
Indeed, additional analysis pipeline (https://​github.​com/​
WXlab-​NJMU/​scPol​ylox) was necessary to process the 
scRNA-seq data for identifying Polylox transcript vari-
ants in lineage tracing [267].

In this review, we did not mention the task for gene 
expression imputation aiming to alleviate the impact of 
the well-known dropout issue in scRNA-seq [268]. This 
is because all the analyses reviewed in this article can be 
carried out without data imputation, and moreover one 
comparative study reported that the imputation results 
did not improve downstream analysis compared to no 
imputation [269]. Nevertheless, expression data imputa-
tion may help when the expression diversity of impor-
tant genes or gene pairs needs to be investigated [270]. 
Additionally, the data integration step for removing the 
effect of covariants can also be optional. For instance, in 
a complex experimental design where tumor tissues and 

https://github.com/WXlab-NJMU/scrna-recom
https://github.com/WXlab-NJMU/scPolylox
https://github.com/WXlab-NJMU/scPolylox


Page 15 of 24Su et al. Military Medical Research            (2022) 9:68 	

Fig. 5  Two main types of metabolic analysis within scRNA-seq: pathway-based functional enrichment analysis and flux balance analysis of 
metabolic flow. While the former makes use of standard functional enrichment analysis, and the latter utilizes constraint-based mathematical 
models to systematically simulate metabolism in metabolic networks. Methods including scFBA, Compass, and scFEA employed different 
implementation strategies for flux balance analysis of metabolic flow. FBA flux balance analysis, KEGG Kyoto Encyclopedia of Genes and Genomes, 
UMAP uniform manifold approximation and projection, scRNA-seq single-cell RNA sequencing, scFBA single-cell flux balance analysis, scFEA 
single-cell flux estimation analysis, PCA principal component analysis
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peritumor tissues are collected from liver cancer patients 
of different cancer subtypes, the strategies to integrate 
the datasets may be different depending on whether the 
common feature of the liver cancer or the subtype-spe-
cific feature is interesting.

Previous research has classified the downstream 
scRNA-seq data analysis methods into cell-level and 
gene-level analysis [56], which is intuitive and helpful 
for understanding. While cell-level analysis is typically 
concerned with the cell composition of given tissues or 
samples, gene-level analysis focuses on gene expression 
differences and heterogeneity. As a result, cell cluster-
ing for subpopulation identification, trajectory analysis, 
and CCC inference are examples of cell-level analysis, 
whereas differential expression, functional enrichment 
analysis, regulon inference, and metabolic flux analysis 
are primarily concerned with gene-level information. In 
contrast to bulk RNA-seq, single-cell RNA-seq allows 
for cell-level analysis with unprecedented accuracy and 
throughput, which in turn inspires a few types of gene-
level analysis, such as marker gene identification and 
gene expression dynamics along inferred trajectories.

One more important point in scRNA-seq data analysis 
is data presentation and interpretation. Although there 
are no standard protocols for presenting and interpret-
ing the analysis results, these procedures directly link 
the data with scientific conclusions. In particular, choos-
ing the most appropriate plots would make the message 
conveyed more straightforwardly. For instance, if one 
wants to compare the expression levels of a particular 
gene between tumor and peritumor samples, violin plots 
showing the two distributions of the expression levels 
would be more appropriate than t-SNE or UMAP visu-
alizing individual cells with color scales indicating the 
expression levels. Moreover, using t-SNE or UMAP visu-
alization to compare the composition of cell origins (e.g., 
from tumor samples or peritumor samples) in a cell sub-
type of interest might be misleading, although it is more 
intuitive. This is because massive cells are usually profiled 
in a scRNA-seq experiment, and consequently cell points 
can be buried by some others in the two-dimensional 
visualization. Other types of plots that directly and more 
quantitatively demonstrate the composition would be 
more suitable.

Many other aspects of scRNA-seq data analysis 
are advancing rapidly. ScAPAtrap [271], Sierra [272], 
dynamic analysis of alternative polyadenylation (APA) 
from single-cell RNA-seq (scDaPars) [273], SCAPTURE 
[274], and single cell alternative polyadenylation using 
expectation–maximization (SCAPE) [275], for example, 
take advantage of the fact that sequencing reads in 3’ tag-
based scRNA-seq are distributed near the polyadenta-
tion sites of individual transcripts to analyze alternative 

polyadentation and differential usage of 3’UTR isoforms 
between cells or cell types. Alternative UTR isoform 
usage is an important post-transcriptional regulatory 
mechanism in many physiological and pathological pro-
cesses, affecting the rate of RNA degradation and the 
status of translation [276, 277]. Currently, many research 
groups have been combining scRNA-seq with long-read 
sequencing technologies to enable high-confidence iso-
form profiling at the single-cell level [278–280]. Such 
studies have paved the way for the examination of alter-
native splicing and transcript fusions between cells and/
or cell types, as well as during the progression of diseases 
[278].

In addition to gene expression regulation by TFs, trans-
factors like RNA binding proteins (RBPs) and microR-
NAs typically bind to the 3’UTR of genes to modulate 
RNA stability, which also contributes to cellular RNA 
concentration. Based on collections of RBP and micro-
RNA target genes [281, 282], RBP and microRNA regu-
lons can be investigated similarly to the TF regulons 
[283] in scRNA-seq. In fact, this kind of co-expression 
module-based analysis can be extended to the examina-
tion of cellular signaling pathway activities. Furthermore, 
in conjunction with CCC inference [214] and ligand–
target regulatory potential scores [224], the activation 
of certain signaling pathways may also be inferred using 
scRNA-seq data.

Very recently, Live-seq has been developed to convert 
scRNA-seq from an end-point type assay to a temporal 
analysis workflow, by keeping cells alive while extract-
ing RNA from individual cells [284]. It is anticipated 
that Live-seq will address a number of additional bio-
logical questions beyond scRNA-seq. In addition, other 
sequencing-based single-cell profiling technologies 
are under rapid development. Aiming at better under-
standing the dysregulation of altered gene expression 
in diseases conditions, single-cell assay for transposase-
accessible chromatin using sequencing (ATAC-seq) 
[285], single-cell DNA methylation profiling [286], and 
single-cell Hi-C [287] are all useful to dissect the under-
lying regulatory mechanisms from different angles at 
the single-cell resolution. Algorithms have also been 
developed to integrate these multimodal single-cell data 
[63], capable of better resolving cell states and defining 
novel cell subtypes. Moreover, single-cell multi-omics 
approaches enable simultaneously profiling a couple of 
omics in identical cells [288], providing information on 
both regulatory elements and consequential gene expres-
sion levels for individual cells. The datasets generated 
by these technologies may help biomedical researchers 
to discover disease-specific regulatory programs, pos-
sibly in the subset of certain cell types [289]. Further-
more, although still in the developmental stage, spatial 
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transcriptomics is a promising technique for considering 
the cellular context in characterizing molecular features 
of a particular cell [290]. With ever-increasing resolution 
in spatial transcriptomics, we anticipate gaining more in-
depth knowledge in analyzing cell microenvironment and 
cell–cell interactions in health and disease. Collectively, 
with technologies continuously advancing, especially 
those that resolve molecular properties and interactions 
at the single-cell resolution, we will be able to better 
understand the pathogenesis of a variety of diseases and 
enable personalized therapies in the near future.

Abbreviations
AnimalTFDB: Animal Transcription Factor DataBase; ACTINN: Automated cell 
type identification using neural networks; APA: Alternative polyadenylation; 
ATAC-seq: Assay for transposase-accessible chromatin using sequencing; 
BBKNN: Batch balanced k nearest neighbours; bcds: Binary classification based 
doublet scoring; Bcseq: Bias-corrected sequencing analysis; CCA​: Canonical 
correlation analysis; CgCorrect: Cell growth correction; CCC​: Cell–cell com‑
munications; CHETAH: Characterization of cell types aided by hierarchical 
classification; Cistrome DB: Cistrome Data Browser; CIDR: Clustering through 
imputation and dimensionality reduction; CLI: Command line interface; 
COVID-19: Coronavirus disease 2019; cxds: Co-expression based doublet scor‑
ing; DAVID: Database for Annotation, Visualization, and Integrated Discovery; 
DEGs: Differentially expressed genes; DGE: Digital gene expression; DPT: Diffu‑
sion pseudotime; EMT: Epithelial-to-mesenchymal transition; EM: Expectation-
maximization; f-scLVM: Factorial single-cell latent variable model; FastCAR​
: Fast correction for ambient RNA; FBA: Flux balance analysis; GSEA: Gene set 
enrichment analysis; GSVA: Gene set variation analysis; HVGs: Highly variable 
genes; HistoCAT​: Histology topography cytometry analysis toolbox; ICGS: Itera‑
tive clustering and guide-gene selection; JASMINE: Jointly assessing signature 
mean and inferring enrichment; kBET: k-nearest-neighbor batch-effect test; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; LR: Ligand-receptor; LRI: 
Ligand-receptor interaction; LIGER: Linked inference of genomic experimen‑
tal relationships; MAST: Model-based analysis of single-cell transcriptomics; 
MSigDB: Molecular Signatures Database; MDS: Multi-dimensional scaling; 
MFA: Mixtures of factor analysers; MNN: Mutual nearest neighbors; NATMI: 
Network analysis toolkit for multicellular interactions; NMF: Non-negative 
matrix factorization; OnClass: Ontology-based single cell classification; PAGA​
: Partition-based graph abstraction; PBMCs: Peripheral blood mononuclear 
cells; PCA: Principal component analysis; PCs: Principal components; PyMINEr: 
Python maximal information network exploration resource; QC: Quality con‑
trol; RaceID: Rare cell type identification; RCA​: Reference component analysis; 
RBPs: RNA binding proteins; SCINA: Semi-supervised category identification 
and assignment; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 
2; SCAPE: Single cell alternative polyadenylation using expectation–maximiza‑
tion; SingleR: Single cell recognition; SCENIC: Single cell regulatory network 
information and clustering; SCSE: Single-cell signature explorer; ssGSEA: Single 
sample GSEA; SAME-clustering: Single-cell Aggregated Clustering via Mixture 
Model Ensemble clustering; scCATCH: Single-cell cluster-based automatic 
annotation toolkit for cellular heterogeneity; SC3: Single-cell consensus 
clustering; scDaPars: Dynamic analysis of APA from single-cell RNA-seq; SCDE: 
Single-cell differential expression; scFBA: Single-cell flux balance analysis; 
scFEA: Single-cell flux estimation analysis; scLVM: Single-cell latent variable 
model; Scrublet: Single-cell remover of doublets; scRNA-seq: Single-cell RNA 
sequencing; scVDMC: Variance-driven multitask clustering of scRNA-seq data; 
SIMLR: SAingle-cell interpretation via multikernel learning; SLICER: Selective 
locally linear inference of cellular expression relationships; SNN: Shared nearest 
neighbor; SoptSC: Similarity matrix-based optimization for single-cell data 
analysis; Squidpy: Spatial quantification of molecular data in Python; SVM: Sup‑
port vector machine; TSCAN: Tools for single cell analysis; t-SNE: t-distributed 
stochastic neighbor embedding; TF: Transcription factor; TPM: Transcript per 
million; TMM: Trimmed mean of M values; TRRUST: Transcriptional regulatory 
relationships unravelled by sentence-based text-mining; UMAP: Uniform 

manifold approximation and projection; UMI: Unique molecular identifier; UQ: 
Upper quartile; WGCNA: Weighted gene co-expression network analysis; ZIFA: 
Zero-inflated factor analysis.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40779-​022-​00434-8.

Additional file 1. Table S1: Tools for analyzing single-cell RNA-seq data, 
with references and links.

Acknowledgements
Not applicable.

Authors’ contributions
XW and YSL conceived the project. MS constructed the online repository of 
software and scripts. TP, QZC, WWZ, YG, GX, QZS, SL, HYY, YZ, and XW collected 
the literature and drafted the manuscript. MJC, XH, CJJ, SCF, and XL com‑
mented on the manuscript. MS, MJC, YSL, and XW revised the manuscript. All 
authors read and approved the final manuscript.

Funding
This work was supported by the National Key Research and Development 
Program of China (2022YFC2702502), the National Natural Science Foun‑
dation of China (32170742, 31970646, and 32060152), the Start Fund for 
Specially Appointed Professor of Jiangsu Province, Hainan Province Science 
and Technology Special Fund (ZDYF2021SHFZ051), Hainan Provincial Natural 
Science Foundation of China (820MS053), the Start Fund for High-level Talents 
of Nanjing Medical University (NMUR2020009), Marshal Initiative Funding of 
Hainan Medical University (JBGS202103), Hainan Province Clinical Medical 
Center (QWYH202175), Bioinformatics for Major Diseases Science Innovation 
Group of Hainan Medical University, and Shenzhen Science and Technology 
Program, China (JCYJ20210324140407021).

Availability of data and materials
The online repository of software and wrapped-up command line interface 
(CLI) is available at https://​github.​com/​WXlab-​NJMU/​scrna-​recom.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 
Nanjing 211166, China. 2 College of Biomedical Information and Engineer‑
ing, the First Affiliated Hospital of Hainan Medical University, Hainan Medical 
University, Haikou 571199, Hainan, China. 3 College of Bioinformatics Science 
and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, 
China. 4 Department of Immunology, Nanjing Medical University, Nan‑
jing 211166, China. 5 Department of Laboratory Medicine, Women and Chil‑
dren’s Hospital of Chongqing Medical University, Chongqing 401174, China. 
6 Baylor College of Medicine, Houston, TX 77030, USA. 7 Shenzhen Institute 
for Advanced Study, University of Electronic Science and Technology of China, 
Shenzhen 518110, Guangdong, China. 8 School of Biomedical Sciences 
and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, 
University Drive, Callaghan, NSW 2308, Australia. 9 Precision Medicine Research 
Program, Hunter Medical Research Institute, New Lambton Heights, NSW 
2305, Australia. 

https://doi.org/10.1186/s40779-022-00434-8
https://doi.org/10.1186/s40779-022-00434-8
https://github.com/WXlab-NJMU/scrna-recom


Page 18 of 24Su et al. Military Medical Research            (2022) 9:68 

Received: 27 September 2022   Accepted: 18 November 2022

References
	 1.	 Sklavenitis-Pistofidis R, Getz G, Ghobrial I. Single-cell RNA sequencing: 

one step closer to the clinic. Nat Med. 2021;27(3):375–6.
	 2.	 Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based 

technologies will revolutionize whole-organism science. Nat Rev Genet. 
2013;14(9):618–30.

	 3.	 Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The 
technology and biology of single-cell RNA sequencing. Mol Cell. 
2015;58(4):610–20.

	 4.	 Nawy T. Single-cell sequencing. Nat Methods. 2014;11(1):18.
	 5.	 Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to 

understand developmental processes and cell fate decisions. Mol Syst 
Biol. 2018;14(4):e8046.

	 6.	 Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, 
et al. The dynamics of gene expression in vertebrate embryogenesis at 
single-cell resolution. Science. 2018;360(6392):eaar5780.

	 7.	 Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A 
cancer cell program promotes T cell exclusion and resistance to check‑
point blockade. Cell. 2018;175(4):984-97.e24.

	 8.	 Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, Perales-Paton J, 
et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 
2021;589(7841):281–6.

	 9.	 Bossel Ben-Moshe N, Hen-Avivi S, Levitin N, Yehezkel D, Oosting M, 
Joosten LaB, et al. Predicting bacterial infection outcomes using single 
cell RNA-sequencing analysis of human immune cells. Nat Commun. 
2019;10(1):3266.

	 10.	 Li Y, Jin J, Bai F. Cancer biology deciphered by single-cell transcriptomic 
sequencing. Protein Cell. 2022;13(3):167–79.

	 11.	 Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-cell sequenc‑
ing in cancer research. Signal Transduct Target Ther. 2022;7(1):145.

	 12.	 Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundara‑
vadanam Y, et al. Childhood cerebellar tumours mirror conserved fetal 
transcriptional programs. Nature. 2019;572(7767):67–73.

	 13.	 Blanpain C. Tracing the cellular origin of cancer. Nat Cell Biol. 
2013;15(2):126–34.

	 14.	 Jin S, Li R, Chen MY, Yu C, Tang LQ, Liu YM, et al. Single-cell transcrip‑
tomic analysis defines the interplay between tumor cells, viral infection, 
and the microenvironment in nasopharyngeal carcinoma. Cell Res. 
2020;30(11):950–65.

	 15.	 Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Bou‑
mahdi S, et al. Identification of the tumour transition states occurring 
during EMT. Nature. 2018;556(7702):463–8.

	 16.	 Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, et al. Single-cell 
RNA-seq enables comprehensive tumour and immune cell profiling in 
primary breast cancer. Nat Commun. 2017;8:15081.

	 17.	 Kim J, Koo BK, Knoblich JA. Human organoids: model sys‑
tems for human biology and medicine. Nat Rev Mol Cell Biol. 
2020;21(10):571–84.

	 18.	 Wang R, Mao Y, Wang W, Zhou X, Wang W, Gao S, et al. Systematic 
evaluation of colorectal cancer organoid system by single-cell RNA-Seq 
analysis. Genome Biol. 2022;23(1):106.

	 19.	 Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. 
Comparative analysis and refinement of human PSC-derived kidney 
organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 
2018;23(6):869-81.e8.

	 20.	 Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Orga‑
noid modeling of the tumor immune microenvironment. Cell. 
2018;175(7):1972-88.e16.

	 21.	 Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, 
Khan K, et al. Patient-derived organoids model treatment response of 
metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.

	 22.	 Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro 
LM, Bradshaw CR, et al. Human primary liver cancer-derived orga‑
noid cultures for disease modeling and drug screening. Nat Med. 
2017;23(12):1424–35.

	 23.	 Krieger TG, Le Blanc S, Jabs J, Ten FW, Ishaque N, Jechow K, et al. Single-
cell analysis of patient-derived PDAC organoids reveals cell state het‑
erogeneity and a conserved developmental hierarchy. Nat Commun. 
2021;12(1):5826.

	 24.	 Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. 
A human breast cancer-derived xenograft and organoid platform for 
drug discovery and precision oncology. Nat Cancer. 2022;3(2):232–50.

	 25.	 Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, 
et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in 
human airway epithelial cells and is detected in specific cell subsets 
across tissues. Cell. 2020;181(5):1016-35.e19.

	 26.	 Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, 
Tuong ZK, et al. Single-cell multi-omics analysis of the immune 
response in COVID-19. Nat Med. 2021;27(5):904–16.

	 27.	 Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R. Single-cell 
immunology of SARS-CoV-2 infection. Nat Biotechnol. 2022;40(1):30–41.

	 28.	 Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. 
A molecular single-cell lung atlas of lethal COVID-19. Nature. 
2021;595(7865):114–9.

	 29.	 Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, et al. Comparative analysis of 
droplet-based ultra-high-throughput single-cell RNA-seq systems. 
Mol Cell. 2019;73(1):130-42.e5.

	 30.	 Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses 
of 10x genomics chromium and Smart-seq2. Genomics Proteom 
Bioinform. 2021;19(2):253–66.

	 31.	 Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, et al. Single-cell profiling of tumor 
heterogeneity and the microenvironment in advanced non-small cell 
lung cancer. Nat Commun. 2021;12(1):2540.

	 32.	 Xu K, Wang R, Xie H, Hu L, Wang C, Xu J, et al. Single-cell RNA 
sequencing reveals cell heterogeneity and transcriptome profile of 
breast cancer lymph node metastasis. Oncogenesis. 2021;10(10):66.

	 33.	 Haque A, Engel J, Teichmann SA, Lonnberg T. A practical guide to 
single-cell RNA-sequencing for biomedical research and clinical 
applications. Genome Med. 2017;9(1):75.

	 34.	 Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the 
experimental design of single-cell RNA sequencing studies. Nat 
Protoc. 2018;13(12):2742–57.

	 35.	 Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, Mcfarland JM, 
et al. Pan-cancer single-cell RNA-seq identifies recurring programs of 
cellular heterogeneity. Nat Genet. 2020;52(11):1208–18.

	 36.	 Suva ML, Tirosh I. Single-cell RNA sequencing in cancer: lessons 
learned and emerging challenges. Mol Cell. 2019;75(1):7–12.

	 37.	 Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Hen‑
derson NC. Single-cell technologies in hepatology: new insights 
into liver biology and disease pathogenesis. Nat Rev Gastroenterol 
Hepatol. 2020;17(8):457–72.

	 38.	 Ni J, Wang X, Stojanovic A, Zhang Q, Wincher M, Buhler L, et al. 
Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that 
inhibition of transcription factor HIF-1α unleashes NK cell activity. 
Immunity. 2020;52(6):1075-87.e8.

	 39.	 Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, et al. Landscape of 
infiltrating T cells in liver cancer revealed by single-cell sequencing. 
Cell. 2017;169(7):1342-56.e16.

	 40.	 Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, Mckechnie 
JL, et al. A single-cell atlas of the peripheral immune response in 
patients with severe COVID-19. Nat Med. 2020;26(7):1070–6.

	 41.	 Wang Z, Xie L, Ding G, Song S, Chen L, Li G, et al. Single-cell RNA 
sequencing of peripheral blood mononuclear cells from acute Kawa‑
saki disease patients. Nat Commun. 2021;12(1):5444.

	 42.	 Clevers H. Modeling development and disease with organoids. Cell. 
2016;165(7):1586–97.

	 43.	 Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la OS, et al. 
Progenitor identification and SARS-CoV-2 infection in human distal 
lung organoids. Nature. 2020;588(7839):670–5.

	 44.	 Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC, Targ 
S, et al. Single-cell RNA-seq reveals cell type-specific molecular and 
genetic associations to lupus. Science. 2022;376(6589):eabf1970.

	 45.	 Ernster VL. Nested case-control studies. Prev Med. 1994;23(5):587–90.



Page 19 of 24Su et al. Military Medical Research            (2022) 9:68 	

	 46.	 Mandric I, Schwarz T, Majumdar A, Hou K, Briscoe L, Perez R, et al. 
Optimized design of single-cell RNA sequencing experiments for 
cell-type-specific eQTL analysis. Nat Commun. 2020;11(1):5504.

	 47.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, 
et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 
2013;29(1):15–21.

	 48.	 Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors 
in Unique Molecular Identifiers to improve quantification accuracy. 
Genome Res. 2017;27(3):491–9.

	 49.	 Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. 
Massively parallel digital transcriptional profiling of single cells. Nat 
Commun. 2017;8:14049.

	 50.	 Tian L, Su S, Dong X, Amann-Zalcenstein D, Biben C, Seidi A, et al. 
scPipe: a flexible R/Bioconductor preprocessing pipeline for single-
cell RNA-sequencing data. PLoS Comput Biol. 2018;14(8):e1006361.

	 51.	 Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. zUMIs—a fast 
and flexible pipeline to process RNA sequencing data with UMIs. 
Gigascience. 2018;7(6):giy059.

	 52.	 Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, 
Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-
Seq. Genome Biol. 2016;17:77.

	 53.	 Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KHJ, et al. Modular, 
efficient and constant-memory single-cell RNA-seq preprocessing. Nat 
Biotechnol. 2021;39(7):813–8.

	 54.	 Wang Z, Hu J, Johnson WE, Campbell JD. scruff: an R/Bioconductor 
package for preprocessing single-cell RNA-sequencing data. BMC 
Bioinform. 2019;20(1):222.

	 55.	 You Y, Tian L, Su S, Dong X, Jabbari JS, Hickey PF, et al. Benchmarking 
UMI-based single-cell RNA-seq preprocessing workflows. Genome Biol. 
2021;22(1):339.

	 56.	 Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq 
analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746.

	 57.	 Stegle O, Teichmann SA, Marioni JC. Computational and analytical chal‑
lenges in single-cell transcriptomics. Nat Rev Genet. 2015;16(3):133–45.

	 58.	 Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, 
et al. Accounting for technical noise in single-cell RNA-seq experiments. 
Nat Methods. 2013;10(11):1093–5.

	 59.	 Andrews TS, Kiselev VY, Mccarthy D, Hemberg M. Tutorial: guidelines 
for the computational analysis of single-cell RNA sequencing data. Nat 
Protoc. 2021;16(1):1–9.

	 60.	 Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, Mccarthy DJ, Marioni JC, 
et al. Classification of low quality cells from single-cell RNA-seq data. 
Genome Biol. 2016;17:29.

	 61.	 Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and spe‑
cies. Nat Biotechnol. 2018;36(5):411–20.

	 62.	 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck 
WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 
2019;177(7):1888-902.e21.

	 63.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler 
A, et al. Integrated analysis of multimodal single-cell data. Cell. 
2021;184(13):3573-87.e29.

	 64.	 Mccarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, 
quality control, normalization and visualization of single-cell RNA-seq 
data in R. Bioinformatics. 2017;33(8):1179–86.

	 65.	 Guimaraes JC, Zavolan M. Patterns of ribosomal protein expres‑
sion specify normal and malignant human cells. Genome Biol. 
2016;17(1):236.

	 66.	 Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, Ye CJ, et al. 
Single-cell RNA-sequencing of peripheral blood mononuclear cells 
reveals widespread, context-specific gene expression regulation upon 
pathogenic exposure. Nat Commun. 2022;13(1):3267.

	 67.	 Zhong S, Ding W, Sun L, Lu Y, Dong H, Fan X, et al. Decoding the devel‑
opment of the human hippocampus. Nature. 2020;577(7791):531–6.

	 68.	 Young MD, Behjati S. SoupX removes ambient RNA contamination 
from droplet-based single-cell RNA sequencing data. Gigascience. 
2020;9(12):giaa151.

	 69.	 Yang S, Corbett SE, Koga Y, Wang Z, Johnson WE, Yajima M, et al. 
Decontamination of ambient RNA in single-cell RNA-seq with DecontX. 
Genome Biol. 2020;21(1):57.

	 70.	 Berg M, Petoukhov I, Van Den Ende I, Meyer KB, Guryev V, Vonk JM, et al. 
FastCAR: fast correction for Ambient RNA to facilitate differential gene 
expression analysis in single-cell RNA-sequencing datasets. bioRxiv. 
2022. https://​doi.​org/​10.​1101/​2022.​07.​19.​500594

	 71.	 Fleming SJ, Chaffin MD, Arduini A, Akkad AD, Banks E, Marioni JC, et al. 
Unsupervised removal of systematic background noise from droplet-
based single-cell experiments using CellBender. bioRxiv. 2022. https://​
doi.​org/​10.​1101/​791699.

	 72.	 Xi NM, Li JJ. Benchmarking computational doublet-detection methods 
for single-cell RNA sequencing data. Cell Syst. 2021;12(2):176-94.e6.

	 73.	 Bernstein NJ, Fong NL, Lam I, Roy MA, Hendrickson DG, Kelley DR. Solo: 
doublet identification in single-cell RNA-Seq via semi-supervised deep 
learning. Cell Syst. 2020;11(1):95-101.e5.

	 74.	 Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of 
cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281-
91.e9.

	 75.	 Lun AT, Mccarthy DJ, Marioni JC. A step-by-step workflow for low-level 
analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 
2016;5:2122.

	 76.	 Bais AS, Kostka D. scds: computational annotation of doublets in single-
cell RNA sequencing data. Bioinformatics. 2020;36(4):1150–8.

	 77.	 Park J, Choi W, Tiesmeyer S, Long B, Borm LE, Garren E, et al. Cell 
segmentation-free inference of cell types from in situ transcriptomics 
data. Nat Commun. 2021;12(1):3545.

	 78.	 McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection 
in single-cell RNA sequencing data using artificial nearest neighbors. 
Cell Syst. 2019;8(4):329-37.e4.

	 79.	 DePasquale EAK, Schnell DJ, Van Camp PJ, Valiente-Alandi I, Blaxall BC, 
Grimes HL, et al. DoubletDecon: deconvoluting doublets from single-
cell RNA-sequencing data. Cell Rep. 2019;29(6):1718-27.e8.

	 80.	 Deeke JM, Gagnon-Bartsch JA. Stably expressed genes in single-cell 
RNA sequencing. J Bioinform Comput Biol. 2020;18(1):2040004.

	 81.	 Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing 
single-cell RNA sequencing data: challenges and opportunities. Nat 
Methods. 2017;14(6):565–71.

	 82.	 Finak G, Mcdavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: 
a flexible statistical framework for assessing transcriptional changes 
and characterizing heterogeneity in single-cell RNA sequencing data. 
Genome Biol. 2015;16:278.

	 83.	 Grun D, van Oudenaarden A. Design and analysis of single-cell 
sequencing experiments. Cell. 2015;163(4):799–810.

	 84.	 Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-
cell differential expression analysis. Nat Methods. 2014;11(7):740–2.

	 85.	 Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene 
expression estimation with read mapping uncertainty. Bioinformatics. 
2010;26(4):493–500.

	 86.	 Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical 
methods for normalization and differential expression in mRNA-Seq 
experiments. BMC Bioinform. 2010;11:94.

	 87.	 Robinson MD, Oshlack A. A scaling normalization method for differen‑
tial expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

	 88.	 Anders S, Huber W. Differential expression analysis for sequence count 
data. Genome Biol. 2010;11(10):R106.

	 89.	 Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell 
RNA sequencing data with many zero counts. Genome Biol. 2016;17:75.

	 90.	 Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA 
quantification and differential analysis with Census. Nat Methods. 
2017;14(3):309–15.

	 91.	 Buttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric 
for assessing single-cell RNA-seq batch correction. Nat Methods. 
2019;16(1):43–9.

	 92.	 Hafemeister C, Satija R. Normalization and variance stabilization of 
single-cell RNA-seq data using regularized negative binomial regres‑
sion. Genome Biol. 2019;20(1):296.

	 93.	 Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, 
et al. Computational analysis of cell-to-cell heterogeneity in single-
cell RNA-sequencing data reveals hidden subpopulations of cells. Nat 
Biotechnol. 2015;33(2):155–60.

https://doi.org/10.1101/2022.07.19.500594
https://doi.org/10.1101/791699
https://doi.org/10.1101/791699


Page 20 of 24Su et al. Military Medical Research            (2022) 9:68 

	 94.	 Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, 
Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal 
interface in humans. Nature. 2018;563(7731):347–53.

	 95.	 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. 
Highly parallel genome-wide expression profiling of individual cells 
using nanoliter droplets. Cell. 2015;161(5):1202–14.

	 96.	 Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. f-scLVM: 
scalable and versatile factor analysis for single-cell RNA-seq. Genome 
Biol. 2017;18(1):212.

	 97.	 Blasi T, Buettner F, Strasser MK, Marr C, Theis FJ. cgCorrect: a method to 
correct for confounding cell–cell variation due to cell growth in single-
cell transcriptomics. Phys Biol. 2017;14(3): 036001.

	 98.	 Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchis-Calleja F, et al. 
Organoid single-cell genomic atlas uncovers human-specific features 
of brain development. Nature. 2019;574(7778):418–22.

	 99.	 Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A bench‑
mark of batch-effect correction methods for single-cell RNA sequenc‑
ing data. Genome Biol. 2020;21(1):12.

	100.	 Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microar‑
ray expression data using empirical Bayes methods. Biostatistics. 
2007;8(1):118–27.

	101.	 Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 
2003;31(4):265–73.

	102.	 Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest 
neighbors. Nat Biotechnol. 2018;36(5):421–7.

	103.	 Hie B, Bryson B, Berger B. Efficient integration of heterogene‑
ous single-cell transcriptomes using Scanorama. Nat Biotechnol. 
2019;37(6):685–91.

	104.	 Polański K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE. BBKNN: 
fast batch alignment of single cell transcriptomes. Bioinformatics. 
2020;36(3):964–5.

	105.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat 
Methods. 2019;16(12):1289–96.

	106.	 Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. 
Single-cell multi-omic integration compares and contrasts features of 
brain cell identity. Cell. 2019;177(7):1873-87.e17.

	107.	 Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell perturbation 
responses. Nat Methods. 2019;16(8):715–21.

	108.	 Argelaguet R, Cuomo ASE, Stegle O, Marioni JC. Computational prin‑
ciples and challenges in single-cell data integration. Nat Biotechnol. 
2021;39(10):1202–15.

	109.	 Grun D, Kester L, Van Oudenaarden A. Validation of noise models for 
single-cell transcriptomics. Nat Methods. 2014;11(6):637–40.

	110.	 Su K, Yu T, Wu H. Accurate feature selection improves single-cell RNA-
seq cell clustering. Brief Bioinform. 2021;22(5):bbab034.

	111.	 Townes FW, Hicks SC, Aryee MJ, Irizarry RA. Feature selection and 
dimension reduction for single-cell RNA-Seq based on a multinomial 
model. Genome Biol. 2019;20(1):295.

	112.	 Yang P, Huang H, Liu C. Feature selection revisited in the single-cell era. 
Genome Biol. 2021;22(1):321.

	113.	 Yip SH, Sham PC, Wang J. Evaluation of tools for highly variable 
gene discovery from single-cell RNA-seq data. Brief Bioinform. 
2019;20(4):1583–9.

	114.	 Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for 
scRNASeq. Bioinformatics. 2019;35(16):2865–7.

	115.	 Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Drop‑
let barcoding for single-cell transcriptomics applied to embryonic stem 
cells. Cell. 2015;161(5):1187–201.

	116.	 Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of 
dimensionality reduction methods for single-cell RNA-seq analysis. 
Genome Biol. 2019;20(1):269.

	117.	 Ringner M. What is principal component analysis? Nat Biotechnol. 
2008;26(3):303–4.

	118.	 Shao C, Hofer T. Robust classification of single-cell transcriptome data 
by nonnegative matrix factorization. Bioinformatics. 2017;33(2):235–42.

	119.	 Tzeng J, Lu HH, Li WH. Multidimensional scaling for large genomic data 
sets. BMC Bioinform. 2008;9:179.

	120.	 Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. 
Nat Commun. 2019;10(1):5416.

	121.	 Becht E, Mcinnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. 
Dimensionality reduction for visualizing single-cell data using UMAP. 
Nat Biotechnol. 2019;37(1):38–44.

	122.	 Gogolewski K, Sykulski M, Chung NC, Gambin A. Truncated robust 
principal component analysis and noise reduction for single cell RNA 
sequencing data. J Comput Biol. 2019;26(8):782–93.

	123.	 Tsuyuzaki K, Sato H, Sato K, Nikaido I. Benchmarking principal compo‑
nent analysis for large-scale single-cell RNA-sequencing. Genome Biol. 
2020;21(1):9.

	124.	 Chung NC, Storey JD. Statistical significance of variables driv‑
ing systematic variation in high-dimensional data. Bioinformatics. 
2015;31(4):545–54.

	125.	 Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-
cell gene expression analysis. Genome Biol. 2015;16:241.

	126.	 Shi J, Luo Z. Nonlinear dimensionality reduction of gene expression 
data for visualization and clustering analysis of cancer tissue samples. 
Comput Biol Med. 2010;40(8):723–32.

	127.	 Petegrosso R, Li Z, Kuang R. Machine learning and statistical meth‑
ods for clustering single-cell RNA-sequencing data. Brief Bioinform. 
2020;21(4):1209–23.

	128.	 van Unen V, Li N, Molendijk I, Temurhan M, Hollt T, van der Meulen-
de Jong AE, et al. Mass cytometry of the human mucosal immune 
system identifies tissue- and disease-associated immune subsets. 
Immunity. 2016;44(5):1227–39.

	129.	 Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. 
Single-cell messenger RNA sequencing reveals rare intestinal cell 
types. Nature. 2015;525(7568):251–5.

	130.	 Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, 
et al. Massively parallel single-cell RNA-seq for marker-free decompo‑
sition of tissues into cell types. Science. 2014;343(6172):776–9.

	131.	 Zhang W, Xue X, Zheng X, Fan Z. NMFLRR: clustering scRNA-Seq 
Data by integrating nonnegative matrix factorization with low rank 
representation. IEEE J Biomed Health Inform. 2022;26(3):1394–405.

	132.	 Zheng R, Li M, Liang Z, Wu FX, Pan Y, Wang J. SinNLRR: a robust sub‑
space clustering method for cell type detection by non-negative and 
low-rank representation. Bioinformatics. 2019;35(19):3642–50.

	133.	 Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. 
SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 
2017;14(5):483–6.

	134.	 Levine JH, Simonds EF, Bendall SC, Davis KL, El Amir AD, Tadmor MD, 
et al. Data-driven phenotypic dissection of AML reveals progenitor-
like cells that correlate with prognosis. Cell. 2015;162(1):184–97.

	135.	 Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La 
Manno G, Jureus A, et al. Brain structure. Cell types in the mouse 
cortex and hippocampus revealed by single-cell RNA-seq. Science. 
2015;347(6226):1138–42.

	136.	 Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and 
analysis of single-cell RNA-seq data by kernel-based similarity learn‑
ing. Nat Methods. 2017;14(4):414–6.

	137.	 Lin P, Troup M, Ho JW. CIDR: ultrafast and accurate clustering through 
imputation for single-cell RNA-seq data. Genome Biol. 2017;18(1):59.

	138.	 Huh R, Yang Y, Jiang Y, Shen Y, Li Y. SAME-clustering: single-cell aggre‑
gated clustering via mixture model ensemble. Nucleic Acids Res. 
2020;48(1):86–95.

	139.	 Duo A, Robinson MD, Soneson C. A systematic performance evalu‑
ation of clustering methods for single-cell RNA-seq data. F1000Res. 
2018;7:1141.

	140.	 Freytag S, Tian L, Lonnstedt I, Ng M, Bahlo M. Comparison of cluster‑
ing tools in R for medium-sized 10x Genomics single-cell RNA-
sequencing data. F1000Res. 2018;7:1297.

	141.	 Sun X, Lin X, Li Z, Wu H. A comprehensive comparison of supervised 
and unsupervised methods for cell type identification in single-cell 
RNA-seq. Brief Bioinform. 2022;23(2):bbab567.

	142.	 Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, 
et al. A comparison of automatic cell identification methods for 
single-cell RNA sequencing data. Genome Biol. 2019;20(1):194.



Page 21 of 24Su et al. Military Medical Research            (2022) 9:68 	

	143.	 Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of cell type annotation 
R packages on single-cell RNA-seq data. Genom Proteom Bioinform. 
2021;19(2):267–81.

	144.	 Zhang AW, O’flanagan C, Chavez EA, Lim JLP, Ceglia N, Mcpher‑
son A, et al. Probabilistic cell-type assignment of single-cell 
RNA-seq for tumor microenvironment profiling. Nat Methods. 
2019;16(10):1007–15.

	145.	 Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-
seq data across data sets. Nat Methods. 2018;15(5):359–62.

	146.	 Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based 
analysis of lung single-cell sequencing reveals a transitional profi‑
brotic macrophage. Nat Immunol. 2019;20(2):163–72.

	147.	 de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. 
CHETAH: a selective, hierarchical cell type identification method for 
single-cell RNA sequencing. Nucleic Acids Res. 2019;47(16):e95.

	148.	 Tan Y, Cahan P. SingleCellNet: a computational tool to classify single 
cell RNA-Seq data across platforms and across species. Cell Syst. 
2019;9(2):207-13.e2.

	149.	 Jiang L, Chen H, Pinello L, Yuan GC. GiniClust: detecting rare cell 
types from single-cell gene expression data with Gini index. Genome 
Biol. 2016;17(1):144.

	150.	 Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipe‑
line for single-cell RNA-Seq profiling analysis. PLoS Comput Biol. 
2015;11(11):e1004575.

	151.	 Zhang JM, Fan J, Fan HC, Rosenfeld D, Tse DN. An interpretable 
framework for clustering single-cell RNA-seq datasets. BMC Bioinform. 
2018;19(1):93.

	152.	 Pasquini G, Rojo Arias JE, Schäfer P, Busskamp V. Automated methods 
for cell type annotation on scRNA-seq data. Comput Struct Biotechnol 
J. 2021;19:961–9.

	153.	 Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. Cell Marker: a manu‑
ally curated resource of cell markers in human and mouse. Nucleic 
Acids Res. 2019;47(D1):D721–8.

	154.	 Franzén O, Gan LM, Björkegren JLM. Panglao DB: a web server for 
exploration of mouse and human single-cell RNA sequencing data. 
Database. 2019;2019:baz046.

	155.	 Xu M, Bai X, Ai B, Zhang G, Song C, Zhao J, et al. TF-Marker: a compre‑
hensive manually curated database for transcription factors and related 
markers in specific cell and tissue types in human. Nucleic Acids Res. 
2022;50(D1):D402–12.

	156.	 Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type 
identification using specific marker combinations from single-cell 
transcriptomic data. Nat Commun. 2022;13(1):1246.

	157.	 Guo H, Li J. scSorter: assigning cells to known cell types according to 
marker genes. Genome Biol. 2021;22(1):69.

	158.	 Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, et al. SCINA: a semi-
supervised subtyping algorithm of single cells and bulk samples. 
Genes. 2019;10(7):531.

	159.	 Shao X, Liao J, Lu X, Xue R, Ai N, Fan X. scCATCH: automatic annotation 
on cell types of clusters from single-cell RNA sequencing data. iScience. 
2020;23(3):100882.

	160.	 Hou R, Denisenko E, Forrest ARR. scMatch: a single-cell gene expres‑
sion profile annotation tool using reference datasets. Bioinformatics. 
2019;35(22):4688–95.

	161.	 Stunnenberg HG, International Human Epigenome C, Hirst M. The 
international human epigenome consortium: a blueprint for scientific 
collaboration and discovery. Cell. 2016;167(5):1145–9.

	162.	 Consortium EP. An integrated encyclopedia of DNA elements in the 
human genome. Nature. 2012;489(7414):57–74.

	163.	 Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression 
atlas of human primary cells: inference of gene function from coexpres‑
sion networks. BMC Genomics. 2013;14:632.

	164.	 Ma F, Pellegrini M. ACTINN: automated identification of cell types in 
single cell RNA sequencing. Bioinformatics. 2020;36(2):533–8.

	165.	 Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. scPred: 
accurate supervised method for cell-type classification from single-cell 
RNA-seq data. Genome Biol. 2019;20(1):264.

	166.	 Lin Y, Cao Y, Kim HJ, Salim A, Speed TP, Lin DM, et al. scClassify: sample 
size estimation and multiscale classification of cells using single and 
multiple reference. Mol Syst Biol. 2020;16(6): e9389.

	167.	 Wang S, Pisco AO, Mcgeever A, Brbic M, Zitnik M, Darmanis S, et al. Lev‑
eraging the cell ontology to classify unseen cell types. Nat Commun. 
2021;12(1):5556.

	168.	 Jiang T, Zhou W, Sheng Q, Yu J, Xie Y, Ding N, et al. ImmCluster: 
an ensemble resource for immunology cell type clustering and 
annotations in normal and cancerous tissues. Nucleic Acids Res. 
2022;22:gkac922.

	169.	 Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction 
of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.

	170.	 Love MI, Huber W, Anders S. Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol. 
2014;15(12):550.

	171.	 Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. 
Bioinformatics. 2010;26(1):139–40.

	172.	 Li Y, Ge X, Peng F, Li W, Li JJ. Exaggerated false positives by popular 
differential expression methods when analyzing human population 
samples. Genome Biol. 2022;23(1):79.

	173.	 Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types 
of differential expression in single-cell RNA-seq data. Bioinformatics. 
2018;34(18):3223–4.

	174.	 Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis 
N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a 
binary cell fate choice. Nature. 2016;537(7622):698–702.

	175.	 Zhang H, Lee CaA, Li Z, Garbe JR, Eide CR, Petegrosso R, et al. A 
multitask clustering approach for single-cell RNA-seq analysis in 
Recessive Dystrophic Epidermolysis Bullosa. PLoS Comput Biol. 
2018;14(4):e1006053.

	176.	 Vu TN, Wills QF, Kalari KR, Niu N, Wang L, Rantalainen M, et al. Beta-
Poisson model for single-cell RNA-seq data analyses. Bioinformatics. 
2016;32(14):2128–35.

	177.	 Chen L, Zheng S. BCseq: accurate single cell RNA-seq quantification 
with bias correction. Nucleic Acids Res. 2018;46(14):e82.

	178.	 Soneson C, Robinson MD. Bias, robustness and scalability in single-
cell differential expression analysis. Nat Methods. 2018;15(4):255–61.

	179.	 Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. 
DAVID: Database for Annotation, Visualization, and Integrated Discov‑
ery. Genome Biol. 2003;4(5):P3.

	180.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil‑
lette MA, et al. Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc 
Natl Acad Sci USA. 2005;102(43):15545–50.

	181.	 Wang X, Cairns MJ. SeqGSEA: a Bioconductor package for gene set 
enrichment analysis of RNA-Seq data integrating differential expres‑
sion and splicing. Bioinformatics. 2014;30(12):1777–9.

	182.	 Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo 
P. The Molecular Signatures Database (MSigDB) hallmark gene set 
collection. Cell Syst. 2015;1(6):417–25.

	183.	 Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis 
for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

	184.	 Jin Y, Wang Z, He D, Zhu Y, Chen X, Cao K. Identification of 
novel subtypes based on ssGSEA in immune-related prognos‑
tic signature for tongue squamous cell carcinoma. Cancer Med. 
2021;10(23):8693–707.

	185.	 Zhang Y, Ma Y, Huang Y, Zhang Y, Jiang Q, Zhou M, et al. Benchmark‑
ing algorithms for pathway activity transformation of single-cell 
RNA-seq data. Comput Struct Biotechnol J. 2020;18:2953–61.

	186.	 Detomaso D, Jones MG, Subramaniam M, Ashuach T, Ye CJ, Yosef N. 
Functional interpretation of single cell similarity maps. Nat Commun. 
2019;10(1):4376.

	187.	 Fan J, Salathia N, Liu R, Kaeser GE, Yung YC, Herman JL, et al. Charac‑
terizing transcriptional heterogeneity through pathway and gene set 
overdispersion analysis. Nat Methods. 2016;13(3):241–4.

	188.	 Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, 
Hulselmans G, et al. SCENIC: single-cell regulatory network inference 
and clustering. Nat Methods. 2017;14(11):1083–6.

	189.	 Pont F, Tosolini M, Fournie JJ. Single-Cell Signature Explorer for com‑
prehensive visualization of single cell signatures across scRNA-seq 
datasets. Nucleic Acids Res. 2019;47(21):e133.



Page 22 of 24Su et al. Military Medical Research            (2022) 9:68 

	190.	 Noureen N, Ye Z, Chen Y, Wang X, Zheng S. Signature-scoring 
methods developed for bulk samples are not adequate for cancer 
single-cell RNA sequencing data. Elife. 2022;11:e71994.

	191.	 Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-
cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54.

	192.	 Ding J, Sharon N, Bar-Joseph Z. Temporal modelling using single-cell 
transcriptomics. Nat Rev Genet. 2022;23(6):355–68.

	193.	 Bergen V, Soldatov RA, Kharchenko PV, Theis FJ. RNA velocity-current 
challenges and future perspectives. Mol Syst Biol. 2021;17(8):e10282.

	194.	 Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, 
Lum J, et al. Identification of cDC1- and cDC2-committed DC pro‑
genitors reveals early lineage priming at the common DC progenitor 
stage in the bone marrow. Nat Immunol. 2015;16(7):718–28.

	195.	 Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams 
M, et al. SCORPIUS improves trajectory inference and identifies novel 
modules in dendritic cell development. bioRxiv. 2016. https://​doi.​
org/​10.​1101/​079509

	196.	 Ji Z, Ji H. TSCAN: pseudo-time reconstruction and evaluation in 
single-cell RNA-seq analysis. Nucleic Acids Res. 2016;44(13):e117.

	197.	 Bendall SC, Davis KL, El Amir AD, Tadmor MD, Simonds EF, Chen 
TJ, et al. Single-cell trajectory detection uncovers progression 
and regulatory coordination in human B cell development. Cell. 
2014;157(3):714–25.

	198.	 Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ. Diffusion 
pseudotime robustly reconstructs lineage branching. Nat Methods. 
2016;13(10):845–8.

	199.	 Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, 
et al. Wishbone identifies bifurcating developmental trajectories from 
single-cell data. Nat Biotechnol. 2016;34(6):637–45.

	200.	 Herman JS, Sagar D, Grun D. FateID infers cell fate bias in multi‑
potent progenitors from single-cell RNA-seq data. Nat Methods. 
2018;15(5):379–86.

	201.	 Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. 
Human haematopoietic stem cell lineage commitment is a continuous 
process. Nat Cell Biol. 2017;19(4):271–81.

	202.	 Campbell KR, Yau C. Probabilistic modeling of bifurcations in single-cell 
gene expression data using a Bayesian mixture of factor analyzers. 
Wellcome Open Res. 2017;2:19.

	203.	 Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell 
lineage and pseudotime inference for single-cell transcriptomics. BMC 
Genomics. 2018;19(1):477.

	204.	 Gan Y, Guo C, Guo W, Xu G, Zou G. Entropy-based inference of transition 
states and cellular trajectory for single-cell transcriptomics. Brief Bioin‑
form. 2022;23(4):bbac225.

	205.	 Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The 
single-cell transcriptional landscape of mammalian organogenesis. 
Nature. 2019;566(7745):496–502.

	206.	 Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Gottgens B, et al. PAGA: 
graph abstraction reconciles clustering with trajectory inference 
through a topology preserving map of single cells. Genome Biol. 
2019;20(1):59.

	207.	 Welch JD, Hartemink AJ, Prins JF. SLICER: inferring branched, nonlinear 
cellular trajectories from single cell RNA-seq data. Genome Biol. 
2016;17(1):106.

	208.	 Van den Berge K, Roux De Bézieux H, Street K, Saelens W, Cannoodt R, 
Saeys Y, et al. Trajectory-based differential expression analysis for single-
cell sequencing data. Nat Commun. 2020;11(1):1201.

	209.	 Song D, Li JJ. PseudotimeDE: inference of differential gene expression 
along cell pseudotime with well-calibrated P-values from single-cell 
RNA sequencing data. Genome Biol. 2021;22(1):124.

	210.	 La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, 
et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.

	211.	 Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity 
to transient cell states through dynamical modeling. Nat Biotechnol. 
2020;38(12):1408–14.

	212.	 Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, et al. Cell Rank 
for directed single-cell fate mapping. Nat Methods. 2022;19(2):159–70.

	213.	 Zhang Z, Zhang X. Inference of high-resolution trajectories in 
single-cell RNA-seq data by using RNA velocity. Cell Rep Methods. 
2021;1(6):100095.

	214.	 Dimitrov D, Türei D, Garrido-Rodriguez M, Burmedi PL, Nagai JS, Boys 
C, et al. Comparison of methods and resources for cell–cell com‑
munication inference from single-cell RNA-seq data. Nat Commun. 
2022;13(1):3224.

	215.	 Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. Cell 
PhoneDB: inferring cell–cell communication from combined 
expression of multi-subunit ligand-receptor complexes. Nat Protoc. 
2020;15(4):1484–506.

	216.	 Noël F, Massenet-Regad L, Carmi-Levy I, Cappuccio A, Grandclau‑
don M, Trichot C, et al. Dissection of intercellular communication 
using the transcriptome-based framework ICELLNET. Nat Commun. 
2021;12(1):1089.

	217.	 Shao X, Liao J, Li C, Lu X, Cheng J, Fan X. CellTalkDB: a manually curated 
database of ligand-receptor interactions in humans and mice. Brief 
Bioinform. 2021;22(4):bbaa269.

	218.	 Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge 
J. SingleCellSignalR: inference of intercellular networks from single-cell 
transcriptomics. Nucleic Acids Res. 2020;48(10):e55.

	219.	 Turei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, Ivanova O, et al. 
Integrated intra- and intercellular signaling knowledge for multicellular 
omics analysis. Mol Syst Biol. 2021;17(3):e9923.

	220.	 Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, 
Sancho-Serra C, et al. Single-cell roadmap of human gonadal develop‑
ment. Nature. 2022;607(7919):540–7.

	221.	 Peng L, Wang F, Wang Z, Tan J, Huang L, Tian X, et al. Cell–cell com‑
munication inference and analysis in the tumour microenvironments 
from single-cell transcriptomics: data resources and computational 
strategies. Brief Bioinform. 2022;23(4):bbac234.

	222.	 Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell 
interactions and communication from gene expression. Nat Rev Genet. 
2021;22(2):71–88.

	223.	 Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, et al. 
Multilineage communication regulates human liver bud development 
from pluripotency. Nature. 2017;546(7659):533–8.

	224.	 Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular 
communication by linking ligands to target genes. Nat Methods. 
2020;17(2):159–62.

	225.	 Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. Transcriptome 
analysis of individual stromal cell populations identifies stroma-tumor 
crosstalk in mouse lung cancer model. Cell Rep. 2015;10(7):1187–201.

	226.	 Jakobsson JET, Spjuth O, Lagerström MC. scConnect: a method for 
exploratory analysis of cell–cell communication based on single cell 
RNA sequencing data. Bioinformatics. 2021;37(20):3501–8.

	227.	 Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR. Predicting 
cell-to-cell communication networks using NATMI. Nat Commun. 
2020;11(1):5011.

	228.	 Lamurias A, Ruas P, Couto FM. PPR-SSM: personalized PageRank 
and semantic similarity measures for entity linking. BMC Bioinform. 
2019;20(1):534.

	229.	 Wang S, Karikomi M, Maclean AL, Nie Q. Cell lineage and communica‑
tion network inference via optimization for single-cell transcriptomics. 
Nucleic Acids Res. 2019;47(11):e66.

	230.	 Tyler SR, Rotti PG, Sun X, Yi Y, Xie W, Winter MC, et al. PyMINEr finds gene 
and autocrine-paracrine networks from human islet scRNA-seq. Cell 
Rep. 2019;26(7):1951-64.e8.

	231.	 Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al. 
Lineage-dependent gene expression programs influence the immune 
landscape of colorectal cancer. Nat Genet. 2020;52(6):594–603.

	232.	 Zhou JX, Taramelli R, Pedrini E, Knijnenburg T, Huang S. Extracting 
intercellular signaling network of cancer tissues using ligand-receptor 
expression patterns from whole-tumor and single-cell transcriptomes. 
Sci Rep. 2017;7(1):8815.

	233.	 Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, et al. 
Analysis of single-cell RNA-seq identifies cell–cell communication 
associated with tumor characteristics. Cell Rep. 2018;25(6):1458–68e4.

	234.	 Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, et al. Immune land‑
scape of viral- and carcinogen-driven head and neck cancer. Immunity. 
2020;52(1):183-99.e9.

https://doi.org/10.1101/079509
https://doi.org/10.1101/079509


Page 23 of 24Su et al. Military Medical Research            (2022) 9:68 	

	235.	 Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, Kuemmerle LB, et al. 
Squidpy: a scalable framework for spatial omics analysis. Nat Methods. 
2022;19(2):171–8.

	236.	 Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz 
D, et al. histoCAT: analysis of cell phenotypes and interactions in multi‑
plex image cytometry data. Nat Methods. 2017;14(9):873–6.

	237.	 Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. 
Inference and analysis of cell–cell communication using Cell Chat. Nat 
Commun. 2021;12(1):1088.

	238.	 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The 
human transcription factors. Cell. 2018;172(4):650–65.

	239.	 Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a com‑
prehensive resource for annotation and prediction of animal transcrip‑
tion factors. Nucleic Acids Res. 2019;47(D1):D33-8.

	240.	 Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang 
X, Richmond PA, et al. JASPAR 2020: update of the open-access 
database of transcription factor binding profiles. Nucleic Acids Res. 
2020;48(D1):D87–92.

	241.	 Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an 
expanded reference database of human and mouse transcriptional 
regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–6.

	242.	 Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, et al. KnockTF: a 
comprehensive human gene expression profile database with 
knockdown/knockout of transcription factors. Nucleic Acids Res. 
2020;48(D1):D93–100.

	243.	 Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data 
Browser: a data portal for ChIP-Seq and chromatin accessibility data in 
human and mouse. Nucleic Acids Res. 2017;45(D1):D658–62.

	244.	 Elmentaite R, Ross ADB, Roberts K, James KR, Ortmann D, Gomes T, et al. 
Single-cell sequencing of developing human gut reveals transcriptional 
links to childhood Crohn’s disease. Dev Cell. 2020;55(6):771-83.e5.

	245.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinform. 2008;9:559.

	246.	 Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, 
et al. Integrated single-cell analysis of multicellular immune dynamics 
during hyperacute HIV-1 infection. Nat Med. 2020;26(4):511–8.

	247.	 Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of 
bronchoalveolar immune cells in patients with COVID-19. Nat Med. 
2020;26(6):842–4.

	248.	 Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell tran‑
scriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184(3):792-
809.e23.

	249.	 Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, et al. SCODE: 
an efficient regulatory network inference algorithm from single-cell RNA-
Seq during differentiation. Bioinformatics. 2017;33(15):2314–21.

	250.	 Papili Gao N, Ud-Dean SMM, Gandrillon O, Gunawan R. SINCERITIES: inferring 
gene regulatory networks from time-stamped single cell transcriptional 
expression profiles. Bioinformatics. 2018;34(2):258–66.

	251.	 Luo Q, Yu Y, Lan X. SIGNET: single-cell RNA-seq-based gene regulatory net‑
work prediction using multiple-layer perceptron bagging. Brief Bioinform. 
2022;23(1):bbab547.

	252.	 Chen J, Cheong C, Lan L, Zhou X, Liu J, Lyu A, et al. DeepDRIM: a deep neural 
network to reconstruct cell-type-specific gene regulatory network using 
single-cell RNA-seq data. Brief Bioinform. 2021;22(6):bbab325.

	253.	 Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algo‑
rithms for gene regulatory network inference from single-cell transcrip‑
tomic data. Nat Methods. 2020;17(2):147–54.

	254.	 Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks 
highlights their lack of performance for single cell gene expression data. 
BMC Bioinform. 2018;19(1):232.

	255.	 Alghamdi N, Chang W, Dang P, Lu X, Wan C, Gampala S, et al. A graph neural 
network model to estimate cell-wise metabolic flux using single-cell RNA-
seq data. Genome Res. 2021;31(10):1867–84.

	256.	 Artyomov MN, Van den Bossche J. Immunometabolism in the single-cell era. 
Cell Metab. 2020;32(5):710–25.

	257.	 Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-
dimensional analysis delineates myeloid and lymphoid compartment 
remodeling during successful immune-checkpoint cancer therapy. Cell. 
2018;175(4):1014-30.e19.

	258.	 Ariss MM, Islam ABMMK, Critcher M, Zappia MP, Frolov MV. Single cell RNA-
sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. Nat 
Commun. 2018;9(1):5024.

	259.	 Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune 
landscape of colorectal cancer liver metastasis at single-cell level. Cancer 
Discov. 2022;12(1):134–53.

	260.	 Raman K, Chandra N. Flux balance analysis of biological systems: applications 
and challenges. Brief Bioinform. 2009;10(4):435–49.

	261.	 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 
KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 
2021;49(D1):D545–51.

	262.	 Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reac‑
tome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–503.

	263.	 Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 
2010;28(3):245–8.

	264.	 Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A, 
et al. Integration of single-cell RNA-seq data into population models to 
characterize cancer metabolism. PLoS Comput Biol. 2019;15(2):e1006733.

	265.	 Wagner A, Wang C, Fessler J, Detomaso D, Avila-Pacheco J, Kaminski J, et al. 
Metabolic modeling of single Th17 cells reveals regulators of autoimmun‑
ity. Cell. 2021;184(16):4168-85.e21.

	266.	 Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, et al. A 
community-driven global reconstruction of human metabolism. Nat 
Biotechnol. 2013;31(5):419–25.

	267.	 Pei W, Shang F, Wang X, Fanti AK, Greco A, Busch K, et al. Resolving fates and 
single-cell transcriptomes of hematopoietic stem cell clones by polyloxex‑
press barcoding. Cell Stem Cell. 2020;27(3):383-95.e388.

	268.	 Basharat Z, Majeed S, Saleem H, Khan IA, Yasmin A. An overview of algo‑
rithms and associated applications for single cell RNA-Seq data imputa‑
tion. Curr Genomics. 2021;22(5):319–27.

	269.	 Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-
sequencing imputation methods. Genome Biol. 2020;21(1):218.

	270.	 Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recover‑
ing gene interactions from single-cell data using data diffusion. Cell. 
2018;174(3):716–29.e27.

	271.	 Wu X, Liu T, Ye C, Ye W, Ji G. scAPAtrap: identification and quantification of 
alternative polyadenylation sites from single-cell RNA-seq data. Brief 
Bioinform. 2021;22(4):bbaa273.

	272.	 Patrick R, Humphreys DT, Janbandhu V, Oshlack A, Ho JWK, Harvey RP, et al. 
Sierra: discovery of differential transcript usage from polyA-captured 
single-cell RNA-seq data. Genome Biol. 2020;21(1):167.

	273.	 Gao Y, Li L, Amos CI, Li W. Analysis of alternative polyadenylation from single-
cell RNA-seq using scDaPars reveals cell subpopulations invisible to gene 
expression. Genome Res. 2021;31(10):1856–66.

	274.	 Li GW, Nan F, Yuan GH, Liu CX, Liu X, Chen LL, et al. SCAPTURE: a deep 
learning-embedded pipeline that captures polyadenylation information 
from 3’tag-based RNA-seq of single cells. Genome Biol. 2021;22(1):221.

	275.	 Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, et al. SCAPE: a mixture model 
revealing single-cell polyadenylation diversity and cellular dynam‑
ics during cell differentiation and reprogramming. Nucleic Acids Res. 
2022;50(11):e66.

	276.	 Wang X, Hou J, Quedenau C, Chen W. Pervasive isoform-specific translational 
regulation via alternative transcription start sites in mammals. Mol Syst 
Biol. 2016;12(7):875.

	277.	 He Y, Chen Q, Zhang J, Yu J, Xia M, Wang X. Pervasive 3’-UTR isoform switches 
during mouse oocyte maturation. Front Mol Biosci. 2021;8:727614.

	278.	 Philpott M, Watson J, Thakurta A, Brown T Jr, Brown T Sr, Oppermann U, et al. 
Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. 
Nat Biotechnol. 2021;39(12):1517–20.

	279.	 Tian L, Jabbari JS, Thijssen R, Gouil Q, Amarasinghe SL, Voogd O, et al. Com‑
prehensive characterization of single-cell full-length isoforms in human 
and mouse with long-read sequencing. Genome Biol. 2021;22(1):310.

	280.	 Rebboah E, Reese F, Williams K, Balderrama-Gutierrez G, McGill C, Trout D, 
et al. Mapping and modeling the genomic basis of differential RNA iso‑
form expression at single-cell resolution with LR-Split-seq. Genome Biol. 
2021;22(1):286.

	281.	 Li J, Pan T, Chen L, Wang Q, Chang Z, Zhou W, et al. Alternative splicing 
perturbation landscape identifies RNA binding proteins as potential thera‑
peutic targets in cancer. Mol Ther Nucleic Acids. 2021;24:792–806.



Page 24 of 24Su et al. Military Medical Research            (2022) 9:68 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	282.	 Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: 
updates to the experimentally validated microRNA-target interaction 
database. Nucleic Acids Res. 2020;48(D1):D148–54.

	283.	 Jiang T, Zhou W, Chang Z, Zou H, Bai J, Sun Q, et al. ImmReg: the regulon 
atlas of immune-related pathways across cancer types. Nucleic Acids Res. 
2021;49(21):12106–18.

	284.	 Chen W, Guillaume-Gentil O, Rainer PY, Gabelein CG, Saelens W, Gardeux V, 
et al. Live-seq enables temporal transcriptomic recording of single cells. 
Nature. 2022;608(7924):733–40.

	285.	 Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, et al. A single-
cell atlas of chromatin accessibility in the human genome. Cell. 
2021;184(24):5985-6001.e19.

	286.	 Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: technolo‑
gies and biological applications. Trends Biotechnol. 2018;36(9):952–65.

	287.	 Zhang R, Zhou T, Ma J. Multiscale and integrative single-cell Hi-C analysis 
with Higashi. Nat Biotechnol. 2022;40(2):254–61.

	288.	 Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data 
analysis methods. Exp Mol Med. 2020;52(9):1428–42.

	289.	 Long Z, Sun C, Tang M, Wang Y, Ma J, Yu J, et al. Single-cell multiomics 
analysis reveals regulatory programs in clear cell renal cell carcinoma. Cell 
Discov. 2022;8(1):68.

	290.	 Marx V. Method of the year: spatially resolved transcriptomics. Nat 
Methods. 2021;18(1):9–14.


	Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications
	Abstract 
	Background
	General tasks of single-cell RNA-seq data analysis
	Experimental design
	Raw data processing
	QC and doublet removal
	Expression normalization
	Data integration
	Feature selection
	Dimensionality reduction and visualization
	Identification of cell subpopulations
	Cell type annotation
	Marker gene identification
	Functional enrichment analysis
	Trajectory inference and RNA velocity
	Cell–cell communications
	Regulon inference and TF activity prediction
	Metabolic analysis

	A collected resource for scRNA-seq data analysis with biomedical applications
	Discussion
	Acknowledgements
	References


