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Abstract 

In recent years, advancements in single‑cell and spatial transcriptomics, which are highly regarded developments 
in the current era, particularly the emerging integration of single‑cell and spatiotemporal transcriptomics, have 
enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these 
methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, 
single‑cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Start‑
ing from the perspective of RNA sequencing technology, this review outlined the significance of single‑cell RNA 
sequencing (scRNA‑seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. 
We summarize the differences between mouse and human prostate cancer as revealed by scRNA‑seq studies, as well 
as a combination of multi‑omics methods involving scRNA‑seq to highlight the key molecular targets for the diag‑
nosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel 
insights for the development of immunotherapy and other innovative treatment strategies for castration‑resistant 
prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single‑cell technolo‑
gies in this review, paving the way for future research in precision medicine.

Keywords Prostate cancer, Single‑cell RNA sequencing (scRNA‑seq), Tumor microenvironment, Tumor heterogeneity, 
Treatment resistance, Precision medicine

Background
Prostate cancer (PCa) is one of the leading malignant 
tumors affecting males globally, with concerning trends 
in both incidence and mortality [1–3]. In China, the situ-
ation is particularly challenging, marked by advanced 
tumor stages, higher metastasis rates, and lower sur-
vival rates compared with some Western countries [4–6]. 
There is an urgent need for early diagnosis and treat-
ment of PCa. However, the heterogeneity of PCa presents 
obstacles in both research and clinical management. 
Previous studies have shown that tumor tissue remod-
eling and the involvement of cancer-related fibroblasts in 
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recurrence and metastasis underscore the complexity of 
PCa progression [7, 8]. Additionally, both intratumoral 
and transcriptional heterogeneity may contribute to the 
evolution of PCa [9–11]. In recent years, the introduction 
of single-cell RNA sequencing (scRNA-seq) has signifi-
cantly advanced PCa research, offering benefits such as 
cell type and gene identification, correlation with clini-
cal phenotypes, and insights into tumor heterogeneity, 
evolution, and ecosystem [12, 13]. Importantly, the well-
known PAM50 gene expression classifier in breast can-
cer has been applied to PCa research, providing relevant 
molecular profiles to some extent [14, 15]. From a clinical 
point of view, single-cell analysis enables the early diag-
nosis of partially radiographic-invisible PCa, predictions 
for therapy response, drug resistance, and prognosis, as 
well as guidance for the surgical process. Techniques 
such as multiplex immunofluorescence-based single-cell 
spatial imaging and single-cell analysis-assisted liquid 
biopsy have been instrumental in this regard [16, 17]. 
Single-cell analysis also addresses the challenges in preci-
sion medicine by assessing changes in molecular signa-
tures at different stages of PCa, while molecular probes 
hold great potential for accurately determining surgical 
margins [18, 19]. Moreover, effective integration methods 
facilitate the generation of more meaningful results based 
on individual single-cell analyses. For example, Luecken 
et  al. [20] provided a robust data integration method 
using a Python module and a benchmarking pipeline. All 
of these findings contribute to revealing the pathogene-
sis of the disease and providing new insights for clinical 
diagnosis and treatment of PCa [21].

Unfortunately, only a few studies have focused on 
PCa. The challenges associated with scRNA-seq include 
technical issues such as low RNA input, amplification 
bias, dropout events (false-negative signals, being par-
ticularly problematic for weakly expressed genes and 
rare cell populations), batch effects, cell doublets, and 
quality control (QC) as well as methodological hurdles 
like unprecedented sequencing depth, noise or biases 
induced during library preparation and data analysis 
[22]. Fortunately, multiple technical solutions have been 
developed [22–24], including optimized sample prepa-
ration methods, improved sequencing technologies, and 
specialized computational algorithms for data normali-
zation, QC, and cell clustering. Additionally, the rep-
resentativeness of the sequenced cells concerning the 
distribution of cells within the tissue of interest remains 
unclear [22]. Combining bulk and scRNA-seq for decon-
volution analysis or improving cell capture throughput 
may offer potential solutions to these challenges. How-
ever, specific issues related to PCa- persist: 1) during the 
sampling stage, obtaining accurate PCa tissues is hin-
dered by the ambiguous structure of prostate tissue, and 

the embedded tumor also presents a technical difficulty 
for spatial transcriptome sequencing; 2) at the sequenc-
ing stage, the low viability of PCa cells after tissue lysis 
affects specimen quality, impacting subsequent data 
analysis, and may be resolved by using the proper col-
lagenase or through rigorous QC of cell suspensions; 3) 
other dilemmas include the requirement for fresh speci-
mens in scRNA-seq, conflicting with the longer time 
needed for pathological diagnosis, while multi-sample 
sequencing that ignores pathological diagnosis results in 
high costs. Moreover, for undiagnosed patients with sus-
pected small tumors, it is advisable to prioritize limited 
specimens for pathology biopsy over sequencing. The 
10 × platforms (Chromium and Visium) involve tissue 
destruction in the workflow, thus requiring hematoxylin 
and eosin (H&E) and immunofluorescence (IF) labeling 
to be performed beforehand or on serial sections. How-
ever, the ability to detect intercellular communication 
processes at high-resolution (cell–cell and ligand-recep-
tor interactions) and the capacity to precisely assign tran-
scripts to a specific cell within a spatial context at high 
gene plexy are lacking [25]. The ideal method would 
provide high gene-plexy, high throughput, multi-modal 
readouts with spatial context and subcellular resolution 
without compromising tissue integrity, and would be 
suitable for both fresh-frozen and formalin-fixed paraf-
fin embedded tissues. In addition to the aforementioned 
characteristics, the innovative Xenium in situ technology 
also includes a sizable imageable area and integrates gene 
expression with histological micrographs (H&E and IF 
staining) in the same tissue section [25]. The use of Chro-
mium, Visium, and Xenium platforms illustrates how the 
integration of whole transcriptome and targeted in  situ 
data offers highly complementary and additive biological 
information in human cancer, including PCa [25].

Given the significant impact of scRNA-seq in the field 
of cancer research, we have compiled a comprehensive 
review of the current evidence about the implications of 
this advancing technology in PCa. This effort aims to lay 
the groundwork for future investigations and individual-
ized treatment strategies for patients with PCa.

scRNA‑seq and spatial transcriptome sequencing
Currently, the most widely utilized technology for 
scRNA-seq is offered by 10 × Genomics. In 2017, 
10 × Genomics, in partnership with the Fred Hutchin-
son Cancer Research Center, developed this method 
by integrating sample droplets and barcoding [26]. 
10 × Genomics recognized the advantage in the separa-
tion and expansion of single cells, enabling the analy-
sis of large cell populations in a short time [27]. The 
technique of scRNA-seq in deciphering pathological 
mechanisms has been extensively discussed in various 



Page 3 of 20Feng et al. Military Medical Research           (2024) 11:21  

diseases [28, 29]. The workflow of 10 × Genomics is 
shown in Fig.  1. As scRNA-seq technology continued 
to advance, the capacity for sequencing a greater num-
ber of cells in a single experiment and the sequencing 
depth have increased, while the cost of sequencing has 
decreased. Compared to bulk RNA-seq, the primary 
advantage of scRNA-seq lies in its ability to assess het-
erogeneity among cell populations and construct a gene 
expression map for each cell, facilitating the differentia-
tion of various cell types.

QC strategies for scRNA‑seq analysis
The utilization and application of bioinformatics in the 
analysis of scRNA-seq have significantly transformed 
our comprehension of cellular heterogeneity and gene 
expression at a single-cell level. Depending on the 
care taken to design experiments, scRNA-seq can be 
applied to various types of samples, including PCa tis-
sues, peripheral blood, organoids, mouse models, and 
even PCa cell lines subjected to different interventions. 
Taking the scRNA-seq raw data from the 10 × Illumina 

Fig. 1 Evolution of single‑cell RNA sequencing, workflow of 10 × scRNA‑seq and spatial transcriptome. RNA ribonucleic acid, STRT‑Seq single‑cell 
tagged reverse transcription sequencing, MARS massively parallel RNA single cell, SMART Switching mechanism at 5’ end of the RNA transcript, 
Cell‑seq cell expression by linear amplification and sequencing, SPLiT‑Seq split‑pool ligation‑based transcriptome sequencing, sci‑RNA‑seq 
Single cell combinatorial indexing RNA sequencing, MATQ‑Seq Multiple annealing and tailing‑based quantitative single cell RNA sequencing, 
scAT‑seq2 single‑cell assay for transposase‑accessible chromatin using sequencing 2, BART‑seq barcode assembly for targeted sequencing, 
MULTI multiplexing using lipid‑tagged indices for single‑cell and single‑nucleus RNA, HDST high‑definition spatial transcriptomics, ScNaUmi‑seq 
single‑cell nanopore sequencing with unique molecular identifiers, tSCRB‑seq T cell‑tailored single‑cell RNA barcoding and sequencing, Scifi 
single‑cell combinatorial fluidic indexing
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platform as an example, CellRanger is a robust tool that 
can decode FASTQ files into filtered data for subse-
quent analyses [30]. The steps involve QC for sequenc-
ing reads, preprocessing to remove low-quality bases, 
alignment and mapping, and cell demultiplexing as well 
as quantification by unique molecular identifier (UMI)-
count table generation [31, 32]. After the initial pro-
cessing, a new round of QC is conducted to ensure the 
individualization, intact, and high quality of the analyzed 
cell “barcodes”. Common QC indices such as “nFeature”, 
“nCount”, and “percent.mt” are used to assess the number 
of detected genes, total UMI, and the percent of mito-
chondrial genes, respectively. Immune cells, particularly 
neutrophils, typically exhibit a lower “nFeature” count 
compared to other cell types in humans [33]. However, 
cells with an extremely low “nFeature” count and high 
“percent.mt” may indicate low-quality cells with leaked 
cytoplasmic mRNA and conserved mitochondrial mRNA 
[34]. It should be noted that in cases where determining 
the minimum threshold is challenging, alternative QC 
indicators such as housekeeping gene expression [10], 
and cell metabolism levels [35] can be considered. Addi-
tionally, the Median Absolute Deviation algorithm can 
be employed [33]. In contrast, cells with excessive “nFea-
ture” values may indicate the presence of cell doublets. 
Furthermore, the solid tissue of PCa is too hard to be 
digested, and the fibroblasts in its microenvironment are 
also apt to adhere to adjacent cells, leading to a relatively 
high cell doublet level. Possible solutions include limiting 
the maximum value for “nFeature” or employing double-
cell removal tools, such as DoubletFinder [36] that show 
the highest accuracy in detecting cell doublets. Doublet-
Finder integrates predefined cell doublets with the origi-
nal cell sample and performs dimensionality reduction 
and clustering. Theoretically, artificially simulated dou-
blets are expected to be closer proximity to real doublets. 
The doublet probability for each barcode is determined 
by calculating the proportion of artificial doublets in the 
K-nearest neighbors of each cell (pANN) and sorting the 
values accordingly. Furthermore, the Poisson distribution 
can be used to estimate the number of doublets in each 
sample. It is important to consider the pervasive pres-
ence of environmental RNA contamination throughout 
the entire sequencing process, from cell suspension, and 
sorting to reagent selection, and even potential opera-
tional errors, which may introduce contaminants into 
the sequencing pool. Recently developed methods such 
as DecontX [37] and SoupX [38] effectively address these 
issues, thereby reducing noise in downstream analyses. 
While recent single-cell studies have not adjusted the QC 
strategy according to samples or data situation [33], it is 
recommended to adopt flexible QC cutoff values based 
on different situations. Additionally, a later QC strategy 

after primary data processing and cell type annotation, 
followed by reanalysis of the data with high-quality cells, 
may yield improved results.

Basic processes and tools for scRNA‑seq analysis
The matrix derived from processing raw data may not 
accurately represent the absolute quantity of mRNA 
molecules, due to variability in total UMI counts per 
cell, influenced by numerous technical and biological 
factors. Factors such as RNA capture efficiency, reverse 
transcription, cDNA amplification, sequencing depth 
during library preparation, cell sizes and cell cycles con-
tribute to differences in cell expression profiles between 
cells and samples. To address this issue, scRNA-seq often 
employs “Normalization” to eliminate technique-driven 
differences and enhance data comparability and accu-
racy while preserving real biological variations among 
cells [39]. “Scaling” is another concept related to “Nor-
malization”, involving the linear transformation of data 
to fall within a specific range to eliminate the impact 
of scale differences on analysis. Overexpression of cer-
tain genes, such as those related to cell cycle, cell stress, 
and mitochondria, can obscure true biological altera-
tions, which can be addressed through linear regression 
during the “Scaling” process. Common R packages for 
scRNA-seq analysis, such as “Seurat” and “SingleCell-
Experiment” provide similar functions to get a normal-
ized (log-transformed) or scaled matrix. For improved 
variance stabilization, the Seurat team has recently intro-
duced SCTransform, a method that employs regularized 
negative binomial regression for normalizing and stabi-
lizing variance in scRNA-seq data [40]. It is important 
to note that these procedures can be directly applied to 
single-cell sample data, but for the analysis of multiple 
samples, data integration and batch effect removal are 
usually necessary. Batch effect refers to problems arising 
from non-biological differences, such as experiment time 
and sample heterogeneity. Alternative methods include: 
1) “Seurat”, which involves the integration and batch cor-
rection of scRNA-seq datasets through techniques such 
as Seurat integration and canonical correlation analysis 
[41]; 2) “Harmony”, which enables batch effect removal 
and integration of scRNA-seq datasets by adjusting for 
technical variation [42]; 3) “Scanorama [43]”, “FastMNN” 
[44], and other possible algorithms [45].

Although a large number of low-quality cells have been 
removed during the QC procedure, more than 20,000 
genes are typically mapped and annotated in the com-
plete data from a study. Not all genes provide valuable 
biological information, and analyzing all genes would 
be inefficient in terms of time and resources. Hence, the 
approach of “Feature Selection” from the field of machine 
learning and statistics is used to select a subset of genes 
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(often ranging from 2000 to 5000) for subsequent unsu-
pervised analysis [34, 46]. A commonly employed 
method involves the selection of highly variable genes 
(HVGs) [47] and the use of Seurat to identify HVGs 
based on their variance. It is important to note that in 
scRNA-seq, the distribution of cells expressing thousands 
of genes exists in a high-dimension space, and efforts are 
made to render it comparable and visible in a low-dimen-
sion space.

Seurat works on the selected HVGs to implement 
dimensionality reduction and clustering techniques such 
as principal component analysis, t-distributed Stochas-
tic Neighbor Embedding [48], and Uniform Manifold 
Approximation and Projection [49], as well as graph-
based clustering algorithms. Another R package, “Single-
CellExperiment”, offers infrastructure and methods for 
storing, manipulating, and analyzing single-cell genom-
ics data, including dimensionality reduction and cluster-
ing. Subsequently, annotating the acquired clusters may 
be a crucial step, with manual annotation being more 
accurate but largely relying on existing biological knowl-
edge, where differential analysis plays a role. The “Seurat” 
package functions “FindMarkers/FindAllMarkers” are 
convenient tools for identifying cluster-specific genes for 
improved annotation. Additionally, “MAST” is another 
R package specialized for differential expression analysis 
in scRNA-seq data, accommodating zero inflation and 
modeling cell-specific parameters [50]. For unfamiliar 
cell types, the combination of automatic annotation with 
manual annotation may be a more ideal solution, with 
SingleR [51] and CellTypist [52] being widely-used auto-
matic annotation tools.

Advanced processes and tools for scRNA‑seq analysis
With precise and thorough annotation, subsequent 
methods of functional analysis, cell communication, and 
trajectory inference analysis in cell development become 
applicable. Notable functional analyses include gene 
ontology, gene set enrichment analysis, and gene set vari-
ation analysis that can be achieved by “clusterProfiler” 
[53], “GSEABase” [54], and various websites. Moreover, 
advanced tools for cell communication analysis, such as 
CellPhoneDB [55] and CellChat [56], provide insights 
into signaling pathways, ligand-receptor interactions, and 
cellular crosstalk, playing crucial roles in the analysis of 
various biological processes and disease mechanisms.

Importantly, the necessity and value of uncovering 
the dynamics and relationships within cellular processes 
should be considered during bioinformatic analysis for 
scRNA-seq data. Trajectory analysis is a widely used 
method for inferring cell transition, differentiation pro-
cesses, cell fate decisions, or disease progression based 
on gene expression similarities. It includes two parts: 

pseudotime analysis and trajectory inference. Pseudotime 
analysis involves inferring the temporal ordering of cells 
along developmental trajectories or biological processes, 
often using algorithms like “Monocle” [57] or “Slingshot” 
[58]. While trajectory inference reconstructs cellular tra-
jectories to visualize dynamic processes, such as cell dif-
ferentiation or disease progression, using algorithms like 
“Wishbone” or “Tools for Single Cell Analysis (TSCAN)” 
[59, 60]. However, lineage-tree-based analysis may be 
a more suitable and direct method that focuses on con-
structing a tree-like representation of the cellular lineage 
or differentiation hierarchy by measuring mitotic histo-
ries to capture the hierarchical relationships between 
cells and the branching events during development [61]. 
Both trajectory and lineage-tree-based analyses oper-
ate at the individual cell level, relying on computational 
algorithms and statistical methods to capture and ana-
lyze the temporal dynamics of cellular processes, provid-
ing insights into cellular development, differentiation, or 
disease progression, and offering a better interpretation 
of the underlying mechanisms and regulatory networks 
driving cellular processes. However, the unique power of 
lineage-tree-based analysis lies in its ability to describe 
a continuum or a ‘landscape’ of cell states and transition 
trajectories between different states during cell rediffer-
entiation at a high resolution by employing strategies for 
single-cell state manifold reconstruction and lineage bar-
coding [61].

Decades ago, the understanding of cell function was 
primarily based on some simple characteristics such 
as location, morphology, staining, and basic chemical 
or physical properties. The advent of various sequenc-
ing technologies has revolutionized our understanding 
of cells and changed the modes of studying cells, with 
scRNA-seq emerging as a prominent technique. Sup-
plementary materials of this review show the evolu-
tion history of scRNA-seq technology. Based on large 
scRNA-seq datasets, lineage-tree based analysis can be 
employed to characterize the specific gene expression 
continuum of novel cell states or cellular developmental 
transitions compared with transient information cap-
tured by conventional analysis. Multiple algorithms have 
been proposed to deduce, visualize, and even predict the 
cell dynamics and hierarchal states, directly transform-
ing a manifold to a tree-like structure. Moreover, the 
precise determination of a cell’s lineage history relies on 
barcode-sequencing. Specifically, researchers introduce 
individual cell-specific DNA barcodes into different cells 
to facilitate the tracing of changes in the targeted whole-
genome or mitochondrial-genome sequencing data, 
thereby constructing a lineage phylogeny as each cycle of 
mitosis occurs [61]. Notably, the DNA barcodes perma-
nently alter the genome of a single cell, making it easy to 
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identify its progeny cells that inherit this alteration. The 
high-throughput recording and measurement of DNA 
barcoding events makes it possible to trace thousands 
of different cloning units in parallel, and the accumula-
tion of barcodes contributes to the phylogenetic recon-
struction of cell lineage trees. Three types of barcodes are 
employed. First, the integration of an exogenous DNA 
barcode library via transposase using transposon-based 
barcoding approaches (TracerSeq [62] and CellTagging 
[63, 64]). Second, in  vivo recombination of transgenic 
DNA cassettes employing PolyLox [65, 66]. Third, in vivo 
accumulative insertions and/or deletions of random error 
during CRISPR-Cas9 editing of genomic target sites that 
is innovative and employs synthetic target arrays for 
lineage tracing (GESTALT) [67], single-cell GESTALT 
(scGESTALT) [68, 69], ScarTrace [70], lineage tracing 
by nuclease-activated editing of ubiquitous sequences 
(LINNAEUS) [71], CRISPR Array Repair LINeage trac-
ing (CARLIN) [72] and so on. In an informative report 
by Montoro et al. [73], it was confirmed that Krt5-CreER-
marked basal cells regenerated all epithelial cell types 
of the airway tissue through classical genetic recombi-
nation-based lineage-tracing methods and scRNA-seq. 
Unfortunately, there are currently no studies combining 
scRNA-seq with lineage analysis on PCa, and lineage 
tracing methods to identify the progenitor cells of PCa 
may be a promising direction for future research.

Integration of scRNA‑seq with spatial transcriptomics
The process of breaking down tissue with enzymes to 
obtain individual cells results in the loss of spatial infor-
mation about the cells within the tissue. This can lead to 
changes in gene expression and the loss of valuable infor-
mation. In 2016, a new technique called spatial transcrip-
tome was developed to address this issue, allowing for the 
retention of spatial location information while obtaining 
gene expression data. This technique, which included 
Slide-seq, HDST, and sci-Space [74–77], was recognized 
as the “method of the year” by Nature Methods in 2020 
[78]. The workflow is depicted in Fig. 1.

Combining spatial transcriptome methodology with 
scRNA-seq helps the integration of spatial location infor-
mation with the multimodal features of cell populations. 
In 2021, the Beijing Genomics Institute proposed the 
concept of a spatiotemporal transcriptome and devel-
oped a Stereo-seq, which added a temporal dimension 
to the spatial transcriptome information to observe the 
transcriptomic changes during cell development [79]. 
This breakthrough technique achieved subcellular-level 
resolution and a centimeter-sized imageable field, pro-
viding a greater field of view and higher resolution than 
other mainstream technologies [79].

Figure 1 illustrates the timeline of scRNA-seq develop-
ment. Hirz et al. [80] combined scRNA-seq with spatial 
transcriptomic analysis to improve the understanding 
of PCa. This combination provided a detailed resource 
on the PCa microenvironment and tumor-stromal cell 
interactions, shedding light on the causes of a suppres-
sive tumor microenvironment [80]. They also identified 
Hillock and Club cells as progenitor cells and deduced 
a robust prostate tumor gene signature. This thorough 
examination of the cellular and molecular landscape 
of PCa will help identify vulnerable areas for therapeu-
tic intervention. Moreover, Tuong et  al. [81] employed 
scRNA-seq to reveal a unique zinc transporter-express-
ing prostate-specific macrophage population called 
“MAC-MT”, which may enhance immune responses 
and—counteract fluctuations in zinc concentrations 
associated with PCa. Spatial transcriptomics provided 
valuable validation in this context. The work of Barkley 
et al. [82] established a framework for studying how can-
cer cell states interact with the tumor microenvironment 
to form organized systems capable of immune evasion, 
drug resistance, and metastasis by pan-cancer scRNA-
seq and spatial transcriptomics analysis. The characteris-
tics of the three transcriptome patterns described above 
are presented in Table 1.

scRNA‑seq analysis in PCa research
scRNA‑seq analysis reveals similarities and differences 
of prostate components in mouse model and human
The mouse prostate model is a commonly used animal 
model in scientific research for studying prostate-related 
diseases and testing the efficacy of treatments. It can be 
employed to investigate the pathogenesis, pathophysi-
ological changes, and assess the effectiveness of therapies 
for conditions like prostate cancer and benign prostatic 
hyperplasia. However, there are limitations compared 
with human disease models, such as anatomical and cel-
lular marker differences, requiring caution in interpret-
ing experimental results. From anatomical perspective, 
PCa and benign prostatic hyperplasia develop in differ-
ent zones of the prostate [83, 84]. In a young prostate, 
the peripheral zone is larger, while the transitional zone 
is small and has a regular structure that becomes larger 
and irregular with aging [85]. The study conducted by 
Yan et al. [86] utilized scRNA-seq technology to observe 
that older prostate tissues with more Trefoil factor 3 
-positive cells in the peripheral zone are more prone to 
malignant transformation. However, when using experi-
mental mouse models to explore human prostate-related 
diseases, it is important to note that the structures of the 
mouse prostate, including the anterior lobe, ventral lobe, 
and dorsolateral lobe, consisting of dorsal and lateral 
lobes, are significantly different from those of humans 
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[87]. Conversely, human and mouse prostate cells have 
a similar composition at the cellular configuration level. 
The prostates of both mice and humans are composed of 
pseudostratified epithelia and stromal cells. Pseudostrati-
fied epithelium consists of three types of cells: lumi-
nal cells, neuroendocrine cells, and basal cells. Stromal 
cells are further categorized into autonomic nerve fib-
ers, immune cells, smooth muscle cells, fibroblasts, and 
endothelial cells. Baures et al. [88] utilized scRNA-seq to 
demonstrate that the  LSCmed cells from mouse prostate, 
which are molecularly equivalent to luminal progeni-
tor cells, closely resemble Club and Hillock cells in the 
human prostate. From the perspective of cellular marker, 
each lobe exhibits distinct transcriptomic differences. In 
mice, ‘prostate’ fibroblasts are marked by expression of 
complement C3, early B-cell factor 1 transcription fac-
tor 1, glutathione peroxidase 3, sulfotransferase family 1E 
member 1 and insulin like growth factor 1, while ‘ductal’ 
fibroblasts are characterized by the expression of Wnt2, 
Rorb, Wif1, Ifitm1 and Srd5a2 [89]. In contrast, podopla-
nin, decorin, fibroblast activation protein α, and collagen 
type I α 1 chain appear to be reliable markers for fibro-
blast in the human prostate [90]. Luminal cells in FVB/
NJ mice exhibited specific markers for different lobes and 
an increased presence of proto-oncogene-related targets 
[91]. According to the 10 × scRNA-seq data of Crow-
ley et  al. [92], Transglutaminase 4 was identified as the 
marker for luminal cells in AP and DP, microseminopro-
tein β for LP, and protein phosphatase 1 regulatory inhib-
itor subunit 1B for all lobes. Henry et al. [90] performed 
flow cytometry and scRNA-seq on approximately 98,000 
cells from different anatomical regions of the young adult 
human prostate and prostatic urethra, and they found 

CD200 to be more effective marker for endothelium than 
CD31, a widely used but inefficient marker for endothe-
lial cells in the prostate. Human ductal luminal cells, 
expressing keratin 7 and retinoic acid receptor responder 
1, were most closely related to proximal luminal cells in 
mice, while the acinar luminal cells, expressing micro-
seminoprotein β and membrane metalloendopeptidase, 
were most closely related to luminal cells of LP-specific 
followed by VP-specific tissue [92]. Microarray profil-
ing confirmed that the dorsolateral lobe was most simi-
lar to the peripheral zone in the human prostate [93]. 
Additionally, there are several similar cellular markers in 
both humans and mice. For example, cytokeratin (CK) 
8, CK18, and NK3 homeobox  1 as well as CK5, CK14 
and tumor protein p63 are expressed in both mouse and 
human luminal cells and used to label luminal cells and 
basal cells in both species [94]. Therefore, the significance 
of using mouse models to study the initiation, heteroge-
neity, and development of PCa from different cell line-
ages should be considered. For instance, Guo et  al. [95] 
defined a unique luminal cell subtype as the cellular pro-
genitor of PCa by profiling 35,129 mouse prostate cells 
and 11,374 human prostate cells through scRNA-seq. 
They also confirmed the presence of luminal-C cells in 
the human prostate and confirmed their potential role 
as PCa progenitor cells. The markers for different lumi-
nal cells (luminal-A, luminal-B, and luminal-C) found in 
mice, including tumor associated calcium signal trans-
ducer 2, prostate stem cell antigen, and keratin 4, were 
also suitable for human prostate tissue [95]. Figure  2 
summarizes the similarities and differences between 
anatomical structure, cellular configuration, and cellular 
marker of human and mouse prostate.

Table 1 Comparisons among bulk, single‑cell, and spatial transcriptomes

Items Bulk transcriptome Single‑cell transcriptome Spatial transcriptome

Analytic object Tissue Cell Tissue section

Tumor cell region Not applicable Presumed by the algorithm Identified directly on sections

Dimensionality reduction Not applicable Principle component analysis (PCA), 
t‑distributed stochastic neighbor 
embedding (t‑SNE), or uniform 
manifold approximation and projec‑
tion (UMAP)

Principle component analysis (PCA), 
t‑distributed stochastic neighbor 
embedding (t‑SNE), or uniform 
manifold approximation and projection 
(UMAP)

Cluster Not applicable k‑means, louvain or hierarchical 
clustering based on cell type

k‑means, louvain or hierarchical cluster‑
ing based on different functional areas

Differential expression analysis For different tissues For cell clusters For spatial location

Enrichment analysis Gene function differences 
between different tissues

Biological functional differences 
between the cell clusters

Gene function differences at different 
spatial locations

Advantage The price is low Cell resolution The spatial location information 
is retained

Limitation The result is the average gene expres‑
sion within the tissue, and the preci‑
sion is low

Missing the spatial location informa‑
tion

Technically, the resolution is lower 
than single‑cell transcriptome in most 
cases
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Fig. 2 Comparison of mouse models and human prostate tissues at anatomical structure, cellular configuration and cellular marker levels. a The 
mouse prostate can be divided into: anterior lobe, ventral lobe and dorsolateral lobe and the human prostate can be divided into: peripheral 
zone, transitional zone and central zone. b The prostates of both mice and humans are composed of pseudostratified epithelia and stromal cells. 
Pseudostratified epithelium consists of three types of cells: luminal cells, neuroendocrine cells, and basal cells. Stromal cells are further categorized 
into autonomic nerve fibers, immune cells, smooth muscle cells, fibroblasts, and endothelial cells. c The cellular markers of basal cell contain CK5, 
CK14 and p63. The cellular markers of luminal cell contain CK8, CK18 and NKX3.1. The cellular markers of neuroendocrine cell contain chromogranin 
A and synaptophysin. CK cytokeratin
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As a result, findings from analyzing individual cells 
in a mouse model can sometimes be applied to human 
prostate cancer. This is supported by recent studies using 
scRNA-seq in wild-type mouse prostates, which have 
revealed the adaptability of luminal cells after castration, 
a phenomenon also observed in human benign pros-
tatic hyperplasia [96, 97]. In addition, studies have found 
similar differentiated stem-like luminal subpopulations 
in human prostate, organoids and mouse models using 
scRNA-seq, showing proliferative activity after androgen 
deprivation [96, 98–100]. Obviously, cancer cells inhabit 
natural stem cell-like niches within normal tissue [101]. 
Untreated or surviving PCa cells after varied therapies 
can exploit the stem-like phenotype of luminal cells to 
drive tumor progression, recurrence, or castration resist-
ance. Hence, in  situ or distant metastasis of PCa may 
be associated with luminal cell subtypes. Similarly, the 
scRNA-seq study of Baures et al. [88] demonstrated that 
 LSCmed-like luminal progenitor cells in mice were intrin-
sically castration-tolerant in both healthy and cancerous 
tissues, as were cells in the human prostate, particularly 
those associated with PCa initiation [102]. Moreover, 
Han et al. [103] utilized multi-omics data from more than 
100,000 cells from genetically engineered PCa mouse 
samples to reveal that FOXA2 orchestrated the transition 
from adenocarcinoma to neuroendocrine lineage. Over-
all single-cell analysis in mouse models sheds light on the 
mechanisms underlying the development and progres-
sion of human PCa, suggesting targeting normal luminal 
cells with new therapies could be beneficial in preventing 
tumor progression and improving prognosis during the 
treatment of PCa.

scRNA‑seq analysis clarifies PCa tumor heterogeneity
PCa originates in luminal and basal cells [104–106]. 
scRNA-seq data has shown that different types of luminal 
cells are associated with varying degrees of malignancy 
and clinical outcomes in PCa. Ma et  al. [107] identified 
highly malignant type 1 luminal cells related to early 
progression of PCa, type 3 luminal cells associated with 
migration, and less malignant type 2 luminal cells linked 
to poor prognosis. They also found that specific genes 
such as α-methylacyl-CoA racemase, prostate cancer 
antigen 3, and hepsin (HPN) have significant diagnostic 
value [107–109]. Additionally, scRNA-seq results may 
help categorize high-risk PCa subtypes into more repre-
sentative and common populations [110]. Chen et al. [10] 
identified a unique cluster of luminal cells termed “Cell 
cycle” that showed high expression of high-risk PCa sig-
natures (luminal B, hypoxia, and prostate cancer subtype 
1 [111, 112]). Another study using scRNA-seq analysis 
of human prostate samples identified specific luminal 
and fibroblast-derived PCa progenitors and potential 

genes and cell functions, including a link between cellular 
senescence and PCa development [113]. Furthermore, it 
has been reported that drug resistance in PCa is derived 
from an epithelial population with a mixed luminal-basal 
phenotype, as supported by single-cell data from both 
mouse models and human patients [114]. These studies 
indicate the potential of scRNA-seq in identifying popu-
lations at common risk for PCa.

scRNA‑seq analysis aids in understanding the PCa tumor 
microenvironment
Both immune and non-immune components in the 
tumor microenvironment (TME) participate in PCa ini-
tiation, development, and progression. Currently, avail-
able studies on single-cell analysis have revealed the 
special roles of T cells, tumor associated macrophages 
(TAMs), cancer associated fibroblasts (CAFs), and acti-
vated endothelial cells (aECs) in the TME. Wu et al. [115] 
confirmed that cryopreservation did not affect PCa het-
erogeneity for scRNA-seq, thus broadening the usage 
scenarios and research conditions of scRNA-seq. Wong 
et  al. [116], utilizing scRNA-seq and TCR sequencing 
to study, found that antitumorigenic immune cells were 
suppressed in the TME while protumorigenic immune 
cells were enriched in aggressive cribriform PCa [116]. 
Using Metabolic Assay-Chip (MA-Chip) and scRNA-
seq analysis after liquid biopsy, Rivello et al. [117] found 
that non-malignant stromal cells in PCa cells exhibited 
abnormally high metabolic activity and expressed genes 
related to PCa progression pathways, including angio-
genesis, cell cycle activation, and oncogenic signal trans-
duction. As for TAMs, in addition to some expected 
pathways related to macrophage activation and function 
(such as TNF, NK-κB, and NOD pathways), Chen et  al. 
[10] found that TAMs surprisingly showed osteoclast-like 
features in PCa samples sequenced by scRNA-seq, which 
may promote bone metastasis in PCa. The appearance 
of TAMS was also related to the exhaustion of distinct 
T cell subsets in metastatic PCa [118]. Multiple stud-
ies supported this finding: Wong et  al. [116] conducted 
scRNA-seq to demonstrate that decreased T cell num-
bers and increased T cell dysfunction were prominent 
features of the TME in aggressive cribriform PCa. Hirz 
et al. [80] linked immunosuppressive myeloid and T-cell 
exhaustion to PCa metastasis using a combined dataset 
of single-cell and spatial transcriptomic analyses. Inter-
estingly, KLK3, the gene encoding prostate-specific anti-
gen (PSA) [119], is expressed in almost all T cells in the 
TME, and the extracellular vesicles of PCa cells induced 
transcriptomic changes that promoted micrometastasis, 
further confirming the interactions between tumor cells 
and the TME [10]. In a study involving several patients 
with metastatic castration-resistant PCa (mCRPC), 
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scRNA-seq results suggested decreased T cell diversity 
and increased dysfunctional programmed cell death-1 
(PDCD-1, encoding PD-1 [120])-expressing  CD8+ T 
cells [also known as regulatory T cells (T reg cells)] after 
enzalutamide therapy. Treg cells were associated with 
lineage differentiation and subsequent cellular metabo-
lism, cellular communication, and immune infiltration 
of PCa. This indicates an elevated abnormal antitumor 
immune response and enzalutamide resistance [121]. 
Not surprisingly, single-cell analysis also assists in elu-
cidating the regulatory network between the immune 
and non-immune components in the TME. For exam-
ple, cancer-associated fibroblasts (CAFs) are involved 
in angiogenesis, extracellular matrix (ECM) activation 

and an epithelial-mesenchymal transition (EMT) [113]. 
Interestingly, fibroblasts are related to antigen process-
ing and presentation as well as hormonal regulation in 
normal prostates [113], and it is reasonable to speculate 
that CAFs may show similar features. scRNA-seq analy-
sis showed that a heterogeneous CAF population sur-
rounded more aggressive PCa foci, possibly due to its 
immunosuppressive and poor prognosis-related proteins 
[116]. Furthermore, aECs are enriched in CRPC, which 
suppresses immune activation and promotes cancer inva-
sion [10]. The complex network of cell–cell interactions 
in the TME is summarized in Fig. 3.

These changes in the transcriptome and consequently 
in transcription and translation may occur before 

Fig. 3 The tumor microenvironment of prostate cancer. In the PCa TME, both immune and non‑immune components played crucial roles 
in the PCa initiation, development, and progression. For example, Tregs were associated with lineage differentiation and immune infiltration, 
and TAMs exhibited unexpected OC‑like features, potentially promoting bone metastasis. Additionally, CAFs contributed to extracellular matrix 
activation and epithelial‑mesenchymal transition (EMT). Besides, abnormal aECs enriched in CRPC inhibited immune responses and enhanced 
tumor invasion. PCa prostate cancer, TAM tumor‑associated macrophages, ECM extracellular matrix, EMT epithelial‑mesenchymal transition, CRPC 
castration‑resistant prostate cancer, ENZ enzalutamide, KLK3 kallikrein 3, TME tumor microenvironment, TNF tumor necrosis factor, NF‑κB nuclear 
factor‑kappa B, NOD nucleotide binding oligomerization domain, PDCD‑1 programmed cell death‑1
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alterations in cellular activities, and TME remodeling is 
also accompanied by changes in the transcriptome. This 
technology will be useful for identifying genes that con-
tribute to PCa development and its related biological 
processes, further clarifying the complex mechanisms of 
PCa etiology, and fundamentally preventing the occur-
rence of PCa. Therefore, using scRNA-seq to detect these 
changes as early as possible is essential to continue sub-
sequent studies and further interventions.

scRNA‑seq analysis in PCa for clinical applications
scRNA‑seq analysis is a potential assistance to improve PCa 
diagnostic accuracy
Although pathological biopsy is the gold standard for 
diagnosing PCa, its effectiveness is limited due to its 
invasive nature and poor accuracy in puncturing. Addi-
tionally, PSA, another sensitive diagnostic biomarker, 
(can sometimes be affected by benign prostatic hyperpla-
sia and prostatitis. Imaging tests, like prostate multipara-
metric MRI, are also restricted by certain confounding 
factors and variations in how physicians interpret the 
results. In recent years, a new technique termed “liq-
uid biopsy” has been developed [17, 122]. This tech-
nique involves the use of circulating tumor cells (CTCs) 
and offers advantages such as non-invasiveness, ease of 
administration, high repeatability, and the ability to over-
come issues related to tumor heterogeneity. A single-cell 
technique called apheresis addresses the challenge of 
insufficient CTC in blood, allowing for further explora-
tion of PCa heterogeneity at the genomic or transcrip-
tomic level [123]. In contrast, scRNA-seq improves the 
diagnostic potential of epithelial cell adhesion molecule 
(EpCAM)-negative cells in biopsies. EpCAM has long 
been a common and typical prognostic marker for PCa 
CTCs [124]. In a study by Rivello et al. [117], it was found 
that genes significantly expressed in EpCAM-negative 
cells in the blood, such as androgen receptor (AR), eryth-
roblast transformation-specific-related gene, homeobox 
B2, kallikrein-3 and prostate cancer associated 3, helped 
in identifying either EpCAM-negative CTCs or EpCAM-
negative circulating stromal cells.

scRNA‑seq analysis provides novel personalized therapy 
possibilities for PCa patients
Androgen deprivation therapy (ADT) has been the main 
treatment for advanced PCa for decades. Although 
patients with metastatic PCa who are not eligible for 
radical surgery or radiotherapy exhibit favorable initial 
responses to ADT, a large proportion of them will even-
tually progress to CRPC [125]. It has been believed that 
CRPC develops as result of ADT selection. However, 
a study has shown that CRPC may not solely originate 
from acquired evolutionary selection during ADT, but 

may also be associated with highly adaptable CRPC-like 
cells in the early stages of PCa. These cells continuous to 
clone and amplify throughout the disease progression 
[126]. The study applied scRNA-seq to analyze around 
23,000 PCa epithelial cells and identified a small propor-
tion of highly adaptable CRPC-like cells [126]. Moreover, 
they pinpointed 13 key transcription regulators, such as 
SOX2, AR, and FOXA1 that modulate the progression 
towards small cell neuroendocrine carcinoma (NEPC) or 
CRPC [126], providing insights into effective therapeu-
tic strategies. Another study confirmed that a fraction 
of luminal cells with stem cell-like potential persisted 
after castration [96]. Therefore, detecting pre-existing 
CRPC-like cells in the early stages of untreated PCa using 
scRNA-seq and applying this information for early inter-
ventions could offer a novel approach to CRPC therapy.

Additionally, combining the varied findings from differ-
ent single-cell analyses could help in developing effective 
therapeutic strategies. For example, Qiu et al. [127] inte-
grated scRNA-seq with chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) and found that the 
overexpression of c-Myc hindered the typical AR tran-
scriptional process, contributing to the progression of 
PCa. Considering that AR-targeted therapy-resistant PCa 
cells often still express Ars [128, 129], targeting c-Myc to 
restore AR activity may be an ideal strategy for manag-
ing PCa that has progressed to CRPC or even mCRPC, 
and many small-molecule inhibitors have been developed 
for this purpose in recent years [130]. From a dietary per-
spective, reduced saturated fat intake inhibited c-Myc 
transcription [131]. Tang et al. [132] identified activator 
protein-1 as a potential therapeutic target for AR-nega-
tive CRPC by integrating data from ATAC-seq, ChIP-seq, 
and scRNA-seq. Furthermore, He et  al. [121] analyzed 
the single-cell transcriptomes of patients with advanced 
PCa, covering various common metastatic sites, includ-
ing bone, lymph nodes, and liver. Their findings showed 
that genes in the transforming growth factor pathway 
could be potential therapeutic targets for mCRPC, along 
with multiple AR isoforms and their specific inhibitors. 
They also identified three genes expressed in NEPC 
(homeobox B5, homeobox B6, and nuclear receptor sub-
family 1 group D member 2) as candidates for functional 
investigation due to their potential role in mCRPC [121]. 
The acquisition of these phenotypes by NEPC, as a lethal 
subtype of CRPC, remains a topic of debate. Wang et al. 
[133] performed scRNA-seq profiling to establish a tran-
scriptomic map of NEPC transdifferentiation and iden-
tified the key genes involved in cell differentiation and 
terminal outcome. Targeting these genes is important for 
drug development and early intervention against NEPC 
transformation. It is also remarkable that the majority 
of treatments may affect tumor heterogeneity and the 
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subsequent response to some extent. Therefore, it is criti-
cal to clarify the initial features of PCa, its developmental 
status, and subclonal evolution. Ge et al. [134] provided 
valuable insights by performing scRNA-seq for untreated 
PCa patients, revealing that non-hereditary developmen-
tal heterogeneity could overlay tumor subclonal evolu-
tion, and that transcriptional heterogeneity may also play 
a role in PCa progression and evolution, depending on 
the characteristics of mapping developmental states onto 
tumor subclonal evolution of scRNA-seq.

Therapeutic opportunities for PCa lie within the targets 
present in TME. Although immunotherapy has made 
great progress for multiple cancer types, its effectiveness 
in PCa is limited [135–137], possibly due to the low infil-
tration of tumor-associated T lymphocytes into the TME 
[138]. Peng et al. [139] identified prostaglandin E2 recep-
tor 4 (PTGER4, also known as EP4) as a universal marker 
of T-cell exhaustion and immune microenvironment. 
Their research using scRNA-seq and pseudotime analy-
sis led to the development of a novel antagonist YY001, 
which combined with an anti-PD-1 antibody, effectively 
weakened immune inhibition, reversed resistance to 
immunotherapy, and resulted in long-term survival and 
significant tumor regression in PCa patients, particularly 
those with CRPC [139]. Additionally, TAM contributes 
to chemotherapy resistance in cancer cells. Decreas-
ing the number of TAMs has been shown to improve 
the effectiveness of docetaxel in CRPC patients [140]. 
Masetti et  al. [141] analyzed the transcriptional land-
scape of human PCa at a single-cell level and identified 
a specific subset of TAM associated with poor prognosis, 
as well as the characteristic dysregulation target of lipid 
metabolism “Marco”. Consequently, blocking “Marco” 
successfully inhibited tumor growth and invasion, and 
simultaneously improved the efficacy of chemotherapy 
in mouse models, providing a new strategy for clinical 
decision-making [141]. Dietary control may offer multi-
ple benefits for PCa patients, as lipid metabolism is also 
involved in the progression of CRPC. A recent proteom-
ics study using single-cell mass cytometry analysis and 
protein quantification of 1,600,000 cells suggested TAMs 
as potential therapeutic targets [142]. scRNA-seq analy-
sis has further revealed that CAFs are closely related to 
TME immunosuppression, highlighting their potential 
as targets for PCa immunotherapy [116]. Antiangiogenic 
agents represent another promising strategy for target-
ing TME. Recently, Heidegger et  al. [143] confirmed 
that C-X-C chemokine ligand 12 (CXCL12), a biomarker 
interfering with tumor angiogenesis in PCa, can be pro-
duced by specific cell types identified through bulk 
RNA-seq, scRNA-seq, and functional assays. Chen et al. 
[10] performed scRNA-seq on 13 samples from 12 PCa 
patients and found that active communication between 

activated endothelial cells promoted PCa invasion; they 
also provided evidence linking ectopic KLK3 expression 
to PCa micrometastasis at the single-cell level, provid-
ing support for the underlying therapeutic value of KLK3 
beyond its diagnostic role as a PSA expression product 
[10]. Therefore, the combination of scRNA-seq and other 
single-cell analysis technologies provides more therapeu-
tic possibilities for PCa patients from a TME perspective.

Furthermore, accurately identifying patients who 
exhibit a favorable response to treatment is of utmost 
importance. Taavitsainen et  al. [144] utilized scRNA-
seq to determine distinct cellular and transcriptional 
signatures, leading to the identification of two clusters 
“PROSGenesis” (derived from prostate cells after ADT 
treatment) and “Persist” (related to persistent cells dur-
ing enzalutamide resistance development). These clus-
ters were considered stratified molecular predictors of 
treatment response. Zhao et al. [111] on the other hand, 
employed PAM50 to classify PCa cells into two types 
and found that patients with luminal B tumors showed 
a poor prognosis but better response to postoperative 
ADT compared to those with non-luminal B tumors, 
suggesting the more accurate use of postoperative ADT. 
Furthermore, numerous novel drugs are being developed 
based on the specific signatures detected by scRNA-seq. 
For example, several HPN-targeting inhibitors have been 
designed to enhance PCa treatment [145, 146].

scRNA‑seq analysis is a powerful tool for predicting 
and monitoring PCa prognosis
The emergence of drug resistance with ADT and sec-
ond-generation AR antagonists poses a significant 
threat to patient survival. Previous studies have con-
firmed the reliability of scRNA-seq as a tool for gener-
ating resistance mechanisms and predicting prognosis. 
Firstly, single-cell data aids in unraveling the underly-
ing mechanisms of drug resistance. Linder et  al. [147] 
integrated single-cell multi-omics data (epigenom-
ics, genomics, transcriptomics, and proteomics) from 
PCa patients who were either untreated or treated 
with enzalutamide monotherapy for 3  months, iden-
tifying aryl hydrocarbon receptor nuclear transloca-
tor-like protein 1, a core component of the circadian 
rhythm, as a key gene driving enzalutamide-induced 
FOXA1 reprogramming and escape from AR block-
ade in PCs cells. Taavitsainen et  al. [144] utilized 
scATAC-seq and scRNA-seq to link chromatin struc-
ture changes induced by continuous enzalutamide 
exposure to transcriptional reprogramming in a pre-
clinical model of enzalutamide-resistant PCa. Tran-
scriptomic reprogramming has also been consistently 
observed in mouse models by scRNA-seq, potentially 
associated with ADT resistance and metastasis [96]. 



Page 13 of 20Feng et al. Military Medical Research           (2024) 11:21  

From a clinical perspective, scRNA-seq is an ideal 
strategy for detecting drug resistance. Schnepp et  al. 
[148] employed a combination of scRNA-seq and net-
work analysis to modulate the development of doc-
etaxel resistance and identify potential agents capable 
of disrupting the resistance networks. They confirmed 
that trichostatin A is an adjuvant that can disrupt doc-
etaxel resistance, thereby emphasizing the significance 
of analyzing resistance by network analysis on single-
cell transcriptomic data [148]. In addition, the subtype 
“aggressive variant PCa (AVPC)” was attributed to its 
drug resistance profile and poor prognosis due to the 
loss of some tumor suppressor genes [149, 150]. Using 
single-CTC genomic analysis, Malihi et al. [151] found 
a significant association between genomic instability 
in CTC and aggressiveness in advanced PCa, aiding 
in identifying potential AVPCs. Furthermore, scRNA-
seq of PCa CTCs revealed heterogeneity in signaling 
pathways that may lead to treatment failure. Miyamoto 
et al. [152] suggested that ectopic expression of Wnt5a 

attenuates the anti-proliferative effect caused by AR 
inhibitors. Other studies have also confirmed the pre-
dictive value of scRNA-seq for CTCs in PCa metasta-
sis [22, 153]. Barkley et al. [82] proposed a framework 
based on pan-cancer scRNA-seq data elucidating inter-
actions between PCa cell state and TME, supporting 
strategies targeting immune evasion, drug resistance, 
and metastasis. Using similar methods, Cao et al. [154] 
reported that measuring cell type-specific total mRNA 
expression can predict PCa phenotypes and clinical 
outcomes. Table  2 summarizes the clinical application 
studies utilizing scRNA-seq in PCa [10, 82, 96, 117, 
121, 126, 127, 133, 134, 139, 141, 143, 144, 148, 153].

In conclusion, the applications of scRNA-seq in pre-
clinical models or clinical samples have significantly 
influenced fundamental research and clinical decision-
making, including subsequent advancements in PCa 
research and the reclassification of PCa, prediction of 
treatment response, and precise selection of treatment 
strategies for PCa patients.

Table 2 Summary of studies about clinical applications of scRNA‑seq in PCa

PCa prostate cancer, scRNA-seq single-cell RNA sequencing, CRPC castration-resistant PCa, SCNC small cell neuroendocrine carcinoma, mCRPC metastatic CRPC, NEPC 
neuroendocrine PCa, PD-1 programmed cell death protein 1, TAM tumor-associated macrophage, aECs activated endothelial cells, TEC tumor endothelial cells, TF 
transcription factor, CTCs circulating tumor cells, MYC MYC proto-oncogene, AR androgen receptor

Author Technique Objective/Conclusion

Cheng et al. [126] scRNA‑seq CRPC‑like cells are present early in the development of PCa and are not exclusively the result 
of acquired evolutionary selection during androgen deprivation therapy. The lethal CRPC and SCNC 
phenotypes should be targeted earlier in the disease course of patients with PCa

Karthaus et al. [96] scRNA‑seq Prostate regeneration is driven by nearly all persisting luminal cells, not just by rare stem cells

He et al. [121] scRNA‑seq The transcriptional characterization of cancer and immune cells from human mCRPC provides a basis 
for the development of therapeutic approaches complementing androgen signaling inhibition

Wang et al. [133] scRNA‑seq Defining the complex expression profiles and advancing the understanding of the genetic and tran‑
scriptomic mechanisms leading to NEPC differentiation

Ge et al. [134] scRNA‑seq Analysis of subclonal and transcriptional heterogeneity and its implication for patient prognosis

Peng et al. [139] scRNA‑seq Identifying EP4 as a specific target for PCa immunotherapy and demonstrating that YY001 inhibited 
the growth of prostate tumors by regulating the immune microenvironment and strongly synergized 
with anti‑PD‑1 antibodies to convert completely unresponsive PCa into responsive cancers, resulting 
in marked tumor regression, long‑term survival, and lasting immunologic memory

Masetti et al. [141] scRNA‑seq Identifying a specific TAM subset associated with poor prognosis and recognizing the characteristic 
transcriptional dysregulation target of lipid metabolism “Marco”

Heidegger et al. [143] scRNA‑seq Identifying novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target 
to interfere with tumor angiogenesis in PCa

Chen et al. [10] scRNA‑seq aECs are enriched in CRPC and promote cancer cell invasion

Schnepp et al. [148] scRNA‑seq A shared TF activity network drives docetaxel resistance in PCa

Lohr et al. [153] scRNA‑seq An integrated process to isolate, qualify, and sequence whole exomes of CTCs with high fidelity using 
a census‑based sequencing strategy

Barkley et al. [82] scRNA‑seq;
Spatial transcriptomics

Providing a framework for studying how cancer cell states interact with the tumor microenvironment 
to form organized systems capable of immune evasion, drug resistance, and metastasis

Taavitsainen et al. [144] scRNA‑seq;
scATAC‑seq

Defining changes in chromatin and gene expression in single‑cell populations from pre‑clinical mod‑
els can reveal unrecognized molecular predictors of treatment response

Qiu et al. [127] scRNA‑seq;
ChIP‑seq

MYC overexpression antagonizes the canonical AR transcriptional program and contributes to pros‑
tate tumor initiation and progression by disrupting transcriptional pause release at AR‑regulated 
genes

Rivello et al. [117] MA‑Chip;
scRNA‑seq

Single‑cell extracellular pH measurement for the detection and isolation of highly metabolically active 
cells (hm‑cells) from the tumor microenvironment
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Applications of other single‑cell technologies 
in prostate cancer
In addition to scRNA-seq analysis, other single-cell tech-
nologies hold immense potential for exploring the fun-
damental and clinical applications of PCa. For example, 
multiple immunofluorescence single-cell spatial imag-
ing and gene expression profiling can help distinguish 
PCa tissues and achieve precise diagnosis [16]. Moreo-
ver, a recent study by Champagne et  al. [155] proposed 
an innovative bioluminescence microscopy approach to 
explore and evaluate the response to AR-axis-targeted 
therapy at the single-cell level, demonstrating the sen-
sitivity of the cell population. Live single-cell imaging 
phenotypes and other assays for quantifying single-cell 
populations may also be used to develop therapeutic 
responses and determine optimal treatment plans for 
different PCa cells. For example, future studies should 
confirm that LNCap-like cells are sensitive to ADT treat-
ment, whereas C4-2-like cells respond better when ADT 
is combined with docetaxel, suggesting proper therapeu-
tic strategy. Effective models using single-cell data and 
drug response information not only enhance machine 
learning capabilities in predicting cellular drug therapy 
outcomes but also significantly contribute to drug dis-
covery for specific cancer subgroups and treatments 
[156]. Molecular probes are another technique applicable 
at the single-cell level in PCa and hold great promise in 
the early diagnosis of aggressive PCa and treatment pro-
cesses. The near-infrared probe developed by Osada et al. 
[157] combines drugs with heat shock protein 90 (HSP90, 
a small molecule known for its ability to induce growth 
and invasion of PCa [158]), resulting in the formation 
of a novel probe called “HS196”. Subsequent scRNA-seq 
analysis showed that HS196 was taken up by malignant 
epithelium in the human prostate, indicating its potential 
utility in diagnosing PCa and detecting different subtypes 
[158]. Moreover, a recently reported probe named “semi-
conducting polymer nanoparticles of 2-[3-(1,3-dicarbo-
xypropyl) ureido] pentanedioic acid (DUPA)-conjugated 
ligand and bis-isoindigo-based polymer (BTII) (BTII-
DUPA SPN)” [19], has been validated for the early detec-
tion of PCa [159, 160]. Additionally, owing to the unique 
anatomical position of the prostate, urine could serve 
as an innovative, noninvasive, and convenient method 
for collecting PCa cells to detect potential therapeutic 
responses. Single-cell proteomics also plays a crucial role 
in precision medicine for PCa. Karabacak et al. [161] used 
a single-cell proteomics-based single-cell mass cytometry 
analysis technology to detect the kinase activity of PTEN-
deficient PCa xenograft models and found changes in 
tumor cell kinase activity as well as drug sensitivity at 
different sites. It has also been reported that activation 
of the kinase network induced by microenvironment or 

cellular states can contribute to heterogeneity and drug 
sensitivity across different metastatic sites and PCa pop-
ulations. The selection of the optimal treatment strat-
egy for patients with metastatic PCa should prioritize 
combination therapy and precise dosages to address all 
therapeutic vulnerabilities of PCa cells, whether primary 
or metastatic, in different tissues and organs. In addi-
tion, the label-free droplet-based microfluidic approach 
known as single-cell MA-Chip can predict poor progno-
sis and therapeutic responses by measuring the extracel-
lular pH and high metabolic state of a single cell [117]. 
Furthermore, single-cell analysis is helpful in surgical 
operations. With the assistance of transient absorption 
microscopy and photoacoustic tomography, the BTII-
DUPA SPN has great potential for determining precise 
surgical margins [19], similar to those achieved by the 
HS196 probe. Due to its rapid absorption by malignant 
cells and prolonged retention time, HS196 enables rou-
tine detection of PCa as well as intraoperative detection 
[157]. Remarkably, photodynamic therapy has made 
remarkable advancements in ablating PCa through tar-
geted laser application at specific wavelengths following 
systemic administration of a photosensitizer [162, 163]. 
Thus, substituting the near-infrared molecules in HS196 
with photosensitive molecules may provide a more pre-
cise treatment approach for PCa, especially for lesions 
with a high malignant risk. Furthermore, the develop-
ment of therapeutic drug molecules that bind HSP90 will 
pave the way for more precise treatments. Physical inter-
action cell sequencing (PIC-seq) is a novel technique that 
combines cell sorting of PICs with scRNA-seq using gen-
tle tissue dissociation methods to preserve cell aggregate 
structure in the tissues [164]. Compared to scRNA-seq, 
PIC-seq can directly study functional communication 
between cells involved in physical interactions. This 
approach better reveals the tumor microenvironment 
heterogeneity while accurately capturing cell clusters 
engaged in physical interactions [164, 165]. Although the 
technology has not yet been widely available, its great 
potential in cancer research suggests that PIC-seq may 
provide novel insights into basic and clinical investigates, 
thereby facilitating the advancement of precision treat-
ment for PCa treatment.

Conclusions
Due to the scarcity of genome-wide lineages associated 
with PCa, single-cell analysis and related techniques 
are increasingly indispensable tools for studying can-
cer initiation, progression, therapy response, and drug 
resistance. Despite facing challenges such as low RNA 
input, amplification bias, batch effect, noise during 
library preparation and data analysis in scRNA-seq 
for PCa research, as well as specific issues related to 



Page 15 of 20Feng et al. Military Medical Research           (2024) 11:21  

precise sampling of prostates, scRNA-seq provides 
novel insights for scientific research and clinical man-
agement. This technology allows for a more detailed 
understanding of the disease at an individual patient 

level by tailoring treatment based on each patient’s 
unique genetic profile. Such personalized treatment 
approaches can significantly enhance therapeutic effi-
cacy while reducing side effects. Moreover, scRNA-seq 

Fig. 4 Summary of the contents in this review. a scRNA‑seq and spatial transcriptome sequencing. b scRNA‑seq analysis in PCa research, 
containing human and mouse PCa models, which can help researchers explore the heterogeneity of the tumor microenvironment. c scRNA‑seq 
analysis in PCa for clinical diagnosis. Detection of CTCs and ctDNA is a non‑invasive method for tumor assessment. There are genes significantly 
expressed in EpCAM‑negative cells in the blood, such as AR, erythroblast transformation‑specific (ETS)‑related gene, HOXB2, KLK3, and PCA3, 
helping in identifying either EpCAM‑negative CTCs or EpCAM‑negative circulating stromal cells. d scRNA‑seq analysis in PCa for clinical treatment 
and anti‑resistance strategies. HDPC is normally the initial stage of PCa. This type relies on the presence of androgens to grow. Androgen 
deprivation therapy is a common treatment, including ENZ, ABI and so on. However, over time, some HDPC may develop resistance to hormone 
therapy and progress to a more aggressive form known as CRPC. In this process, scRNA‑seq revealed the presence of highly adaptive CRPC‑like cells 
in the early stages of PCa. These cells continuous to clone and amplify throughout the disease progression. The markers of CRPC‑like cells include 
TOP2A, NUSAP1, PHGR1 and so on. In addition, combining scRNA‑seq with other techniques such as ChIP‑seq, several important transcription 
factors have been found to be involved in the progression of drug resistance in PCa, such as AP1, c‑Myc and ARNTL. NEPC is a rare and aggressive 
subtype usually occurring in later stages. NEPC is often associated with resistance to standard treatments for PCa. Treatment options are limited, 
and prognosis is poor. Through scRNA‑seq, some important genes and pathways such as HOXB5, HOXB6, NR1D2 and TGF pathway being identified, 
which can potentially serve as effective therapeutic targets for subsequent research in mCRPC and NEPC. e Other single‑cell analysis in PCa, 
including single cell metabolism analysis, multiple immunofluorescence single‑cell sptial imaging, molecular probe, single‑cell proteome and so on. 
scRNA‑seq single‑cell RNA sequencing, PCa prostate cancer, CTCs circulating tumor cells, ctDNA circulating tumor DNA, EpCAM epithelial cell 
adhesion molecule, CSTCS circulating stromal cells, AR androgen receptor, HOXB2 Homeobox B2, ERG erythroblast transformation‑specific 
(ETS)‑related gene, KLK3 kallikrein‑3, PCA3 prostate cancer associated 3, CRPC castration‑resistant prostate cancer, HDPC hormone dependent 
prostate cancer, ENZ enzalutamide, ABI Abiraterone, NEPC neuroendocrine prostate cancer, mCRPC metastatic castration‑resistant prostate cancer, 
AVPC aggressive‑variant prostate cancer, TOP2A DNA topoisomerase II alpha, NUSAP1 nucleolar and spindle associated protein 1, PHGR1 proline, 
histidine and glycine rich 1, ChIP‑seq chromatin immunoprecipitation followed by sequencing, AP1 activator protein 1, c‑Myc myelocytomatosis 
oncogene, ARNTL aryl hydrocarbon receptor nuclear translocator like, HOXB5 homeobox B5, HOXB6 homeobox B6, NR1D2 nuclear receptor 
subfamily 1 group D member 2, TGF transforming growth factor
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accurately diagnoses PCa by detecting specific molec-
ular markers on the surface of single cells, identifying 
therapeutic targets and drug resistance mechanisms 
specifically relevant to this disease, thereby promot-
ing the development of new therapeutic drugs. Inte-
grating multiple-omics analyses with scRNA-seq and 
other single-cell techniques can address challenges 
beyond the scope of scRNA-seq alone. These include 
determining precise surgical margins, identifying drug 
resistance mechanisms in CRPC, discovering optimal 
treatments, and providing insights into immunothera-
peutic strategies for PCa. Over time, advancements 
in single-cell data and technologies will contribute 
significantly to personalized medicine through novel 
combinations with spatiotemporal transcriptomics. 
Therefore, it is critical to integrate single-cell data 
from various models and laboratories to establish cell 
maps specific to PCa so that single-cell analysis can 
be better applied to basic research settings while aid-
ing clinical decision-making processes. Ethically, these 
technologies involve the handling of sensitive genetic 
information and therefore give rise to privacy con-
cerns. Equitable access to these advanced treatments 
is also an issue because they may be expensive and 
not accessible to all social classes. The primary chal-
lenge in this rapidly evolving field is to strike a bal-
ance between the benefits of these technologies and 
ethical considerations while ensuring fair access. In 
terms of data sharing, single-cell data holds immense 
value for research but also raises concerns about pri-
vacy and consent. Sharing such detailed biological data 
requires robust frameworks that guarantee secure and 
ethical utilization of the data while maintaining a bal-
ance between scientific progress and individual rights. 
With the establishment of multiple scRNA-seq plat-
forms and technological innovations, lower costs have 
expanded the market for scRNA-seq applications. The 
focus of future research lies in combining scRNA-
seq with various sequencing methods (such as spatial 
transcriptomics, ACAT-seq, and ChIP-seq) to explore 
the pathogenesis, development, and diverse biologi-
cal processes of PCa at a deeper level. Furthermore, 
by integrating single-cell technologies with emerging 
tools, insights into biological complexity at an unprec-
edented resolution are made possible. These tech-
nologies enable studying cellular heterogeneity and 
comprehending the behavior of individual cells within 
a complex tissue or organism. Advanced computa-
tional methods along with artificial intelligence are 
increasingly being integrated to manage and interpret 
vast amounts of generated data effectively. Innovations 
like high-throughput screening and CRISPR gene edit-
ing are being adopted for single-cell analysis, allowing 

for more precise genomic editing as well as functional 
studies at the single-cell level. The integration of 
single-cell technologies with emerging tools is revo-
lutionizing the field of biomedical research, thereby 
expanding our understanding of disease mechanisms, 
and paving the way for breakthroughs in personalized 
medicine.

In summary, in this review, we first discussed recent 
advancements in single-cell and spatial transcriptom-
ics, focusing on the integration of single-cell and spa-
tiotemporal transcriptomics. Then we focused on the 
application of scRNA-seq in PCa research. We outlined 
the differences between mouse and human prostate 
cancer revealed by scRNA-seq studies and discussed 
the application of multi-omics methods involving 
scRNA-seq to identify molecular targets for diagnosis, 
treatment, and drug resistance in prostate cancer. At 
last, we explored the potential of other single-cell tech-
nologies in developing immunotherapy and other inno-
vative treatment strategies for CRPC, as well as their 
broader clinical applications in precision medicine. We 
summarized the main contents of this review in Fig. 4.
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