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Abstract

Olfaction is one of our 5 main qualitative sensory abilities. In this review, we have examined the physiology of
olfaction from the olfactory receptor to the brain. Through analyzing the physiology of olfaction, we have found
that the biochemistry of olfactory nerve stimulation is unique from that of other similar pathways. Upon receiving
large amounts of input from the olfactory nerve, the olfactory bulb, followed by several layers of centrifugal and
centripetal processing in the brain, has to sort the information from the input as well as integrate it with other
inputs from the brain to develop a coherent understanding of the input. We then examined the implications of
olfaction in the military, the practical applications of electronic noses and problems associated with injury to
olfaction that could affect compensation and combat worthiness of a soldier following injury. In the military,
olfaction can allow the army to perform at its best through 4 main methods, namely ensuring olfaction is
consistent with other dimensions of perception (ensuring optimal olfaction ability in all soldiers in combat),
understanding the impact of different common combat environments on the sense of smell, utilizing odor as a
defense mechanism and using olfactory aids when necessary. Electronic noses are olfactory aids that have a large
potential in the military ranging from saving lives through the detection of explosives to potential methods for
improving combustion efficiency. There are several problems associated with injury to olfaction that should be
considered when deciding on compensation and combat worthiness of the soldier following an injury.
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Background

Olfaction, from the Latin word olfactus, is the action of
smelling or the capacity to smell. Therefore, how does
one smell? Olfaction involves the interpretation of
chemical odors in the air through a set of human trans-
ducer elements that convert the signal into one which
can be understood by the various parts of the brain, ei-
ther for the use of processing in anticipation of a fight
or flight response, such as a gas leak in a war zone, or
for use in long term memory to remember memorable
events and skills, such as the first experience baking a
chocolate brownie. This information is transduced
through specialized olfactory receptors [1], followed by
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the olfactory bulb for primary processing and finally the
various parts of the brain that process the different as-
pects and characteristics of the odor. In combat, olfac-
tion is an underutilized sensory ability in warfare that
potentially allows for both the detection of an enemy
and a tactical advantage in defending one’s location or
identifying the enemy [2]. With odorants being propa-
gated through aerosol transmission, the environment
plays a major role in an individual’s sense of smell. Odor
can be used as a means of protecting one’s self, by using
it as a form of stealth, decoy, deterrent and masker. The
development of electronic noses as olfactory aids has a
large potential in the military, ranging from saving lives
through the detection of explosives [3] to potential
methods of improving combustion efficiency [4]. With a
significant prevalence of mild traumatic brain injuries
due to explosions [5] and post-traumatic stress disorder
[6, 7] among veterans who served in combat operations,
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it is necessary to look at the problems associated with
injuries to olfaction to assess compensation and combat
worthiness of the personnel.

Overview of olfaction

First point of contact

The nasal cavity is lined with many receptors. These in-
clude receptors for somatosensory sensations (pain,
warmth and pressure), with free nerve endings from the
ophthalmic and maxillary branches of the trigeminal
nerve (CN V), glossopharyngeal nerve (CN IX) and vagus
nerve (CN X). However, the qualitative sensations com-
monly termed odors are mediated solely by the olfactory
nerve (CN I). The odor first dissolves into the mucus lin-
ing the nasal cavity, after which it then binds to the recep-
tor [8]. Each odor consists of many different types of odor
molecules in various combinations. Humans have ap-
proximately 450 types of olfactory receptors.

The binding of the odor molecules (similar to ligands)
to the olfactory receptor leads to an action potential
within the receptor neuron. The secondary messenger
pathway here is unique as protein kinase A is not acti-
vated, unlike other cAMP pathways in other cells. Olfac-
tory adaptation occurs with sustained and frequent
stimulation of the same receptor neurons as elevated
Ca®* levels lead to an increased formation of calcium-
calmodulin complexes, which inhibit the binding of
cAMP to the cyclic nucleotide gated (CNG) channels. It
has also been shown that low concentrations of carbon
monoxide (CO) increase the activity of the CNG chan-
nels [9]. CO activates soluble guanylate cyclase to pro-
duce cyclic GMP (cGMP), for which the channel has a
much higher affinity compared to that of cAMP.

During a fight or flight response, adrenaline levels and
sympathetic stimulation are increased, leading to a
heightened sense of smell. Adrenaline increases the
stimulation threshold, leading to reduced sensitivity to
weak signals, but increases and potentiates strong sig-
nals, resulting in an increased awareness of a strong
odor [10, 11].

Primary processing of the signal

Primary processing of olfactory signals occurs in the ol-
factory bulb [12]. The unmyelinated axons from the ol-
factory receptor cells (ORCs) ascend through the
perforations of the cribriform plate of the ethmoid bone
to synapse at the olfactory bulb [13]. The unmyelinated
axons converge on the outer layer of the olfactory bulb
within small structures (diameter <50 pm) called glom-
eruli (glomerular layer) [14]. From here, they form
synapses with second-order neurons (mitral and tufted
cells) located on the inner layer of the olfactory bulb.
The mitral cells project these signals to higher brain
centers within the primary olfactory cortex (including
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the anterior olfactory nucleus, olfactory tubercle, piri-
form cortex, the lateral entorhinal cortex and the peria-
mygdaloid cortex), allowing for multiple signals to be
processed to form a synthesized olfactory perception. A
large degree of convergence occurs where approximately
25,000 axons synapse onto approximately 25 mitral cells,
with each mitral cell receiving signals from multiple
glomeruli. Mitral cells also project to periglomerular
cells and granular cells that inhibit the mitral cells sur-
rounding it, providing lateral inhibition. This facilitates
better discrimination between signals, improves specifi-
city and produces a better signal-to-noise ratio, which
clinically translates to better smell perception.

Interbulbar communication (occurring via the anterior
commissure) and complex intrabulbar communication
are present between the interglomerular cells, periglo-
merular cells and granule cells, which help create a
spatial map [15]. There are also collateral projections
from the mitral and tufted cells. The olfactory bulb re-
ceives centrifugal fibers from higher centers of the brain,
including those to which it projects. Most of these fibers
terminate in the external plexiform layer and the granule
cell layer of the bulb, as these are the areas that the mi-
tral cells can be best influenced, as observed through the
positions where lateral inhibition occurs. However, ter-
minations do occur in all layers except the glomerular
layer [16].

Final stage of processing

Beyond the olfactory bulb, the neural pathways through
which an olfactory signal passes through the brain are
numerous and varied. The main areas for the processing
of these signals are the amygdala, hippocampus and
orbitofrontal cortex. The routes taken to these main
areas run primarily through the piriform cortex of the
primary olfactory cortex and the thalamus [17]. These
serve as processing areas for all sensory information. Ac-
cording to Shipley and Reyes [7], the entorhinal cortex
provides the most direct access to the hippocampus
from the olfactory bulb, which is important to note, as
the shortest route does not make it the default route for
signal propagation. The entorhinal cortex also receives
innervation from the amygdala. A simplified version of
the pathway is shown in Fig. 1.

The mitral cells leave the olfactory bulb in the lateral
olfactory tract, which then forms synapses with various
regions of the primary olfactory cortex: anterior olfac-
tory nucleus, olfactory tubercle, anterior and posterior
piriform cortex (APC and PPC), lateral entorhinal cortex
and the periamygdaloid cortex. The APC is known for
determining the chemical composition of the odor
molecules. The PPC is known for categorizing odors and
making comparisons between odors in a concentration-
independent manner [18]. The anterior olfactory nucleus,
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through the anterior commissure, inhibits the contralat-
eral olfactory bulb.

The piriform cortex then projects to the amygdala,
medial dorsal nucleus of the thalamus, hippocampus
and the orbitofrontal cortex. There are many direct and
indirect connections between these regions of the brain.

The amygdala is involved in associated learning, where
the odors help to serve as rewards or punishments in
the associative learning process. This means that odors
that are associated with positive states reinforce behavior
that leads to more of the positive state and vice versa for
the negative states. Brain imaging studies have found
that activation of the amygdala correlates with pleasant
and unpleasant odors, reflecting the link between odors
and emotions [19].

The hippocampus, similar to the amygdala, assists
with the learning process as well. In addition, the hippo-
campus is also associated with episodic memory. This is
where an odor leads to the retrieval of a memory from a
specific point in time or place [20].

The orbitofrontal cortex integrates olfactory signals
and taste with each other, as both signals lead to the
same region. This results in the coupling of smell and
taste, making food and beverages we consume much
more appetizing and less so when our smell is impaired
with a common cold, for example. Odor perception and
discrimination also occurs here as part of a spatial odor
map to recognize certain specific odors. The orbitofron-
tal cortex also projects to the anterior cingulate cortex,
allowing it to play a further role in appetite [21].

Temporal coding and spatial maps allow humans to
distinguish between the many odors. Temporal coding
occurs when neural signals are sent with specific spike

patterns and spike rates. The spatial excitation map for
different odors varies largely within the olfactory bulb it-
self. This is due to the versatility of the neurons that
carry the different types of odor signals, as well as a
complex network of intrabulbar and interbulbar connec-
tions. This forms complex logic circuits, allowing for a
greater processing capacity, in order to identify the
odors in question. As each nostril has its own input into
the brain, the bilateral activity results in a greater depth
of signals due to perceptual rivalry [22].

Implications of olfaction in the military

Olfaction is one of the 5 main sensory signals that allow
us to comprehend and interact with our environment.
There are four main aspects to consider when applying a
sensory signal in the field: whether the odor signals are
congruent with other dimensions of perception, the dis-
tance between the odor source and the target, the type of
environment, and one’s own safety [23]. For a soldier to
perform at his best in a combat situation, he would need
to utilize all of his sensory signals to their maximum abil-
ity. Therefore, to analyze how olfaction can be affected is
essential to the development of solutions or precautions
to prevent and limit harm caused to the soldier.

Congruency with other dimensions of perception

A person’s olfactory ability declines over time [24]. Fur-
thermore, after suffering from mild traumatic brain in-
jury, the likelihood of loss of olfaction tends to increase
as well [25]. To be able to understand whether a soldier
is still fit for battle requires a test of olfaction along with
other fitness and medical tests before a mission. This
can be done through olfactory tests [26] such as the
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University of Pennsylvania Smell Identification Test
(UPSIT) and Sniffin’ Sticks. These tests will serve as
good screening tools to identify soldiers with weakened
olfaction.

Common types of environments and their impact on
olfaction

Olfaction is dependent on the concentration of vapor in
the air and the capacity for it to dissolve into the nasal
mucous lining. Maximum olfaction is achieved through
a combination of high concentration of vapor in the air
together with high solubility of the odorant molecule
into the mucous lining. With details from Table 1, we
can also construct Fig. 2 to give a representation of how
the different types of environments can affect olfaction
by looking at the factors affecting the concentration of
odorants in the air and the factors affecting the dissolved
odorant capacity in the nasal mucosal lining.

There are 4 main factors affecting the concentration of
odorants in the air: temperature, atmospheric pressure,
humidity and airflow. With higher temperatures [27],
the vapor pressure is increased, thereby increasing the
rate of diffusion of the odorants, thus increasing the
overall detection range. The opposite is true for lower
temperatures. At lower atmospheric pressures, the vapor
pressure of odorants increases, allowing the concentra-
tion of the odorants to increase [28]. However, this is
countered by higher evaporation rates of the nasal mu-
cosal lining, as explained below. An increase in humidity
has been shown to increase olfactory detection of odor-
ants, although the mechanism is unclear. It has been
speculated that increased humidity increases the cap-
acity of the air to carry odorants [28]. With a higher air-
flow, there would be a greater volume of odorants in the
air, as well as an acceleration of the odorant’s travelling
speed by the wind. However, the concentration is
dependent on the direction and path of the wind. It
would be advantageous if the wind was blowing towards
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the individual but a disadvantage if the wind was blow-
ing away from the individual.

There are 2 main factors affecting the dissolved odor-
ant capacity within the nasal mucosal layer: solubility of
the odorant and the volume of the nasal mucosa.

The solubility of the odorant is affected by the com-
position of the nasal mucous layer and the temperature
of the nasal mucous layer. Further research could be
done to improve the solubility of odorants into the nasal
mucosal lining. Methods by which this could be possible
include pharmaceutical means similar to nasal drug ad-
ministration [12]. A higher temperature would also in-
crease the solubility of most odorants [27].

The volume of the nasal mucous layer is affected by
temperature, atmospheric pressure, humidity and air-
flow. A higher temperature increases the evaporation
rate of the nasal mucus layer, reducing the volume of
the nasal mucus layer present [27]. A lower atmospheric
pressure leads to a higher vapor pressure of the nasal
mucus layer and thus a higher evaporation rate, reducing
the nasal mucus layer, overall leading to the impairment
of olfactory sensitivity at a lower atmospheric pressure
[28]. Higher humidity lowers the vapor pressure, thus
retaining or even increasing the nasal mucus layer, de-
pending on the rate of mucous production [28]. Higher
airflow causes a reduction in the nasal mucus layer
through increased evaporation. A possible explanation
to why the volume of the nasal mucosa is important in
olfaction is that it is always changing (due to secretion
and evaporation), thereby affecting the concentration
and maximum capacity of odorants that can be dis-
solved. For maximal binding of ligands to receptors,
there needs to be a high concentration and adequate
amounts of odor molecules in the nasal mucosa to be
able to interact with the olfactory receptors, thus requir-
ing a relatively constant range of nasal mucosa volume.
If the nasal mucous layer is too thick, the odorants may
take longer to diffuse to the receptor, and in the process,
the concentration of the odorant would be greatly

Table 1 Some examples of biomes and their environmental features which would influence olfaction

Biomes Humidity Atmospheric Temperature Airflow (Wind Speed)
pressure

Siberian Tundra Extremely Low High Extremely Low High

Sahara Desert Extremely Low High High High

Mount Everest Low Low Low High

Argentinian Grassland Moderate High Moderate Variable

Alaskan Forest (Taiga) High* High Low Variable

Tropical Borneo Rainforests High High High Low

The data [116-118] used are a general interpretation of the climate of these regions, which averages out the weather patterns covering a group of areas over a
significant period of time. The values High, Moderate, Low and Extremely Low are all relative to each other. The environments here were selected to provide a
basis to illustrate examples of places with differing humidity, atmospheric pressure, temperature and airflow. Relative Humidity here is highly variable, as changes
in temperature can affect the carrying capacity of the air, affecting its relative humidity. * Low evaporation rates and low temperatures lead to high

relative humidity
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reduced. This increases the delay in detecting odorants
and increases the odorant threshold. If the nasal mucosa
is too thin, not enough odor molecules are able to dissolve
in the mucosa, limiting the maximal binding of the odor-
ant to the receptor (as the ligand, odorant, is the limiting
factor). Further research is necessary to understand the
relevance of the volume of nasal mucosa in olfaction.

Some publications have examined the effect of
temperature at the receptor level, considering the effects
of temperature on the biology of Drosophila melanoga-
ster. A higher temperature was found to lead to a higher
olfactory response recorded [15]. Other possible impacts
of temperature on the biology can occur at the cellular
level and the molecular level. At the cellular level, there
could be effects on the nervous conduction and velocity,
leading to possible conduction delays [29]. At the mo-
lecular level, heat-shock proteins [30] and cold-shock
proteins [31] could lead to biochemical reactions that
could have an effect on olfaction as a whole.

Therefore, in order to gain the best possible advantage
in the field using just the human nose, one would have
to keep their nose relatively warm and moist to better
detect any odorants in the environment.

Odor as a defense

To move stealthily, odor should also be shielded from
the enemy to protect one’s safety. There are 4 main
methods by which this can be carried out [2]: 1) stealth
operations, 2) decoy, 3) deterrent and 4) masker.

The goals of stealth operations are “to develop novel
means to minimize detection of intended activities
through sensory diversion and by presenting false infor-
mation to the enemy about the surrounding environ-
ment” [32]. Such operations would include methods for
hiding one’s presence to divert enemy attention from
one’s actions in order to mislead the enemy regarding
one’s strength or intentions. Four factors need to be con-
sidered while using odors in psychological operations
[33] — consistency, distance (proximity of target), en-
vironment (metrological factors — wind) and OPSEC
(operations security — activity odors should be masked
or eliminated). However, more research into the olfac-
tory processes at the cognitive level is necessary to fully
utilize odor in stealth operations.

Decoys involve distracting the enemy with the use of
another more obvious signal to direct the attention of
the enemy away from the actual operations. In the past,
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decoy operations using odors have been successfully car-
ried out. An example would be the Allied Forces inva-
sion of Normandy, where simulated odor was used in
deceiving Operation Titanic [34]. The use of decoys can
stymie even the best surveillance systems, providing a
good military advantage against the enemy and posing a
potential problem for defending against enemies [35].

Deterrents are important in order to keep enemies
away from one’s operations. Odors that are involved in
this purpose would be ones that dominate the environ-
ment. Such methods are being used in the civilian world,
such as using fox urine or its components [36] to spray
Christmas trees [37]. In the cold, its smell is impercept-
ible. However, once brought into a warm room, its odor-
ants diffuse at a much faster rate, acting as a strong
deterrent to use such trees. As a pest control measure, a
combination of deterrents and decoys have been
employed as a ‘stimulo-deterrent diversion’ as a more ef-
fective method to protect crops from pests [38]. This
could be applied in the military where a number of these
methods could be used together to potentiate the bene-
fits of odor to protect one’s interests.

Maskers are neutral odors that are strong and natural
enough to mask an existing smell to make that odor
blend into the background and become undetectable
[39]. Another possible mechanism that may have mili-
tary applications is the use of two odors that compete
for recognition, which activate and deactivate the same
neuron simultaneously, thereby inhibiting the signal
production and leading to a lower combined perceived
intensity [40] (also known as counteraction). Some
hunters use activated carbon-containing personal items
to mask [41] the hunter’s scent, allowing for improved
hunting.

Therefore, a combination of these four methods can
be used to provide an effective odor shield to protect
oneself from the enemy.

Use of olfactory aids on the battlefield

Dogs

Dogs have been used as aids in the military since World
War 2 to detect mines [42]. Dogs have adapted to be-
come one of the best living examples of an ideal smell
detector. They have developed an olfactory epithelium
20 times larger than humans [43] with 100 times more
receptors per square centimeter [44]. Dogs also have a
larger olfactory bulb allowing them to have more capacity
to process signals from their wider repertoire of olfactory
receptors. With more olfactory receptors present in the
olfactory epithelium, dogs are undoubtedly able to detect
odorants at much lower concentration than humans [43].
In addition, dogs only have sweat glands on their paws.
Their hair coats limit heat loss through vasodilation; thus,
vasodilation is restricted to the mouth, nose, back of ears,
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paws and other areas with less hair [45]. This allows for
the nose to be consistently moist and warm, allowing for
maximum solubility of odorants. Therefore, dogs serve an
important role in detecting bombs, concealed mines and
drugs, and other illegal substances.

Electronic noses
Electronic noses have now been developed to provide an
alternative to using living beings to detect smells [46].
An electronic nose has a rather high sensitivity and
specificity, similar to that of humans, when tested with
various odorants. Its small size is also a significant ad-
vantage. However, its capabilities are currently limited
by the number of odorants it can detect, but this will
likely expand with time. Electronic noses also have the
added benefit of not placing any lives in danger while
still delivering equivalent or superior results. Electronic
noses have many applications that can be used in the
military to enhance battle readiness of soldiers in the
field. The applications of electronic noses relevant to the
military can be grouped into 5 main areas: Detection of
explosives, environmental monitoring, medical diagnos-
tics and health monitoring, automotive and aerospace
applications and food and beverage quality assurance.
An organized summary is presented in Table 2.
Detection of explosives (primarily landmines) is one of
the major applications of electronic noses in the military.
The current applications include demining with simple
metal detectors or human-dog teams. The former pro-
ceeds at 200 m/day, while the latter allows 2—4 km/day
to be cleared. It is unclear whether dogs detect the pure
explosive or impurities associated with the explosive
[47]. ICx Nomadics have created the first known real-
time sensor capable of detecting chemical signatures
from underwater unexploded ordnance (UUXO) [3].
The electronic nose technology would save human lives,
be able to work around the clock to demine without
fatigue, and improve security for all humans. The system
developed by ICx Nomadics has been identified as one of
the best currently available detection devices using chem-
ical sensors based on the amplification of fluorescent-
conjugated polymers [48] with a vapor detection limit of
1 fg/ml, as opposed to 1 ng/ml with HPLC-UV [49]. This
would prove to be a very good warning tool for soldiers that
may be heading into a zone with explosives, alerting them
to it and allowing for the localization and disposal of the
explosive. The removal of UUXO not only improves the se-
curity of the area but also eliminates a significant source of
toxicity to local marine organisms. To summarize the char-
acteristics of the ideal device, these would include its ability
to outperform dogs, exhibit high sensitivity to the explosive
vapors, demonstrate the ability to selectively detect only
relevant vapors among the clutter while maintaining low
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Electronic nose
applications

Techniques currently being employed

Benefits in the military

Disadvantages

Detection of
Explosives
(Landmines)

+ By humans with simple metal detectors
+ Human-dog teams (faster)

Environmental - Traditional Methods: Olfactometry

Monitoring measurements
- Interpreted by qualified humans and
identification with analytical instruments
Medical - Olfaction to help in diagnosis largely

Diagnostics and
Health Monitoring

ignored [62] with availability of modern
diagnostic techniques

Automotive and « Currently conceptual

+ Save human lives

‘Work around the clock

« Improve security for humans (good
warning tool)

- Conserve marine ecology

- Detect toxic chemicals

+ Detect smoke [50]

« Indoor air quality [51-54]

« Automotive ventilation control [55, 56]
+ Measure water quality

Tested with

- bacteria [69, 70]

- metabolic diseases [9, 74, 75]
- monitoring hemodialysis [76].

Beneficial uses:
« Monitor exhaust to feedback to
engine for higher combustion

- Need to outperform dogs

« Require high sensitivity and high
selectivity

+ Need to be low maintenance

+ Need to be robust

- Sampling is difficult

- Needs to be representative of the
surroundings

- Need to be adjustable to standardized
humidity and temperature.

+ Need to reduce the false-positive and
false-negative rates

+ Need to understand the impact of
common factors (nutrition [77, 78] and
medication [79]) on humans

+ Need for devices that are cheap and
small

- Need to be able to detect a variety of
relevant odors for particular applications.

« Monitor the cabin air for passenger

« Able to ensure whether food is

« Spoilage compounds differ with different

edible in times of crises and different types of food and beverage [85].

Aerospace + Used in NASA's STS-95 flight

Applications
efficiency
safety

Food and - Adherence to use-by dates

Beverage Quality - Use by dates determined by experimental

Assurance research environments

- More sensitive and accurate [81]

false-positive activation, have low maintenance costs, and
be structurally robust while in use in the field.

Environmental monitoring is another application for
the electronic nose in the military. Emission ratings and
detection currently use traditional methods, including
olfactometry measurements realized by a human panel,
with qualification and identification using analytical in-
struments. These are not appropriate for on-site, real-
time and continuous operation due to the high operating
costs. In the military, an electronic nose can be used to
detect toxic chemicals and smoke compounds [50], de-
termine indoor air quality [51-54], control automotive
ventilation [55, 56], and measure water quality of an
emergency water source (specific examples of detection
of water quality: residues of cyanobacteria [57] and pesti-
cides [58]; general examples: water pollution [59] and
wastewater samples [60, 61]). The possible benefits of an
electronic nose in terms of monitoring the environment
are numerous, as it can be used in camp, in the field and
in survival situations. However, at present, its practical
applications are limited as the samples need to first be
representative of the surroundings and then be mea-
sured at the same humidity and temperature for it to
have a standardized and reliable result.

Medical diagnostics and health monitoring using an
electronic nose can provide new and possibly better
ways to detect diseases. The currently available modern
diagnostic techniques provide more precise information
utilizing the physical, chemical and microbiological

methods of observation, superseding the role of the sub-
jective odor perception of the physician. However, this
would ignore many pieces of information on the overall
health condition of the patient, for which the physician
is undoubtedly better trained to ascertain [62]. The elec-
tronic nose technology has already been tested for a var-
iety of diseases and samples, including identifying
bacteria (in leg ulcers [63], vaginal swabs [64—66], upper
respiratory tract [67, 68], mycobacterium tuberculosis
[69, 70] and urinary tract infection [71-73]), the diag-
nosing of metabolic diseases (in diabetes [9, 74] and
renal dysfunction [75]) and monitoring hemodialysis
[76]. The ability for the electronic nose to detect such a
wide range of diseases at present is encouraging. As re-
search progresses, it is foreseeable that the electronic
nose could become a simple and efficient method to
detect a wide range of diseases effectively. For the
electronic nose to be applicable in the medical environ-
ment, its diagnostic accuracy would need to be improved
(by minimizing false-positive and false-negative rates).
We also have to factor in the heterogeneity and diver-
sity of humans, with the interplay of complex factors
such as nutrition [77, 78] and medication [79] on the
sample set with respect to the results obtained with
the electronic nose.

The use of an electronic nose in the automotive and
aerospace divisions of the military shows promise. Cur-
rently, its use is primarily conceptual with the main ap-
plication in NASA’s space shuttle Flight STS-95. The
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possible automotive applications of an electronic nose
would be to monitor exhaust fumes, providing feedback
to the engine to improve combustion efficiency. It could
also be used to monitor the cabin air for passenger
safety, determining early when the inside air may be haz-
ardous due to possible leakage of oil or coolant into the
air intake. Aerospace applications would be relatively
similar to the automotive industry, except that passen-
gers would be in enclosed cabins where the composition
of the air needs to be carefully monitored, especially in
the event that the plane is carrying volatile and hazard-
ous substances [4]. More research needs to be done into
electronic noses to develop devices that are cheap and
small, yet able to detect a variety of relevant odors for its
various applications.

Food and beverage quality assurance in the military is
essential especially in times of food crises, where food
supply is scarce and would need to be kept for pro-
longed periods of time. Currently, the shelf-life of food
is based on adherence to use-by dates, which are cen-
tered on previous experimental research into the length
of time that the food and beverage can last. The benefits
of the electronic nose lies in the detection of the quality
of food, especially in the event of a food crisis, in differ-
ent environments (temperature and humidity [80]). Ex-
amples of where electronic noses have been proven to
be better detectors than humans include the Blood-
Hound BH-114 (which detects spoilage as well as fungal
species in a bread analogue) [81] and CO sensors for
haddock fillets [82]. What is challenging here is that
spoilage compounds may differ depending on the type of
food. In fish for example, spoilage compounds [83, 84]
differ between species, parts of the fish [85] and treat-
ment of the fish upon capture [86, 87]. Sensors may not
be sensitive enough to provide the relevant information,
such as the NH3 sensor in detecting trimethylamine
(TMA) concentrations (CO sensors are better here [88]).

The future of electronic noses relies on the number of
different types of odors an electronic nose can pick up,
which can be improved by increasing the capabilities of
the sensors [89] and improving the algorithm for signal
processing to identify the type of odor (using intelligent
and statistical pattern analysis) [90].

Problems associated with injury to olfaction in
the military

Military personnel being deployed to combat areas could
be exposed to toxins and chemicals, which when ex-
posed to the olfactory epithelium, can lead to olfactory
disorders [91]. Examples include Halabja chemical attack
(1980, including mustard and nerve agents [92]) and the
Ghouta chemical attack (2013, Sarin). Exposure to such
chemical toxins can lead to many deteriorating condi-
tions, and the reactions can be categorized under three
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main classes of toxins: 1) nerve agents, 2) blister agents
and 3) phosgene [11, 93]. Under low vapor pressure of
such agents, rhinorrhea may occur [93]. However, these
agents can also burn at low concentrations. Burning of
the columnar olfactory epithelium of the nose can lead
to hyposmia or anosmia. Smell dysfunction can also be
caused by several other factors (such as head trauma,
upper respiratory tract infection, rhinosinusitis and
chronic rhinitis) [94].

Due to the anatomy of the olfactory nerves, soldiers
with head trauma [95] could potentially suffer from ol-
factory dysfunction [96] in the event of disruption of the
cribriform plate or surrounding areas. Soldiers that com-
plain of head trauma-related olfactory dysfunction typic-
ally have anosmia and rarely regain normal olfactory
ability. The appropriate MRI protocol can be used to ob-
serve the damage to olfactory-related brain structures in
such patients [97]. Moreover, olfaction appears to be the
most sensitive physical examination biomarker for re-
sidual neurological dysfunction due to mild traumatic
brain injury [1].

Smell can be associated with the memories [20] and
pain sensations felt at a particular point in time, leading to
episodic memory and an association of the smell and pain
felt. In Post-Traumatic Stress Disorder (PTSD), certain
smells have the potential to precipitate traumatic memor-
ies with strong emotional components [6]. The smell of
these toxic gases can be both unique and ubiquitous.
Soman, a nerve gas, smells like camphor [98]. Phosgene
oxime, a blister agent, smells like freshly mown hay [99].
Therefore, exposure to similar smells in daily life might
trigger memories [100] from the past and their associated
emotional components, leading to PTSD. There is cur-
rently a possibility for treatment of PTSD with the help of
olfaction and virtual reality therapies [101].

Depression can result from olfactory damage. Research
has shown that removal of the olfactory bulbs in rats
leads to dendritic reorganization, disrupted cell growth
and decreased neuroplasticity of the hippocampus, along
with behavioral changes similar to those observed in
people with depression [102]. This shows the reliance of
the hippocampus on stimulation from the olfactory bulb
to retain its neuroplasticity and active cell growth.

Smell dysfunction has the potential to adversely affect
the quality of life of military personnel. Olfaction has
been suggested to converge with other special sensory
inputs such as the sense of taste and vision in the orbito-
frontal cortex [103] to enjoy the food one is eating, for
example. Loss of this convergence and potentiation leads
to a less gratifying meal [104]. Olfaction is also involved
in creating episodic memories and processing remote as-
sociative olfactory memories [105]. Thus, with olfactory
dysfunction, memories have a reduced association to ol-
faction and are less detailed in that aspect.
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Furthermore, in combat situations, smell is a special
sensory ability that acts as a warning signal [106] to alert
personnel to any dangers [107] nearby, especially if the
danger is inaudible, invisible or not in the direct line of
sight. Any olfactory dysfunction could pose as a handi-
cap to the soldier in such a situation, leading to potential
harm to himself.

All of the above factors need to be assessed upon
evaluation of the injury in order to assess the level of
compensation and the combat worthiness of the soldier.
Studies on the impact of olfactory impairment on quality
of life and disability have shown that patients reporting
persistent olfactory impairment after previously docu-
mented loss showed a higher level of disability and lower
quality of life than those with perceived resolution of an
olfactory compromise [108]. In particular, their ability to
detect smoke, natural gases or other toxins in the envir-
onment was affected [109], and they had a higher pro-
pensity to develop depression [110]. A study on
olfactory impairment in an adult population that focused
more on the general adult population with emphasis on
dietary choices and quality of life found that olfactory
impairment had no effect on quality of life [111]. How-
ever, due to the nature of the participants of this study
representing the general adult population, the prevalence
of olfactory impairment was low and may not have in-
cluded a representative sample. Based on the current
evidence, it is probably preferable for soldiers in combat
not to have anosmia, while it is preferable for those in
special forces to have full olfactory ability or not more
than minimal hyposmia. Further studies still need to be
done specifically on soldiers who have been in combat
to produce a more representative sample in order to ar-
rive at a more definitive conclusion. We also suggest
that a test for olfaction (using the methods mentioned
above) upon admission into the military should be con-
ducted, which could be useful in providing initial data
against which subsequent data could be compared in the
event of potential compensation for an injury later in
their career, as well as a potential diagnostic marker for
anosmia and other neurodegenerative disorders.

Neurodegenerative diseases and its impact on
olfaction

Olfactory dysfunction is often present as a symptom of
neurodegenerative disease. It is found in as high as 100%
of Alzheimer’s disease cases, 96% of the frontal variant
cases of frontotemporal dementia, 90% of Parkinson’s
disease cases and 15% of vascular dementia cases [112].
According to Duff [17], discriminating between patients
with Alzheimer’s disease from those with vascular de-
mentia and major depression can be easily achieved
through olfactory testing with a high specificity and sen-
sitivity, as vascular dementia is not usually associated
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with olfactory dysfunction. Furthermore, in Parkinson’s
patients, olfactory dysfunction occurs before motor
weakness is observed, making it a good early screening
tool. On the other hand, the current limitation of utilizing
olfactory dysfunction to diagnose neurodegenerative dis-
eases is the inability to conclusively differentiate between
them (e.g., cases of depressive pseudo dementia, Lewy
body disease, or dementia of mixed etiology) [107, 113].
While neurodegenerative diseases involve the olfactory
tracts early in the disease process, the reverse effect has
also been shown to occur with depression occurring in ol-
factory bulbectomized rats [102]. Young soldiers rarely
tend to present with neurodegenerative diseases; however,
the early diagnosis of neurodegenerative diseases should
not be ruled out due to the many unforeseen circum-
stances that may occur during wartime.

Current research into olfaction in the military
There are several publications related to olfaction in the
military that focus on the use of olfaction as a tool for
detection, treatment or both. Olfaction has been found
to be useful in the detection of UUXO [3] and as a
means to avoid detection in ‘Olfaction Warfare’ [2]. As a
form of treatment, olfaction has also been found to be
the most sensitive physical examination biomarker for
residual neurological dysfunction due to mild traumatic
brain injury [1]. Due to the close association between
olfaction and memory, there is a possibility of using ol-
faction along with virtual reality as a form of PTSD ther-
apy, which would be very useful in the military given the
prevalence of PTSD [6, 101]. There was also a publica-
tion in 1973 on the potential applications of olfactory re-
search in man with relevance to the military [14]. As a
form of training, the immersion of participants into vir-
tual environments has not shown to be enhanced with
the use of olfaction [114]. However, another publication
demonstrated that odors can become readily associated
with emotions and can thereby influence behavior [115],
indicating a possible avenue for training a soldier’s re-
sponse in combat. There is unfortunately not as much
research into olfaction in the military setting as we
would have liked there to be. This could possibly be due
to limited resources, ignorance or restrictions with re-
spect to military research.

Conclusion

Olfaction is akin to the ability to detect the chemical na-
ture of the surrounding air, transducing the signal into
one that the brain can understand — the perception of
smell. It can be used as a form of defense, detection,
diagnostic method, and possible treatment options in
addition to many other applications. Olfaction plays a
major unseen role as an innate alarm. It could also be
used as a means to gain a significant tactical advantage
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over the enemy in a battle field, as it is still a relatively
underrated and underdeveloped but potentially powerful
qualitative sensory ability. Pursuing further research into
the exact cut-off point of olfaction ability in the military
would be fruitful, especially in the special forces, in
order to ensure that the lives of soldiers would not be
put in jeopardy. To date, the literature has shown certain
aspects of potential uses of olfaction in different fields,
but this study offers a review of the current publications
with regards to the wide range of current and potential
uses of olfaction in the military, as well as the signifi-
cance of the olfactory sense along with its physiology.
This is important for the further utilization of olfaction
in the military for research and practical purposes.
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