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Abstract

Vaccine, Synthetic biology, Nanoscience

Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has spread worldwide. The RNA genome of SARS-CoV-2, which is highly infectious and prone to rapid
mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to
prevent COVID-19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are

in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or
therapeutic vaccines against COVID-19, including viral vector vaccines, DNA vaccines, RNA vaccines, live-attenuated
vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to
traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology
also play important roles in combating COVID-19. However, many challenges persist in ongoing clinical trials.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic
caused by the new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is an ongoing crisis of
grave global concern. More than 4.92 million peo-
ple had died of COVID-19 by October 20, 2021. The
World Health Organization (WHO) announced that
the new coronavirus pneumonia epidemic is listed
as a Public Health Emergency of International Con-
cern (PHEIC). The infectivity of the original emer-
gent SARS-CoV-2 strain was close to or slightly higher
than that of severe acute respiratory syndrome coro-
navirus 1 (SARS-CoV-1), and it is highly antigenically
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and genetically similar to SARS-CoV-1 [1]. The whole
world must quickly cut the transmission route and
adopt effective prevention and control measures to
prevent the further spread of SARS-CoV-2. The law
of the People’s Republic of China on the prevention
and control of infectious diseases states, “The state
implements a policy of prevention primarily for the
prevention and control of infectious diseases.” Since
the outbreak of the virus at the end of 2019, it has
exerted severe negative effects on human health and
the economy [2]. In December 2019, many cases of
pneumonia with an unknown etiology were recorded
[3]. Scientists announced preliminary data on the
identified pathogen on January 8, 2020 and published
the whole sequence of the virus genome [4]. The
National Pathogen Microbiological Resource Bank at
the Chinese Center for Disease Control and Preven-
tion announced the information and electron micro-
graphs of the first virus strains on January 24, 2020.
On February 11, 2020, the International Committee on
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Taxonomy of Viruses (ICTV) named the new corona-
virus SARS-CoV-2. On the same day, the World Health
Organization named the disease caused by the virus
COVID-19 [5]. As of 12:14 Beijing time on October 20,
2021, health authorities worldwide had reported more
than 242.38 million confirmed cases and more than
4.92 million deaths, and these numbers are expected to
increase further.

Although coronaviruses are often associated with
acute respiratory infections in humans, their ability to
infect multiple host species makes them complex path-
ogens. Due to the high prevalence and wide circulation
of coronaviruses, the genetic diversity and frequent
recombination of their genomes, and frequent interac-
tions between humans and animals, new coronaviruses
are likely to emerge periodically in the human popula-
tion via zoonotic sources [6]. A quick understanding
of the structure and characteristics of SARS-CoV-2,
as well as the clinical features of COVID-19, is neces-
sary to expedite vaccine research and drug develop-
ment. In terms of treatment and prevention, scientists
are facing great challenges in the process of developing
vaccines and drugs because of the variability of SARS-
CoV-2, which will necessitate long-term research and
development of specific vaccines and drugs against
the virus. In addition, SARS-CoV-2 has intermediate
to high infectivity. As a result, scientists not only must
consider the safety and efficacy of the vaccine but also
protective measures for personnel during the research
and development process, increasing the challenges
associated with the whole enterprise. To date, a global
vaccine development strategy based on inactivated
virus vaccines, recombinant protein vaccines, recom-
binant viral vector vaccines, nucleic acid vaccines (e.g.,
mRNA vaccines and DNA vaccines) and live attenuated
vaccines has been launched, and some vaccines have
already completed phase III clinical trials and are on
the market.

In this paper, various types of vaccines are reviewed,
based on which the concept of a bionic simulated virus
vaccine is proposed and a new strategy of vaccine
development is considered. Bionic technology has been
widely used in biology and medicine [7, 8]. Studies have
revealed that bionic nanoparticles potentially represent
promising mucosal adjuvants for “universal” influenza
vaccines, which has made biomimetic technology more
mature and provided broad application prospects. In
vaccine development, biomedical nanomaterials have
been used to simulate the whole virus structure, includ-
ing its infection process, and efficiently trigger antibody
production. Additionally, biomedical nanomaterials
have desirable biocompatibility [9, 10]. Thus, the use of
this strategy to develop vaccines may be a good choice.
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SARS-CoV-2

Overview of SARS-CoV-2

SARS-CoV-2 is the seventh known coronavirus that
infects humans and causes disease [11]. According to a
genomic analysis, SARS-CoV-2 falls within the B sub-
group of the Betacoronavirus genus, which causes lower
respiratory tract infections and pneumonia in humans
and has a high mutation rate, alternative splicing, and
overall diversity [12]. Extracellular virus particles and
inclusion bodies formed by SARS-CoV-2 components
were identified in ultrathin sections of airway epithe-
lial cells from patients with COVID-19 [6]. Notably,
sequence alignments revealed that SARS-CoV-2 is closely
related (86.9% identity) to the bat-derived SARS-like cor-
onavirus bat-SL-CoVZC45, which was collected in China
in 2003, while it is more distantly related to the first
emergent SARS-CoV and Middle East Respiratory Syn-
drome Coronavirus (MERS-CoV).

Host range of SARS-CoV-2

Most scientists view bats as the most likely reservoir of
SARS-CoV-2 [13]. Studies comparing the total genome
sequences indicate that SARS-CoV-2 may have evolved
from a Betacoronavirus species found in Chinese horse-
shoe bats (Rhinolophus sinicus), since it shares up to
96.2% identity with some strains detected in bats [4].
Accordingly, bats are presumed to be the natural res-
ervoir from which SARS-CoV-2 originated and spread
to humans via an intermediary host [14]. However,
researchers have not determined which animal is respon-
sible for the final transmission to humans. Bats are the
natural hosts for some of the most dangerous viruses,
including Ebola, Marburg, rabies, Hendra, and Nipah
[15]. Due to their special immunological features, bats
are naturally infected but do not exhibit clinical signs of
these diseases [16].

SARS-CoV-2 transmission routes

SARS-CoV-2 is highly infectious and has become a threat
worldwide. SARS-CoV-2 is mainly transmitted by direct
contact and respiratory droplets [17-19]. However, it
can also be transmitted via the fecal-oral route, mother-
to-child route and aerosol route [20, 21]. Moreover, if
people who are susceptible to disease touch freshly con-
taminated fomites on surfaces such as door handles and
phones and then touch their own oral mucosa, nasal cav-
ity or conjunctiva, indirect contact transmission might
occur. Transmission via the aerosol route mainly occurs
in confined and nonventilated spaces.

Structure of SARS-CoV-2
The SARS-CoV-2 genome is composed of a single posi-
tive-strand RNA, which is replicated with the assistance
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of nonstructural proteins (NSPs) [22]. As an RNA virus,
SARS-CoV-2 requires an RNA polymerase to replicate
its genome, and this polymerase lacks a proofreading
function. As a result, the inherent mutation rate dur-
ing replication in the host or intermediate host is high.
Additionally, the high gene recombination rate between
different coronaviruses is one of the reasons for their
high diversity [23]. As shown in Fig. 1, the SARS-CoV-2
genome encompasses 29,903 nt, with multiple genes
that encode 29 proteins. The coding sequence is flanked
by two untranslated terminal regions (UTRs) and con-
tains 14 annotated open reading frames (ORFs). The first
two 5’-ORFs, ORFlab and ORFla, account for approxi-
mately two-thirds of the genome and encode 16 NSPs
that are responsible for viral replication [23, 24]. The
SARS-CoV-2 genome has a GC content of 38% [24].
The encoded sequences include the 5’ UTR, replicase
complex (orflab), 4 structural proteins (spike protein,
membrane protein, envelope protein and nucleocapsid
protein), 8 accessory proteins [25], 3/ UTR and some
unstructured open reading frames [3-chymotrypsin-
like protease (3CLpro)], also called the main protease
(Mpro), papain-like protease (PLpro), helicase and RNA-
dependent RNA polymerase (RdRp)). These proteins are
presumed to play a role in virus replication and patho-
genesis [26]. The SARS-CoV-2 virus particles have obvi-
ous spinous processes that are 9-12 nm long such that
the viral particle resembles the sun’s corona, from which
its name was derived. SARS-CoV-2 virions appear poly-
morphic and mostly spherical under an electron micro-
scope. All virus particles have core—shell structures with
a diameter ranging from 60 to 140 nm [6]. Similar to the
original emergent SARS-CoV, the four structural proteins
of SARS-CoV-2 play important roles in viral infection
(Fig. 2). These proteins may help us develop prophylac-
tic vaccines that prevent viral cell entry, which is very
important.
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Fig. 2 Structure of SARS-CoV-2

The spike protein is one of the 4 structural proteins
that play important roles in forming the exterior of
SARS-CoV-2 particles and protecting the internal RNA.
The spike protein is a typical type I transmembrane gly-
coprotein constituting a unique spike-like structure on
the surface of the virus. Spike protein is composed of S1
and S2 subunits [27]. S1 constitutes the globular head
of the spike protein, providing the N-terminal domain
(NTD) and the receptor-binding domain (RBD), which is
responsible for recognizing the host cell receptor [28]. S1
is crucial for determining the spike orientation and host
range. S2 forms the stem of the spike protein and par-
ticipates in membrane fusion. The S2 subunit contains 3
functional groups, including a fusion peptide (FP) and a
peptide repeat sequence (HR1 and HR2). After the RBD
located in the tip of S1 binds to the receptor, the FP in S2
is inserted into the host cell membrane and changes the
conformation, inducing the formation of a six-helix bun-
dle (6HB) by HR1 and HR2, resulting in the fusion of the
viral membrane with the cell membrane. The spike pro-
tein [29] forms obvious spikes on the surface of the virus.
Some of the spikes extend and attach to angiotensin-con-
verting enzyme 2 (ACE2), after which the virus invades
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Fig. 1 Organization of the SARS-CoV-2 genome. S spike protein; E envelope protein; M membrane protein; N nucleocapsid protein
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the cell [30]. A special 12-base sequence (ccucggcgggca)
in the spike protein gene has been identified that may
help the spike protein bind more tightly to human cells.
In vitro experiments also showed that if the host cell
lacks the ACE2 protein, then it cannot be infected [31].
Several teams are currently researching and developing
drugs to prevent this protein from attaching to human
cells. Similar to SARS-CoV and MERS-CoV, the spike
protein of SARS-CoV-2 and its RBD contained are still
the main targets of vaccine development [32]. The struc-
ture of the SARS-CoV-2 spike protein has been solved
and understood in some detail.

The membrane protein and E protein are structural
proteins that form the outer shell of the virion. Addition-
ally, the E protein binds other proteins inside the cell,
further facilitating infection. The membrane protein is
the most abundant structural protein of the virus, which
determines the shape of the virion [33]. It has a larger
C-terminal inner domain and a small N-terminal glyco-
sylated extracellular domain. Moreover, the membrane
protein is a dimer in the virion and adopts two different
conformations to promote membrane bending and bind
to the nucleocapsid together. A few transmembrane E
proteins existed in the virion. E protein is composed of
a C-terminal internal domain and an N-terminal extra-
cellular, and possesses ion channel activity, which is help-
ful for the assembly and release of virions. Recombinant
viruses lacking the E protein may not be viable.

In addition, nucleocapsid proteins are connected in
the form of a long helix, wrapping the internal RNA.
Their main function is to maintain the stability of the
RNA inside the virion. Nucleocapsid protein is the only
protein that forms the nucleocapsid. It consists of inde-
pendent N- and C-terminal domains (NTD and CTD,
respectively). These domains use different mechanisms
to bind RNA in vitro, indicating that optimal RNA bind-
ing requires the participation of these two domains. The
nucleocapsid protein also binds to the key components
of the replicase complex, nsp3 and membrane protein,
and these protein interactions may help package the
protein-coated genome into viral particles [34]. Previous
studies have also shown that the nucleocapsid protein
plays a role in the invasion of SARS-CoV-2 and elicits an
immune response.

Pathogenic mechanism of SARS-CoV-2

The pathogenic mechanism of SARS-CoV-2 has not been
fully clarified. The process of SARS-CoV-2 infection is
the same as other coronaviruses. First, the spike protein
binds to a specific receptor on the human cell mem-
brane. Second, the virus enters the cell through recep-
tor-mediated endocytosis and begins to replicate. Then,
newly formed virions leave the host cell and infect other
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host cells [12]. Pre-studies have found that the recep-
tor used by SARS-CoV-2 during invasion is the same as
that of SARS-CoV, ACE2, suggesting that the host range
and tissue tropism of the two viruses may be similar [29,
35]. Researchers have identified that the mechanism
through which SARS-CoV-2 enters the cell is related to
ACE2, the proprotein convertase furin, transmembrane
serine protease 2 (TMPRSS2) and the lysosomal pro-
tease cathepsin. In the virion, the spike protein exists as
a trimer; the S1 head is located at the top of the trim-
eric membrane-fused S2 stalk, which contains the RBD
and specifically recognizes ACE2. Additionally, the virus
uses the cell surface protease TMPRSS2 or the lysosomal
protease cathepsin to dissociate S1 and activate the S1/
S2 boundary through proteolysis. The mechanism SARS-
CoV-2 uses to enter the cell reduces its dependence on
the surface protease of the target cell. At the same time,
pre-activation by furin and the high affinity of the RBD
for ACE2 enable SARS-CoV-2 to effectively enter the
cell while evading immune surveillance. These charac-
teristics enable the rapid spread of the virus, aggravat-
ing the symptoms of patients and even causing death
[36]. Some scientists have found that the spike protein
of SARS-CoV-2 has a much higher affinity for binding
to human ACE2 than that of SARS-CoV [29], which may
be the main reason why SARS-CoV-2 is more infectious
than SARS [37, 38]. Based on current research results,
the interaction between the spike protein and ACE2 is
an important premise for SARS-CoV-2 to invade cells
[29]. At present, pathological research on the long-term
existence of COVID-19 is mainly focused on the length
of time the virus persists in the body and the long-
term existence of viral RNA. An analysis of 26 patients
revealed no critically ill patients, but SARS-CoV-2 and
IgG antibodies coexisted for up to 50 days in two patients
[39]. Additionally, the long-term existence of syncytia in
infected cells and the continued existence of viral RNA
in lung cells and endothelial cells may cause the virus to
exist in the body for a long time [40].

Variants of SARS-CoV-2

All viruses, including SARS-CoV-2, change over time.
Most of the changes have little effect on virus proper-
ties (Table 1). However, some changes may affect the
characteristics of the virus, such as the ease with which
it spreads, the severity of the associated disease, and the
efficacy of vaccines, therapeutic drugs, diagnostic tools
or other public health and social measures. A number of
variants have become variants of concern (VOC) or vari-
ants of interest (VOI), reclassifying VOI/VOC for scien-
tists, health workers and the general public. VOC and
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Table 1 SARS-CoV-2 variants (the data are from the WHO website, as of October 12, 2021)
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WHO label Pango lineages Additional amino acid Earliest documented samples
changes monitored®

Date of designation

Variants of Concern (VOC)

Alpha B.1.1.7 +S: 484K United Kingdom, Sep-2020 [41, 42]
+S:452R
Beta B.1.351 +S:L18F South Africa, May-2020 [43-45]
B.1.351.2
B.1351.3
Gamma P1 +S:681H Brazil, Nov-2020 [46]
P1.1
P1.2
Delta B.1.617.2 +S:417N India, Oct-2020 [47]
AY.1
AY.2
Variants of Interest (VOI)
Eta B.1.525 Multiple countries, Dec-2020
lota B.1.526 United States of America, Nov-2020
Kappa B.1.617.1 India, Oct-2020 [48]
Lambda C37 Peru, Dec-2020
Mu B.1.621 Colombia, Jan-2021
Reclassifying VOIs/VOCs
B.1427 United States of America, Mar-2020
B.1.429°
p2P Brazil, Apr-2020
p3P Philippines, Jan-2021
R Multiple countries, Jan-2021
R.2
B.1.466.2 Indonesia, Nov-2020
B.1.621 Colombia, Jan-2021
AV.1 United Kingdom, Mar-2021
B.1.1.318 Multiple countries, Jan-2021
B.1.1.519 Multiple countries, Nov-2021
AT Russian Federation, Jan-2021
C36.3 Multiple countries, Jan-2021
C36.3.1
B.1.214.2 Multiple countries, Nov-2020
B.1.1.523 Multiple countries, May-2020
B.1.620 Multiple countries, November 2020
Cc12 South Africa, May 2021
B.1617.1° India, Oct-2020
B.1.526° United States of America, Nov-2020
B.1.525° Multiple countries, Dec-2020
B.1.630 Dominican Republic, Mar-2021

18-Dec-2020

18-Dec-2020

11-Jan-2021

VOI: 4-Apr-2021
VOC: 11-May-2021

17-Mar-2021
24-Mar-2021
4-Apr-2021
14-Jun-2021
30-Aug-2021

VOI: 5-Mar-2021
Alert: 6-Jul-2021

VOI: 17-Mar-2021
Alert: 6-Jul-2021

VOI: 24-Mar-2021
Alert: 6-Jul-2021

07-Apr-2021

28-Apr-2021
26-May-2021
26-May-2021
02-Jun-2021
02-Jun-2021
09-Jun-2021
16-Jun-2021

30-Jun-2021
14-Jul-2021
14-Jul-2021
01-Sep-2021

VOI: 4-Apr-2021
VUM: 20-Sep-2021

VOI: 24-Mar-2021
VUM: 20-Sep-2021

VOI:17-Mar-2021
VUM: 20-Sep-2021

12-Oct-2021

2 Significant monitored spike (S) amino acid changes have been reported in a small number of sequencing samples
b Former VOIs Epsilon (B.1.427/B.1.429), Zeta (P.2), Theta (P.3). VUM variants under monitoring
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VOI are the main focuses because they may significantly
change the nature of the virus.

VOC have been shown through a comparative evalu-
ation to be associated with one or more of the follow-
ing changes of global public health significance: (1) to
increase the prevalence of communicable or harmful
changes in COVID-19 epidemiology; (2) increased toxic-
ity or altered clinical manifestations; and (3) a decrease in
the effectiveness of public health and social measures or
existing diagnostics, vaccines and therapies.

VOI: (1) Predicted or known genetic changes that affect
viral characteristics, such as transmissibility, disease
severity, immune escape, and diagnostic or therapeutic
escape; (2) identified causes of significant community
transmission or clusters of COVID-19 cases, or other
significant epidemiological effects, in multiple countries
with increasing relative prevalence and increasing num-
ber of cases over time, suggest emerging risks to global
public health.

Given the evolution of SARS-CoV-2 and our under-
standing of the effects of mutations, these working defi-
nitions may be adjusted periodically. Where necessary,
variants that do not meet all the criteria listed in these
definitions may be designated VOI/VOC, and those
variants that have a reduced risk relative to other popu-
lar variants may be reclassified. Previously designated
VOIs or VOCs, which have been conclusively shown to
no longer pose a significantly increased risk to global
public health compared to other prevalent SARS-CoV-2
variants, can be reclassified. The SARS-CoV-2 variant
with genetic changes is suspected to affect viral char-
acteristics, and some studies have indicated that it may
pose a risk in the future, but evidence of phenotypic or
epidemiological effects is currently unclear, requiring
enhanced surveillance and repeated evaluation pending
new evidence.

Since 2020, several variants of SARS-CoV-2 have
appeared. Researchers have identified hundreds of
mutations in the residues of the spike protein, but more
mutation sites are located in the RBD. Chen et al. [49]
conducted research on the six SARS-CoV-2 subtypes
that appeared before; among them, clusters IV, V, and VI
exhibited significantly greater infectivity. In addition, the
author also predicted some residues (452, 489, 500, 501,
and 505) that may be mutated in the future, and these
residues have a high probability of producing more conta-
gious SARS-CoV-2. Similarly, Daniloski et al. [50] studied
the transduction rate of a SARS-CoV-2 variant (D614G);
compared with wild-type SARS-CoV-2, D614G exhib-
ited significantly increased transduction of A5492“F? and
Huh7.52¢ cells, indicating increased infectivity. Li et al.
[51] studied the infectivity of 80 variants and 26 glyco-
sylation modification sites, and the variant containing
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D614G and another amino acid was more infectious.
Most of the variants caused by amino acid changes in
the receptor binding region are less infectious, but some
variants are resistant to partially neutralizing antibodies,
such as A475V, L452R, V483A and F490L. In addition,
the lack of glycosylation of N331 and N343 significantly
reduces the infectivity of the virus. Among the four
SARS-CoV-2 substrains discovered in the United States,
studies have shown that Clusters A and D increase con-
tagiosity, while Clusters B and C reduce contagiosity.
Most importantly, when infected with SARS-CoV-2, the
immune systems of women are more sensitive than those
of men [52]. These results have reference value for the
development of vaccines.

Clinical presentations of COVID-19

Based on the current epidemiological data, the average
incubation period of COVID-19 is 14 days. The most
common symptoms at the onset of COVID-19 are fever,
dry cough and fatigue. However, a few patients also pre-
sent with nasal congestion, rhinorrhea, pharyngeal pain,
myalgia or diarrhea. Asymptomatic infections have also
been identified. In addition, patients admitted to the ICU
were more likely to report dyspnea and/or hypoxemia,
with some of them rapidly developing acute respiratory
distress syndrome (ARDS), septic shock, metabolic aci-
dosis, coagulopathy and multiple organ failure. Addi-
tionally, leukopenia and thrombocytopenia may occur
in these severe cases [53]. Notably, severe cases are char-
acterized by moderate to low fever or even no obvious
fever. In contrast, mild cases are only characterized by a
low fever, slight fatigue and usually no pneumonia [13].
Moreover, manifestations in some children and neonates
may be atypical, including gastrointestinal symptoms
such as vomiting and diarrhea, or only with mental weak-
ness and shortness of breath.

Recently, relevant documents of the Chinese govern-
ment clearly state that imaging results should be included
as one of the criteria for a diagnosis of COVID-19. From
the perspective of imaging, patients with COVID-19 of
different severities have different presentations. Usu-
ally, no abnormal findings on chest CT are observed in
patients with mild cases, but many patients show patchy
ground-glass opacity, which is mainly focal and scattered
bilaterally in the lungs. However, unilateral involvement
is also observed. Lesions are commonly detected in the
lower lobes, while the upper lobes may also be partially
involved.

In severely and critically ill patients with COVID-19
pneumonia, bilateral multiple opacities of mixed den-
sity or ground-glass appearance with clear or ambigu-
ous boundaries are common findings in chest CT
images. The central and peripheral zones of the lungs
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are usually involved, with subpleural regions most com-
monly involved, and consolidation of different extents
are observed within the opacities. Moderately ill patients
have a much lower volume fraction of the lesions in
the lungs than severely and critically ill patients, and
severely ill patients have a lower value than critically ill
patients. According to the evolution of imaging findings
on chest CT, the disease is subclassified into four peri-
ods: early period, progression period, peak period and
absorption period. Most patients with COVID-19 can be
cured, but some patients with severe cases may develop
acute respiratory distress syndrome, and many die [53].
Clinical studies have shown that deceased patients with
COVID-19 exhibited typical pathological changes in
the lung parenchyma that eventually led to progressive
hypoxemia, lactic acidemia, ARDS and acute respiratory
failure [54]. Autopsy of patients who died of COVID-19
revealed that the blood vessels of the human body exhibit
some altered features after COVID-19, such as pulmo-
nary vascular endotheliitis, vascular thrombosis, micro-
vascular disease and alveolar capillary occlusion, which
have caused harm to the human body [55]. COVID-19
is generally more severe in older or immunocompro-
mised patients [13]. Additionally, women are less likely to
develop severe COVID-19 than men [54].

Concepts and methods of vaccine development
Prior to the successful development of a vaccine, no
drugs specifically targeting SARS-CoV-2 were available
in clinical practice, and the main measure to control the
epidemic is still quarantine. At the same time, wearing
masks, using liquid disinfectants and other measures
effectively reduce the spread of SARS-CoV-2. The best
approach to control epidemics is an effective vaccine.
Teams all over the world are focusing on vaccine research
and development during the epidemic. Fortunately, they
have achieved some gratifying results. To date, some
types of vaccines have been developed and put on the
market, making them the most effective measures to
combat the epidemic.

After confirming the epidemic situation, the Minis-
try of Science and Technology of the People’s Republic
of China promoted research through several technical
routes, including inactivated virus vaccines, recombinant
protein vaccines, viral vector vaccines, and nucleic acid
vaccines [56—58] (Table 2), to guarantee the success of
vaccine research and development. At present, more than
400 teams worldwide have launched vaccine research
based on these five technical routes. We have summa-
rized the research and progress on these vaccines, hoping
to identify safer and more effective new paradigms for
vaccine development.
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Because of the SARS-CoV-2 pandemic, vaccine devel-
opment suddenly became a focus of global research.
However, the time needed to develop a vaccine is very
long. Years to more than a decade is often required from
preclinical research to the final marketed vaccine (Fig. 3).
The shortest development period before SARS-CoV-2
was that of the mumps vaccine, which took 5 years to
market. In contrast, after several months of research and
development of SARS-CoV-2 vaccines, several candi-
dates have entered the clinic worldwide (Tables 3, 4, 5).
This unprecedented speed also required governments to
adopt a different approval process to ensure the safety,
efficiency and controllable quality of these new vaccines.
According to the WHO, vaccine development must
undergo preclinical research, clinical application, clinical
trial agency application, registered clinical trial, phase I
clinical trial, phase II clinical trial, phase III clinical trial,
vaccine marketing and vaccine production. The process
is generally divided into five stages and 22 steps: (1) early
design; (2) animal experiments; (3) Phase I clinical trial
to understand the preliminary safety of the vaccine; (4)
Phase II clinical trial to determine the immunization pro-
cedure and dose; and (5) Phase III clinical trials for more
extensive vaccination trials and evaluation of side effects.
More than 1000 volunteers are required in Phase III, and
the shortest period is 3—5 months. Therefore, the rapid
development of SARS-CoV-2 vaccines is a challenge.
A change in research and development concepts and
approval methods is also imperative to ensure that peo-
ple are vaccinated as soon as possible.

Viral vector vaccines

Vector-based vaccines are divided into replicative and
nonreplicative vector-based vaccines. This type of vac-
cine is generated by integrating exogenous protective
antigen-encoding genes into the genomes of viruses or
bacteria whose harmful genes have been removed. A
recombinant viral vector vaccine uses a virus as a carrier
and effectively induces the organism to produce high-
titer neutralizing antibodies. The mechanism involves the
transcription of engineered genes in the nucleus and the
production of SARS-CoV-2 surface proteins to elicit an
immune response (Fig. 3a). Viral vectors commonly used
as antigen delivery systems include DNA viruses such as
vaccinia virus (VACV) [162-164], herpes simples virus
(HSV) [165], and adenovirus [166—168], as well as RNA
viruses such as influenza virus, vesicular stomatitis virus
(VSV) [169-171] and yellow fever virus 17D (YF17D)
[172].

Recombinant viral vector vaccines are generally live
virus vaccines, and their vector functions as an adjuvant
to induce humoral and cellular immunity at the same
time. These vectors have become a research hotspot of
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Fig. 3 Schematic diagram showing the principles of various vaccines. a Viral vector vaccines are produced by integrating the SARS-CoV-2 antigenic
gene fragment into viruses with very low pathogenicity. The gene is then transcribed in the cytoplasm or enters the nucleus for transcription,

and finally, SARS-CoV-2 surface proteins are produced and cause an immune response. b DNA vaccines are produced using technology similar

to a, but the vector is a plasmid. ¢ mRNA vaccine is based on a synthetic mMRNA encoding the SARS-CoV-2 antigen that is produced in vitro and
delivered into the body. Then, it is translated into a protein antigen by cells and causes an immune response in the human body. d Live-attenuated
vaccines are prepared by continuous passage to weaken the virulence of live viruses. The attenuated virus then directly induces an immune
response by entering cells and replicating to induce the production of antibodies against SARS-CoV-2 surface proteins. e Inactivated virus vaccines
are generated from the natural virus, which is inactivated using physical or chemical methods. The killed virus then directly induces an immune
response. f Recombinant protein vaccines are based on injecting recombinant SARS-CoV-2 surface proteins directly into the living body to induce
an immune response. g Based on f, bionic nanoparticle vaccines use nanoparticles composed of a biodegradable material to replace the nucleic
acid and proteins of the viral core, while the outer shell contains recombinant viral surface proteins attached using synthetic biology. These two
parts then form a virus-like structure through self-assembly and are injected into the body to induce an immune response
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Table 5 Vaccines entering Phase lll/IV clinical trials (as of October 12, 2021)
Vaccine platform description Type of candidate vaccine Developers Phase  References
Inactivated virus CoronaVac; inactivated SARS-CoV-2 vaccine Sinovac Research and Development Co, Ltd ~ Phase IV [140-145]
(Vero cell)
Inactivated virus Inactivated SARS-CoV-2 vaccine (Vero cell) Sinopharm + China National Biotec Group Phase lll  [146, 147]
Co+Wuhan Institute of Biological Products
Inactivated virus Inactivated SARS-CoV-2 vaccine (Vero cell), Sinopharm + China National Biotec Group Phase IV [148]
vaccine name BBIBP-CorV Co + Beijing Institute of Biological Products
Viral vector (Non-replicating) ChAdOx1-S - (AZD1222) AstraZeneca + University of Oxford Phase IV [149]
Covishield
Vaxzevria
Viral vector (Non-replicating) Recombinant novel coronavirus vaccine CanSino Biological Inc./Beijing Institute of Phase IV [150]
(Adenovirus type 5 vector) Biotechnology
Viral vector (Non-replicating) Gam-COVID-Vac Adeno-based (rAd26- Gamaleya Research Institute; Health Ministry ~ Phase Il
S+ rAd5-S) of the Russian Federation
Viral vector (Non-replicating) Ad26.COV2.S Janssen Pharmaceutical Johnson & Johnson Phase IV [151]
Protein subunit SARS-CoV-2 rS/Matrix M1-Adjuvant (Full Novavax Phase lll  [152]
length recombinant SARS CoV-2 glycoprotein
nanoparticle vaccine adjuvanted with Matrix
M) NVX-CoV2373
RNA based vaccine MRNA-1273 Moderna + National Institute of Allergy and Phase IV [153]
Infectious Diseases (NIAID)
RNA based vaccine BNT162b2 (3 LNP-mRNAs), also known as Pfizer/BioNTech 4+ Fosun Pharma Phase IV [154]
"Comirnaty”
Protein subunit Recombinant SARS-CoV-2 vaccine (CHO Cell)  Anhui Zhifei Longcom Biopharmaceuti- Phase Ill
cal + Institute of Microbiology, Chinese
Academy of Sciences
RNA based vaccine CVnCoV vaccine CureVac AG Phase lll  [155]
Inactivated virus SARS-CoV-2 vaccine (Vero cell) Institute of Medical Biology 4+ Chinese Acad- ~ Phase Ill  [156]
emy of Medical Sciences
Inactivated virus QazCovid-in® - COVID-19 inactivated vaccine  Research Institute for Biological Safety Prob-  Phase lll - *1
lems, Rep of Kazakhstan
DNA based vaccine nCov vaccine Zydus Cadila Phase Il *2
Inactivated virus Whole-virion inactivated SARS-CoV-2 vaccine  Bharat Biotech International Limited Phase Il
(BBV152); Covaxin
Protein subunit VAT00002: SARS-CoV-2 spike protein with Sanofi Pasteur + GSK Phase Il [157]
adjuvant
Inactivated virus Inactivated SARS-CoV-2 vaccine (Vero cell) Shenzhen Kangtai Biological Products Co,, Ltd  Phase Il *3
Protein subunit FINLAY-FR-2 anti-SARS-CoV-2 vaccine (RBD Instituto Finlay de Vacunas Phase lll  *4
chemically conjugated to tetanus toxoid plus
adjuvant)
Protein subunit EpiVacCorona (EpiVacCorona vaccine based Federal Budgetary Research Institution State ~ Phase lll  [158]
on peptide antigens for the prevention of Research Center of Virology and Biotechnol-
COVID-19) ogy "Vector"
Protein subunit RBD (baculovirus production expressed in West China Hospital 4+ Sichuan University Phase Il *5
Sf9 cells) Recombinant SARS-CoV-2 vaccine
(519 Cell)
RNA based vaccine SARS-CoV-2 mRNA vaccine (ARCoV) Academy of Military Science (AMS), Walvax Phase Il [159]
Biotechnology and Suzhou Abogen Bio-
sciences
Protein subunit CIGB-66 (RBD 4 aluminium hydroxide) Center for Genetic Engineering and Biotech- ~ Phaselll  *6
nology (CIGB)
Inactivated Virus VLA2001 Valneva, National Institute for Health Phase lll  *7
Research, United Kingdom
Protein subunit Recombinant Sars-CoV-2 Spike protein, Alu-  Nanogen Pharmaceutical Biotechnology Phase Il [160]
minum adjuvanted (Nanocovax)
Inactivated Virus ERUCOV-VAC, inactivated virus Erciyes University, Turkey Phase lll  *8
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Table 5 (continued)
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Vaccine platform description Type of candidate vaccine

Developers Phase References

RNA based vaccine
encapsulated mRNA-based vaccine that

encodes for a full-length, prefusion stabilized

spike protein of the SARS-CoV-2 B.1.351
variant

mMRNA-1273.351. A lipid nanoparticle (LNP)-

Moderna + National Institute of Allergy and Phase IV [161]

Infectious Diseases (NIAID)

" 1: https://clinicaltrials.gov/ct2/show/NCT04530357
* 2: http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=49858
“ 3: https://clinicaltrials.gov/ct2/show/NCT04852705

" 4: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000347

" 5: https://pactr.samrc.ac.za/TrialDisplay.aspx?Triall D=15727

" 6: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000359

" 7: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-ISRCTN8 2411169

" 8: https://clinicaltrials.gov/ct2/show/NCT04824391

novel genetically engineered vaccines because of their
good safety, multiple inoculation routes and easy prep-
aration. However, it is a relatively long process. Due
to the infection of immune cells stimulates a humoral
immune response, vaccines based on viral vectors pro-
duce a very strong cellular immune response because
of their inherent adjuvant properties. By comparison
with traditional vaccines (e.g., inactivated or attenuated
virus), viral vector vaccines can be modified by spe-
cific targets to provide prolonged antigen presentation.
The potential applications of viral vectors for humans
ranged from infectious diseases to cancer treatments.
Viral vectors also achieve high-levels of recombinant
protein expression for the basis in modern vaccine
development [157, 173, 174].

Currently, adenovirus vectors targeting COVID-19
mainly use first-generation Ad, which only provides
short-term transgene expression in vivo. However, if
prolongation of transgene expression is required with-
out sacrificing the natural adjuvant properties of the
virus, then enteric adenovirus vectors may be pre-
ferred because vector-mediated cells express only the
vaccine antigen (spike) and not the Ad antigen. How-
ever, researchers have not clearly determined whether
the pre-existing components of the vaccine are safe
for humans. In addition, the recombinant adenovirus
type-5 vector-based Ebola vaccine (AD5-EBOV) was
approved by the National Medical Products Admin-
istration in 2017 [166, 175], while the recombinant
vesicular stomatitis virus vector-based Ebola vaccine
[ERVEBO (MSD)] was approved by the US Food and
Drug Administration (FDA) in 2019. Moreover, recom-
binant viral vector vaccines against MERS-CoV [162,
176], influenza virus [163, 167], HIV [164, 168], Ebola
[166, 177], Zika [170, 178] and Norwalk virus [171] are
also undergoing active development.

Recombinant viral vector vaccines against COVID-19
are mostly generated by inserting the spike protein gene
[37] and nucleocapsid protein gene of SARS-CoV-2 into
the host virus genome to express the corresponding pro-
teins in the body. Researchers have embedded the RBD
of the spike protein into an influenza virus vector lack-
ing pathogenic genes to construct a chimeric COVID-19
vaccine.

Currently, Chen and colleagues have emerged as the
leader in the development of an adenovirus (Ad) type-5
vector-based vaccine against COVID-19. The results of
the Phase I clinical trial of their vaccine showed that the
Ad5 vector-based COVID-19 vaccine is tolerable and
immunogenic in healthy adults. However, the vaccine
still has deficiencies [68]. On the one hand, Ad5 may be
rejected due to pre-existing immunity. Ad5 is a human-
derived virus, and most people have been infected with
Ad5 in their lives. Therefore, the anti-Ad5 antibodies
that are generally present in humans may attack the Ad5
vector, thereby reducing the effectiveness of the vaccine
[175]. On the other hand, the Ad5 vector vaccine cannot
replicate in humans. As a result, the immunization dose
of this vaccine must be increased to enhance its efficacy.
However, high-dose immunization is not well tolerated.
According to the official report of a Phase III trial con-
ducted in September 2020, the interim analysis of a Phase
IIT clinical trial of adenovirus vector type 5 (Ad5-nCoV)
in Pakistan showed that the vaccine was 100% protective
against severe COVID-19 after the administration of a
single dose, with an overall protective efficacy of 74.8%.

In conclusion, pre-existing immunity should be con-
sidered when designing this type of vaccine. Viral vector
vaccines also carry a certain biological risk. Addition-
ally, the body’s response to the carrier may interfere with
the immune response to the target antigen. However,
evidence for either problem has not been obtained in
humans. Therefore, the identification of more effective


https://clinicaltrials.gov/ct2/show/NCT04530357
http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=49858
https://clinicaltrials.gov/ct2/show/NCT04852705
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000347
https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=15727
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000359
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-ISRCTN82411169
https://clinicaltrials.gov/ct2/show/NCT04824391
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antigens and targets, comprehensive use rare human
adenovirus serotypes or adenoviruses from nonhuman
primates, and combination with other types of vaccines
for immunization will be more promising directions for
the development of recombinant viral vector vaccines
against COVID-19. On February 25, 2021, the recom-
binant novel coronavirus vaccine (Ad5-nCoV) Kevesa
was approved by the State Medical Products Adminis-
tration for conditional marketing in China. This vaccine
is also the only vaccine that can be administered with a
single injection program. The clinical Phase I/II data
for this vaccine suggest that in addition to its high pro-
tective efficacy, a certain degree of side effects is also
induced [150]. Research suggests that the AstraZeneca
vaccine may cause an unusual reaction that causes clots
to appear throughout the body, accompanied by low lev-
els of platelets. However, vaccine regulators have argued
that, in most settings, the benefits of the COVID-19 vac-
cines developed by AstraZeneca and Johnson & Johnson
(J&]J) far outweigh the small risk that they will cause an
unusual and sometimes deadly clotting disorder. In addi-
tion, after being vaccinated with the Janssen COVID-
19 vaccine, people aged 18-59 years are more likely to
have reactogenicity symptoms than people aged more
than 60 years. However, the symptoms are mostly mild
to moderate and subside within 1-2 days. In addition,
the probability of severe local or systemic reactogenic-
ity symptoms (> grade 3) in vaccine recipients was 2.2%,
which was higher than that in placebo recipients (0.7%).
Early Phase I/1I data from the Sputnik V COVID-19 vac-
cine were released in September 2020, showing that the
immune response is induced at a level consistent with
protection. A subsequent interim report of phase 3 data
showed that 75% of the more than 20,000 participants
were assigned to receive the vaccine, and approximately
one-quarter of them had comorbidities.

DNA vaccines

Nucleic acid vaccines are based on either DNA or mRNA.
DNA vaccines are based on a recombinant eukaryotic
expression vector encoding a certain protein antigen
that is directly injected into animals such that the for-
eign gene is expressed in vivo, and the antigen activates
the immune system, thereby inducing specific humoral
and cellular immune responses (Fig. 3b). This approach
delivers plasmids (e.g. pGX9501 in the case of INO-4800)
containing the gene encoding the spike protein via intra-
muscular injection. An electrical pulse is employed to
create transient pores in the cell membrane (namely elec-
troporation) and then allowed these plasmids to enter the
host cell smoothly. In cells, the plasmids begin to mul-
tiply, translate spike proteins, and activate the immune
system of host. Inovio Pharmaceuticals has reported the
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results of a Phase I/II clinical trial of its INO-4800 vac-
cine [179], which is currently in Phase III trials. Notably,
INO-4800 can be stored for more than 1 year at room
temperature. Additionally, GLS-5310 (GeneOne Life
Science, ClinicalTrials.gov Identifier: NCT04673149)
and GX-19N (Genexine, ClinicalTrials.gov Identifier:
NCT04715997) entered a Phase I clinical trial in Korea
in 2021 [180]. Some DNA vaccines have been marketed,
including animal flu vaccines and West Nile virus vac-
cines [181, 182].

Research on DNA vaccines began in the 1990s, when
the most common route of administration was intramus-
cular (IM) or intradermal (ID) injections using conven-
tional needles. Scientists have developed different DNA
preparations, which are encapsulated in lipid nanopar-
ticles containing cationic lipids and cholesterol. These
DNA preparations are adsorbed onto polymers (such
as polyethyleneimine) and adsorbed or encapsulated in
biodegradable nanoparticles to increase the uptake of
DNA molecules by cells [183]. Furthermore, "molecular
adjuvants" have also been developed to enhance the pro-
phylactic and treatment effects of DNA vaccines [184].
However, DNA vaccines also have many disadvantages.
First, the DNA injected into the body is quickly degraded.
Moreover, DNA vaccines pose a risk of autoimmunity,
which has not been observed in nonprimates [185]. To
date, DNA vaccines have not been approved for use in
humans.

On May 6, 2020, The Innovation and Value Initiative
(IVI), Inovio and the Korean National Institutes of Health
(KNIH) announced a collaboration with the Coalition
for Epidemic Preparedness Innovations (CEPI). They are
testing the safety and immunogenicity of a DNA vaccine
named INO-4800 in the first stage. Data released on May
20, 2020, suggested that the INO-4800 DNA vaccine was
effective. According to Phase I data published in Decem-
ber 2020, INO-4800 exhibited excellent safety and tol-
erability and was immunogenic in 100% (38/38) of the
vaccinated volunteers by eliciting humoral and/or cel-
lular immune responses [186]. Phase II/III efficacy trials
were scheduled to begin in July/August 2020 and are still
subject to regulatory approval [187]. Moreover, an Indian
company named Zydus Cadila announced that they had
started a research project in cooperation with multiple
teams in India and Europe on February 15, 2020, which
aimed to develop a DNA vaccine against SARS-CoV-2.
However, the potential safety problems of DNA vaccines
cannot be ignored, mainly because the expression vec-
tor carrying the antigen-encoding gene can be integrated
into the genome. DNA vaccines also have some advan-
tages: no risk of infection [188], ease of development and
production [188], long-term persistence of immunogens
[189], and in vivo expression ensuring that proteins more
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closely resemble normal eukaryotic structures, with
accompanying posttranslational modifications [189].
However, its disadvantages cannot be ignored, such as
the potential for atypical processing of bacterial and par-
asite proteins [188] and potential to transfect nontarget
cells, such as brain cells, when using nasal spray adminis-
tration of plasmid DNA nanoparticles [190].

RNA vaccines

In addition to delivering a DNA vector that must enter
the nucleus to be transcribed, the mRNA encoding the
target antigen can be synthesized in vitro and delivered
into the body. In vivo, the mRNA is translated into anti-
gen protein by cells and elicits both humoral and cellular
immune responses in the human body (Fig. 3c). Over the
past two decades, scientists have shown increased inter-
est in the development of mRNA vaccines. Two main
types of prophylactic mRNA vaccines have been devel-
oped: nonreplicating and self-amplifying mRNA vac-
cines. The nonreplicating mRNA vaccine contains 5’ and
3’ UTRs. Compared with the self-amplifying mRNA vac-
cine, the nonreplicating mRNA vaccine has the advan-
tages of a simple structure, short RNA sequence and lack
of requirement for additional proteins except for the anti-
gen [191]. However, the injected naked mRNA may be
degraded by ubiquitous extracellular ribonucleases. DNA
vaccines must enter the nucleus to work, while mRNA
vaccines only need to enter the cytoplasm to achieve the
expression of the target antigen, and thus mRNA vac-
cines are theoretically safer than DNA vaccines. Moreo-
ver, mRNA is produced in vitro and does not need to be
amplified in bacteria or cell culture; therefore, the process
of producing mRNA vaccines is short and comparatively
easy to monitor [192].

Based on the latest data, the National Institutes of
Allergy and Infectious Diseases and Moderna Inc. (both
from the USA) are in the leading position in mRNA vac-
cine research [193-196]. They are developing an mRNA
vaccine named mRNA-1273. On March 27, 2020, the
National Institutes of Health announced that Emory
University in Atlanta began recruiting healthy adult
volunteers aged 18 to 55 years to participate in a Phase
I study of mRNA-1273 led by the National Institutes of
Health [104]. On April 27, 2020, Moderna submitted an
IND to the US FDA for a Phase I study of mRNA-1273.
On May 12, 2020, Moderna received the FDA fast track
certification for mRNA-1273. On May 18, 2020, Mod-
erna announced favorable mid-term data from the Phase
I trial of mRNA-1273, indicating that the vaccine is
safe. On July 27, 2020, the mRNA-1273 vaccine entered
Phase III clinical trials, and studies showed that the effi-
cacy of the vaccine was 94.5%, indicating that the overall
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tolerance of the mRNA-1273 vaccine was good and that
it had satisfactory safety and effectiveness [83].

In mid-May 2020, CureVac also announced that its can-
didate vaccine against SARS-CoV-2 produced high-level
virus-neutralizing antibody titers after the administra-
tion of two preclinical 2 mg doses. In June 2020, CureVac
started a Phase I/II clinical trial. On April 20, 2020, Arc-
turus Therapeutics and Duke-NUS Medical School con-
ducted preclinical testing and then conducted the first
human clinical trial. On April 27, 2020, those companies
announced positive preclinical test data, which proved
that the candidate mRNA vaccine LUNAR-COV19 had
strong immunogenicity. On June 30, 2021, CureVac also
announced results from the final analysis of its 40,000
subject international pivotal Phase IIb/III study (the
HERALD study) of the first-generation COVID-19 vac-
cine candidate, CVnCoV. In the unprecedented context
of 15 strains circulating within the study population at
the time of final analysis, CVnCoV documented an over-
all vaccine efficacy of 48% (83 treated with the vaccine
vs. 145 treated with the placebo) against COVID-19 dis-
ease of any severity, including single nonrespiratory mild
symptoms. Significant protection was observed among
participants in the age group of 18 to 60 years, with
an efficacy of 53% (71 treated with the vaccine vs. 136
treated with the placebo) against disease of any sever-
ity and across all 15 identified strains; protection against
moderate to severe disease was calculated to be 77% (9
treated with the vaccine vs. 36 treated with the placebo).
In the same age group, CVnCoV provided 100% protec-
tion (0 treated with the vaccine vs. 6 treated with the
placebo) against hospitalization or death. In participants
aged greater than 60 years, who represented 9% of the
analyzed participants, the available data did not enable a
statistically significant determination of efficacy. In addi-
tion, several teams are also conducting relevant research
(Table 3) [197]. BNT162b2 is a nucleoside-modified RNA
vaccine. Studies have shown that the vaccine efficacy is
89-91% 15-28 days after the administration of the first
dose of the BNT162b2 vaccine. In addition, the incidence
of SARS-CoV-2 infection and symptomatic COVID-19
is significantly reduced in the early stages. In the case of
vaccine shortages and scarce resources, a single dose of
BNT162b2 vaccine may be administered to increase pop-
ulation coverage and reduce infection or morbidity rates
[198, 199].

Live-attenuated vaccines

Live-attenuated vaccines are based on originally patho-
genic microorganisms that have been engineered for
reduced virulence but still have the ability to replicate
and elicit an immune response. The mechanism is based
on a weakened or engineered version of the virus, which
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directly induces an immune response by entering cells
and replicating, leading to the production of antibodies
and cytotoxic T cells in response to SARS-CoV-2 pro-
teins (Fig. 3d). This type of vaccine induces persistent
systemic and mucosal immune responses due to its excel-
lent immunogenicity. Existing live-attenuated vaccines
include yellow fever vaccine, smallpox vaccine, measles
vaccine, poliomyelitis vaccine, mumps vaccine, rubella
vaccine, and varicella vaccine. In contrast with inacti-
vated virus vaccines, which require at least one additional
booster shot, live-attenuated vaccines only need to be
administered once. They simulate the infection process
of natural viruses and induce both humoral and cellular
immunity, which exerts a stable and long-term protective
effect on the body.

To date, four institutions are developing live-attenuated
vaccines against COVID-19, including the Serum Insti-
tute of India, the largest vaccine company in the world.
Live-attenuated vaccines take many years to develop,
depending on the virus itself and the cells that are used
to cultivate the attenuated strain. Generally, attenu-
ated strains may appear when the cells are cultured to
the 60th generation, and another 10-20 generations are
usually needed to observe changes in the virus. In addi-
tion, very strict restrictions are in place for the culture
of cells infected with live-attenuated vaccines. If cells are
passaged too many times, the virus may cause certain
changes in these cells. Finally, a subset of the viruses may
develop atavistic mutations, reverting to pathogenicity.
Previous studies have shown that live-attenuated vac-
cines against SARS revert to virulence after continuous
passaging in cultured cells or mice [200].

As a result, live-attenuated vaccines pose a greater
biosecurity risk. The application of a live-attenuated vac-
cine against COVID-19 is not recommended without suf-
ficient evidence to ensure that the vaccine will not revert
to virulence.

Inactivated virus vaccines

An inactivated virus vaccine is prepared by culturing
wild-type viruses or bacteria and then inactivating them
physically or chemically. It may be composed of entire
virions or bacterial cells or only their fragments. Inacti-
vated virus vaccines that are currently used include the
inactivated polio vaccine [201], inactivated Japanese
encephalitis vaccine [202], inactivated hepatitis A vac-
cine [203], inactivated rabies vaccine [204], hand-foot-
and-mouth disease vaccine [205], cholera vaccine [206],
leptospirosis vaccine, bleeding heat vaccine, and forest
encephalitis vaccines. For obvious reasons, inactivated
vaccines are intrinsically much safer than live vac-
cines, and they generally have a more complete molecu-
lar spatial structure. However, the immunogenicity of
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inactivated virus vaccines is not as good as that of live
vaccines, requiring increases in the dose and the number
of inoculations to compensate.

Inactivated vaccines are generated from all bacteria
or virions that are inactivated using physical or chemi-
cal methods, and this dead material directly induces an
immune response (Fig. 3e). Therefore, the composition
of the inactivated vaccine is relatively complex, includ-
ing multiple immunogens that potentially cause adverse
reactions in the inoculated person. However, when the
antigen to choose is unclear, inactivated vaccines pro-
mote immunization possibilities. Similar to the first
emergent SARS coronavirus, SARS-CoV-2 is a highly
virulent infectious virus, and its inactivation process also
must be performed in a laboratory with a biosafety level 3
or above. The high associated cost and risk also limit the
development of inactivated vaccines. In addition, a series
of problems have been noted, such as the staffing and
financial means needed to develop vaccines, as well as the
long development timeline. Moreover, human trials take
a long time and are mired with unpredictable variables.
By the time conventional vaccines enter clinical trials,
the epidemic situation might be controlled or disap-
pear. During this period, the virus will mutate frequently
[207]. For SARS-CoV-2, if scientists solve the problems
of effectiveness, durability, lack of cellular immunity and
the short lifespan of its neutralizing antibody produced
by inactivated vaccines, this type of vaccine is a feasible
and stable development strategy. Results from CoronaVac
trials show that a third dose of CoronaVac administered
6 or more months after a second dose effectively recalled
a specific immune response to SARS-CoV-2, resulting
in a remarkable increase in antibody levels and indicat-
ing that a two-dose schedule generates good immune
memory. However, in the 3 pg group, neutralizing anti-
body titers induced by the first two doses decreased after
6—8 months to below the seropositive cutoff [208].

Inactivated virus vaccines have a long and successful
history. They are the most immunogenic of the vaccine
formulations. Moreover, inactivated vaccines are gener-
ally a safe, well-tolerated and effective treatment; how-
ever, this efficacy comes at a price in terms of potential
safety issues. Based on available data, these vaccines may
lead to immunopathology and adverse drug events, and
the safety of vaccines must be carefully reviewed during
animal studies and clinical trials [209]. The main disad-
vantages of inactivated vaccines are listed below. First,
booster vaccines and adjuvants are often necessary when
inactivated vaccines are administered [210]. For example,
the dengue vaccine only contains dengue virus (DENV)
structural proteins, hence fails to induce any immunity
to nonstructural proteins. For optimal immunogenic-
ity, the adjuvants are added to enhance reactogenicity.
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Multiple booster doses are required to provide long-term
immunity, and they can be expensive to manufacture,
as DENV does not grow to high titers in tissue culture
cells. Above challenges make an inactivated DENV vac-
cine a less attractive vaccine candidate for use in DENV-
endemic areas; however, they might be useful as travelers
vaccine or as a part of a prime boost strategy with live or
replicating vaccines [107, 108]. Second, inactivated virus
vaccines may induce harmful immune and/or inflam-
matory responses. Currently, most of influenza vaccines
are inactivated vaccines, which play an important role in
protecting people from influenza virus infection. Inac-
tivated vaccines against SARS-CoV have been prepared
for in vivo experiments via some inactivated approaches,
including formaldehyde, UV light, and p-propiolactone.
He et al. [211] described that high-titer antibodies caused
by inactivated SARS-CoV in immunized animals rec-
ognize the spike protein, especially the RBD in the S1
subunit, and potently block SARS-CoV entry. The safety
of these inactivated vaccine for SARS-CoV have been
evaluated, suggesting all vaccines can successfully induce
serum neutralizing antibody production and significant
reductions in the SARS-CoV titer after viral challenge.
Even if few inactivated SARS-CoV-2 vaccines does not
elicit a serious harmful immune response, it may enhance
the infection of the mutated and/or another novel coro-
navirus through adverse drug events [212]. Finally, the
immune response to other coronaviruses suggests that
both cell-mediated and humoral immunity contribute to
long-term protection. Inactivated vaccines usually induce
weak cell-mediated immunity [213]. Compared to live
attenuated vaccines, inactivated flu vaccines are more
suitable for adults and the elderly [214].

Companies that are developing inactivated COVID-19
vaccines include CNBG in Beijing and Wuhan, Sinovac
Biotech Co., Ltd., and the Institute of Medical Biology
Chinese Academy of Medical Sciences. On February 22,
2020, Zhejiang Provincial Centers for Disease Control
and Prevention, The First Hospital of Zhejiang Province,
Hangzhou Medical Association and other teams work-
ing with enterprises selected the fourth-generation vac-
cine strain. On April 24, 2020, the inactivated COVID-19
vaccine developed by the Sinopharm China Wuhan
Bioproducts Research Institute was the first inactivated
COVID-19 vaccine to enter Phase II clinical trials world-
wide. On April 27, 2020, the National Vaccine and Serum
Institute was approved by the National Medical Products
Administration to conduct combined clinical Phase I/II
trials, and on April 29, the clinical Phase I healthy sub-
ject vaccination program was launched in Shangqiu City,
Henan Province. On May 6, 2020, the inactivated vaccine
BBIBP-CORV developed by Sinovac Biotech Co., Ltd.,
Key Laboratory of Comparative Medicine for Human
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Diseases, Ministry of Health, China and the Chinese
Center for Disease Control and Prevention was proven to
completely protect rhesus macaques against a lethal chal-
lenge with SARS-CoV-2 at a dose of 6 pg. At this time,
BBIBP-CORYV and other SARS-CoV-2 vaccine candidates
were subsequently expected to begin Phase I, II, and III
clinical trials [215]. On April 13, 2020, Sinovac Biotech
received approval from governmental authorities to con-
duct both Phase I and Phase II human clinical trials of the
BBIBP-CORYV vaccine in China. On October 15, 2020,
Phase I/II clinical data from the BBIBP-CORV inacti-
vated vaccine were published in The Lancet, showing that
the vaccine has satisfactory safety and tolerability [148].
Recently, Sinovac Biotech Co., Ltd. released preliminary
data from a Phase III clinical study, which showed that
the protective effect of a BBIBP-CORYV inactivated vac-
cine exceeded 50% in Brazil and Turkey, with the highest
protection reaching 91.25%. The BBIBP-CORV inacti-
vated virus vaccine is administered to people aged 18 to
59 years and over 60 years, in whom researchers have
found it to be safe and well tolerated [216]. The research-
ers also observed similar results in children and ado-
lescents aged 3—17 years. The side effects and reactions
from the vaccine were mild to moderate in severity and
were temporary [140].

Recombinant protein vaccines

Recombinant protein vaccines, also known as genetically
engineered subunit vaccines, are generated by integrating
the target genes of pathogenic microorganisms into a vec-
tor that is used to efficiently express antigen proteins in
an unrelated industrial organism. The recombinant viral
surface proteins are then injected directly into the body
to induce an immune response (Fig. 3f). The antigenicity
of these vaccines is closely related to their expression sys-
tems. Currently, the expression systems used to produce
this type of vaccine mainly include bacteria, yeasts, insect
cells and mammalian cells. This type of vaccine, such as
the SARS-CoV Nucleocapsid protein subunit vaccine, is
directly taken up by antigen-presenting cells with strong
inherent adjuvant activity. Thus, they efficiently induce
adaptive immune responses mediated by T and B cells
[59]. Since the first recombinant vaccine produced in
yeast was marketed in the 1980s, recombinant protein
vaccines have become popular and have been developed
rapidly. The most representative recombinant protein
vaccines include hepatitis B virus vaccine [217], hepatitis
E virus vaccine [218] and human papilloma virus vaccine
[219]. In addition, recombinant protein vaccines against
herpes zoster virus [220], foot-and-mouth disease virus,
influenza virus and MERS coronavirus [221] are also
under extensive development.
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Recombinant protein vaccines have high intrinsic
safety and excellent stability. Moreover, they can be pro-
duced on a very large scale, making them suitable for
population-based vaccination campaigns. However, the
shortcomings of recombinant protein vaccines, such
as poor immunogenicity, limited immunization time,
dependence on the time of immunization and adjuvant
type, also result in challenges. At present, four main
methods have been used to enhance the immunogenicity
of recombinant protein vaccines: (1) agglomerating the
vaccine in vitro and encapsulating it into liposomes or
microspheres; (2) use of an adjuvant [222]; (3) fusing the
virus epitope and immunoglobulin genes and expressing
them as a single chimeric protein [223]; and (4) engineer-
ing the recombinant protein to self-assemble into a virus-
like particle (VLP) [218].

At present, recombinant protein vaccines against
COVID-19 are based on the spike protein from the sur-
face of SARS-CoV-2 as the target antigen [37], which
is expressed heterologously, purified, and formulated
with an adjuvant. However, the nucleocapsid protein
is also immunogenic and has been reported to be used
for the development of recombinant protein vaccines
against COVID-19. Several institutions are developing
COVID-19 vaccines using this technical route (Table 3).
Although recombinant protein vaccines are safe, some
problems still exist. On the one hand, antibody-depend-
ent enhancement (ADE) may develop and even aggra-
vate the infection [224]. It is the risk of exacerbating
COVID-19 severity via ADE, which is a potential hurdle
for antibody-based vaccines and therapeutics. Because
ADE can increase the severity of multiple viral infec-
tions, such as respiratory syncytial virus (RSV) [225,
226] and measles [227, 228]. Two distinct mechanisms
of ADEs for viral infections. 1) ADEs can enhance
antibody-mediated virus uptake into Fc gamma recep-
tor Ila (FcyRIIa)-expressing phagocytic cells, leading to
increased viral infection and replication; 2) excessive
antibody Fc-mediated effector functions or immune
complex formation that induced enhanced inflamma-
tion and immunopathology. ADEs has been generally
observed in SARS, MERS and other human respiratory
virus infections, such as RSV and measles, suggesting it
is a real risk of ADEs as vaccines for SARS-CoV-2 [229].
However, clinical data have not yet fully established
to explain ADEs in human pathology for COVID-19.
Nevertheless, as an inevitable theoretical concern for
COVID-19 vaccine development, this type of vaccine
has attracted wide attention from researchers [230—
234]. On the other hand, an appropriate adjuvant is
essential. A study has suggested that MF59, AS03 and
AF03 can not only induce balanced humoral and cel-
lular immune responses but also induce a wide range
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of cross-reactions [89]. Thus, these three adjuvants
may play roles in recombinant protein vaccines against
COVID-19.

Cellular immunity plays a crucial role in clearing
coronavirus infection. Notably, recombinant protein
vaccines can induce humoral and mucosal immunity.
The combined use of DNA vaccines and recombinant
protein vaccines has been shown to effectively enhance
the immunization efficacy [235]. Thus, the combined
usage of recombinant protein vaccines and other
COVID-19 vaccines may effectively stimulate systemic
immune responses to SARS-CoV-2. Moreover, certain
viral proteins expressed in bacteria with simple modi-
fications naturally form multimeric subviral particles
with good immunogenicity, suggesting that the devel-
opment of COVID-19 vaccines through prokaryotic
expression of subviral particle particles may become a
research hotspot.

Nevertheless, highly efficient and safe recombinant
protein vaccines against COVID-19 are difficult to
obtain. If SARS-CoV-2 does not disappear quickly in
the short term, recombinant protein vaccines may be
used as a safer routine vaccine rather than an emer-
gency vaccine. As of April 26, 2021, the novel corona-
virus recombinant subunit protein vaccine was jointly
developed by Gao Fu and colleagues at the Institute
of Microbiology, Chinese Academy of Sciences and
Anhui Zhifei Longkoma Biopharmaceutical Co., Ltd.
The vaccine was generally well tolerated in adults
and produced antibodies against the wild-type SARS-
CoV-2 strain in vitro. However, the vaccine did not
cause a strong neutralizing response to the virus in the
elderly [236].

Bionic nanoparticle vaccines

Bionic nanoparticle vaccines use biodegradable nanopar-
ticles to replace the nucleic acid and proteins of the viral
core, while their outer shell is decorated with recombi-
nant viral surface proteins to form a virus-like struc-
ture through self-assembly. The surface of this virus-like
spherical structure carries a large number of antigen
molecules, which readily activates the immune response.
Additionally, biomaterials stabilize the spherical struc-
ture, enabling it to remain intact inside the body while
avoiding the degradation of surface proteins by related
enzymes. Bionic nanoparticle vaccines are not infectious
and have a defined composition with no viral nucleic
acids, which provides excellent intrinsic safety and stabil-
ity. In addition, the vaccine can concentrate viral antigen
molecules and increase the protein content. Moreover,
nanoparticles are more easily engulfed by immune cells,
improving the efficiency of antigen presentation and
resulting in rapid production of antibodies to neutralize
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the virus (Fig. 3f). Our team is in the process developing
of this type of vaccine and we have obtained encouraging
preliminary results (Fig. 4).

Many types of biomaterials can be used in this type of
vaccine, including hydrophobic polymer materials rep-
resented by polylactic acid (PLA), poly (lactic-coglycolic
acid) (PLGA), polycaprolactone (PCL), polyhydroxyal-
kanoates (PHAs, e.g., PHB, PBHV, PHBHHx, PHBVHHXx,
P34HB, etc.) and their derivatives [237-239]. Various
biomaterials have different properties, but those used
to prepare vaccine nanoparticles must be biocompat-
ible and nontoxic. The most common material is PHA,
which is a natural polyester stored inside cells as a source
of energy and carbon. PHAs are produced by and accu-
mulate in many bacteria and archaea under conditions
of imbalanced nutrition (i.e., limited supply of nitrogen,
oxygen or phosphorus, and excess carbon source) [240].
PHA monomers are characterized by diverse side chains
and sequences, as well as chemical modifications. They
have been used to synthesize polyesters with a variety of
material properties. According to different requirements,
the methods for producing and processing PHA in bac-
teria are different. However, inclusions that are purified
are usually produced in bacteria. These inclusions are
biocompatible and biodegradable and can be used in the
fields of synthetic biology and biomedicine [241-243].
In addition, different ways to decorate biomaterials with
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viral proteins have been reported. Self-assembly of nano-
particles prepared by recombinant viral surface proteins
containing a PhaP (binding protein of PHA or Phasing)
tag and the hydrophobic polymer material PHA is one of
the important approaches.

PhaP is a binding protein on the surface of PHA gran-
ules with good biocompatibility that is nontoxic. PhaP is
an amphiphilic protein composed of four monomers with
two conformations. It binds to the hydrophobic polymer
material PHA through its hydrophobic binding site [244].
In addition, PhaP adheres to the surface of hydrophobic
oil beads as a surfactant. Due to its widespread presence
on the surface of PHA particles [245], PhaP is also the
most widely applied protein among the four proteins on
the surface of PHA [246].

The new COVID-19 vaccine strategy uses synthetic
biology techniques combined with medical material-
based nanoscience of previous vaccines. The focus of
this strategy is to simulate the core—shell structure of
the new coronavirus, which has unique advantages in
activating the immune system. The whole structure is
stable as a sphere and contains a large number of anti-
gen molecules on the surface that enable it to efficiently
activate the immune system and be easily recognized by
antibodies in vivo, and thus it is engulfed by phagocytes.
Scientists are using this strategy in the fields of immu-
nity and tumors, and biomimetic simulation based on
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biomaterials is finding increasingly broad applications.
However, its potential currently remains relatively under-
utilized in vaccine development.

Compared with inactivated natural viruses, biomimetic
simulated self-assembled pseudovirus particles are safer,
more efficient and more convenient. They are harmless to
humans and do not require the operation of a biosafety
level 3 or 4 laboratory. Therefore, biomimetic nanopar-
ticles are more conducive to cytology research and ani-
mal model construction, as well as broad-based scientific
research in general. Biomimetic pseudoviruses can be
used for the development of bionic vaccines and thera-
peutic antigens, as well as for clinical treatment, which
is very important for controlling viral epidemics. For
COVID-19, this approach offers a rapid and efficient vac-
cine development strategy due to its high safety. At pre-
sent, some teams have also conducted research on bionic
nanoparticle vaccines [102, 247, 248].

Vaccines are the ultimate tools for the prevention and
control of the COVID-19 pandemic. In the future, it will
remain a hotspot of global attention.

Conclusions

The World Health Organization (WHO) warns that
SARS-CoV-2 may become a recurrent epidemic virus,
and vaccines play a decisive role in overcoming epidem-
ics. As of July 2021, the official website of the World
Health Organization has listed more than 210 COVID-19
vaccines under development, more than 100 of which are
in clinical development.

Although many teams worldwide are expending great
efforts in the development of SARS-CoV-2 vaccines,
risks and drawbacks are associated with the several vac-
cine types illustrated above. Potential biological safety
problems have even been noted. A common problem
is an insufficient ability to activate the immune system
and poor immune effects. Reducing the risk of vaccines
and improving their safety, efficiency and stability have
become problems that urgently need to be solved. First,
based on the functional mechanism of the COVID-19
vaccine inside the body, the viral protein acts as an anti-
gen molecule, stimulating the human immune system
and thereby inducing the production of antibodies to
neutralize the virus. Therefore, scientists experience dif-
ficulties in delivering antigen molecules effectively and
reducing the degradation of exogenous antigen mole-
cules in the enzyme-rich environment of the body. Sec-
ond, antigenic proteins can be obtained both directly
from microorganisms and formulated in vitro or by deliv-
ering antigen-encoding genes into the body using vari-
ous methods. Then, the host cells are used to synthesize
antigen molecules, thereby activating the immune system
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and producing antibodies to neutralize viruses. In this
case, scientists are faced with risks of integration into
the host genome, producing in the worst case a trans-
formed cell population that might replicate inside the
body. As a result of various difficulties, the research and
development of vaccines usually takes a long time. How-
ever, as countries around the world focus on tackling the
problem, several vaccines are already on the market for
human use (Tables 4 and 5).

Immunogenicity and duration of action are two impor-
tant indices in the investigation of vaccines. At present,
a variety of COVID-19 vaccines have entered clinical
studies, and some vaccines have already completed Phase
III/IV clinical trials (Table 5). Notably, the vaccines that
have entered clinical trials will protect against newly
emerged mutants of SARS-CoV-2. Recently, some studies
showed, after the administration of one dose of vaccines
(BNT162b2 or ChAdOx1 nCoV-19), noticeably lower
effectiveness among persons infected with the delta vari-
ant [30.7% confidence interval (CI) and 95% CI 25.2—
35.7] than among those with the alpha variant (48.7% CI;
and 95% CI 45.5-51.7). For the BNT162b2 vaccine, the
effectiveness of two doses was 93.7% (95% CI 91.6-95.3)
among persons with the alpha variant and 88.0% (95% CI
85.3-90.1) among those with the delta variant. Similarly,
for the ChAdOx1 nCoV-19 vaccine, the effectiveness of
two doses was 74.5% (95% CI 68.4—79.4) among persons
with the alpha variant and 67.0% (95% CI 61.3-71.8)
among those with the delta variant [249]. In addition, the
observed differences in the effectiveness of mRNA-1273
and BNT162b2 show that mRNA-1273 is almost twice
as effective as BNT162b2 at protecting against the delta
variant [250].

Currently, the hot topic of discussion also involves
the patent of SARS-CoV-2 vaccines. Although we have
applied for patent protection of the bionic nanoparticle
vaccine in China, it is aimed at protecting this new vac-
cine strategy, not for commercial interests. Vaccine rolls
out will take a long time. In other words, the bionic nano-
particle vaccine will not become economically viable for
many years.

SARS-CoV-2 is prone to mutation, which imposes
substantial challenges in the development of COVID-
19 vaccines. Solving the problem of SARS-CoV-2
variants under the premise of ensuring safety poses a
serious challenge to scientists. In the new bionic nan-
oparticle vaccine, all materials and their degradation
products are presently found in the human body. Com-
pared with the traditional types of vaccines, the main
advantage of this biomimetic simulated virus vaccine is
that the composition is clear and stable, and no poten-
tial biological safety problems exist. However, vaccines
are not perfect, and different individuals experience
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different levels of side effects after vaccination. Some
individuals experience no side effects, while others
report some side effects. Bionic nanoparticle vaccines
are also not immune to side effects. Of course, we are
still concerned that an increased dose of bionic nano-
particle vaccines will also be needed to achieve the
goal of improving immune protection, but this hypoth-
esis has not been fully proven, and we will provide evi-
dence in future studies. Among the characteristics of
the biomimetic simulated virus vaccine, we focused on
its structure to ensure that it is similar to the real virus
with high efficiency and low risks. The slow degrada-
tion of the material may reduce the enzymatic damage
to the antigen protein and achieve a lasting protective
effect. Microspherical nanoparticles may serve as adju-
vants to enhance their immunogenicity. This strategy
might also shorten the development cycle and improve
immune efficiency. Finally, its application prospects are
also worth noting. Bionic simulation and nanoscience
are brand new concepts, and thus a simulated virus
vaccine is not currently on the market. We propose that
this approach will have broad application prospects in
vaccine development and research, antibody produc-
tion, drug delivery and other aspects.
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