Skip to main content
Fig. 1 | Military Medical Research

Fig. 1

From: Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity

Fig. 1

The regulation of molecules in the NMDAR signaling pathway on learning and memory. The release of presynaptic glutamate can activate postsynaptic NMDAR, leading to the removal of magnesium ions and the influx of calcium. The calcium could bind to the calmodulin to activate the calmodulin-dependent PKA and PKC, which are the basis for the activation of MAPK. Furthermore, the activated MAPK can be transported into the nucleus and activate CREB, resulting the expression of downstream genes, such as tPA and BDNF, among others. Finally, the new synthetic substances can cause the growth of original synapses and the formation of new synapses, which are the basis for synaptic plasticity and learning and memory

Back to article page