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Abstract 

Artificial intelligence (AI), a branch of machine learning (ML) has been increasingly employed in the research of 
trauma in various aspects. Hemorrhage is the most common cause of trauma-related death. To better elucidate the 
current role of AI and contribute to future development of ML in trauma care, we conducted a review focused on 
the use of ML in the diagnosis or treatment strategy of traumatic hemorrhage. A literature search was carried out on 
PubMed and Google scholar. Titles and abstracts were screened and, if deemed appropriate, the full articles were 
reviewed. We included 89 studies in the review. These studies could be grouped into five areas: (1) prediction of 
outcomes; (2) risk assessment and injury severity for triage; (3) prediction of transfusions; (4) detection of hemorrhage; 
and (5) prediction of coagulopathy. Performance analysis of ML in comparison with current standards for trauma 
care showed that most studies demonstrated the benefits of ML models. However, most studies were retrospective, 
focused on prediction of mortality, and development of patient outcome scoring systems. Few studies performed 
model assessment via test datasets obtained from different sources. Prediction models for transfusions and coagu-
lopathy have been developed, but none is in widespread use. AI-enabled ML-driven technology is becoming integral 
part of the whole course of trauma care. Comparison and application of ML algorithms using different datasets from 
initial training, testing and validation in prospective and randomized controlled trials are warranted for provision of 
decision support for individualized patient care as far forward as possible.

Keywords Artificial intelligence, Hemorrhage, Machine learning, Trauma, Injury

Background
Trauma is a major global public health issue, causing 
nearly 6  million deaths worldwide each year [1]. Even 
with significant advances in trauma care, especially 
through a comprehensive damage control strategy, trau-
matic injury remains the leading cause of death world-
wide in people aged 18–39 years. Most of these deaths 

are represented by hemorrhage with one-half of them 
happening in the pre-hospital setting [2, 3]. Uncontrolled 
hemorrhage complicated by trauma-induced coagulopa-
thy is also the major cause of death on the battlefield [4, 
5]. Moreover, multi-domain operations are expected in 
foreseeable combat, where prolonged field care becomes 
more frequent when air superiority is yet to be assured 
[6]. Future combat operations anticipate delayed evacua-
tion, prolonged and more complex field care, and poten-
tial for clinical complications.

In the past few years, artificial intelligence (AI) has 
drawn tremendous attention for its potentials for utility 
in every facet of human activities including health care 
[7]. AI is primarily a computer science concept where a 
computer system simulates human intelligence, including 
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speech recognition, predictive modeling, and problem 
solving [8].

Machine learning (ML), considered  the primary means 
to achieve AI, is to provide statistical/modelling rules to a 
computer system for it to gain information from data (i.e., 
learn), without explicit human programming. ML has 
been increasingly used for data analyses (e.g., learning to 
explain processes), and gain additional knowledge from 
data (e.g., prediction of outcomes). The ML approaches 
have recently gained popularity in medicine because of 
their ability to improve modelling algorithms autono-
mously. In particular, ML has shown promising results 
in medical services and medical emergencies, positively 
impacting areas including pre-hospital care and disease 
screening, clinical decisions, and mobile health [9].

AI has already been used in research and clinical set-
tings, with extensive research going into the use of AI 
and ML for cancer diagnosis and therapy, or for use in 
precision medicine and/or drug discovery [10–12]. 
A body of review articles have recently emerged that 
showcase the use of AI in trauma/emergency care. For 
example, the potential of AI on the prediction of trauma 
volume or acuity irrespective of the center capacity has 
been observed, creating room for optimized resource 
allocation and improved patient care [13]. Similarly, AI-
enabled precision medicine in trauma has been reviewed 
[14]. The framework for AI research in combat casualty 
care has also been developed [15]. However, the topic on 
ML for hemorrhagic trauma care has not been compre-
hensively reviewed.

Given the capability of ML in extracting important 
features from large multidimensional data sets predict-
ing real-life outcomes, it is often seen as having signifi-
cant potential in the field of trauma when it comes to 
improving access and quality of care, across different 
regional trauma systems and within a local trauma envi-
ronment [16]. Trauma incorporates numerous factors 
in many forms affecting different organs, and their con-
sequence could be related to the individual’s physiologi-
cal attributes (e.g., age, fragility, premedical conditions) 
[17]. These factors translate into substantial quantity of 
data features, leading to high dimensional data. As such, 
if only with traditional mathematical modelling methods, 
quantifying its effects on individuals is challenging.

Therefore, to better elucidate the current role of AI in 
trauma care and contribute to the future development of 
ML, we conducted a literature review on AI with a focus 
on ML for the management of traumatic hemorrhage. 
The paper aims to review the advancements and new 
approaches that are being implemented in assessment 
of risk given a severe injury, prediction and/or resource 
allocation for transfusion, hemorrhaging and coagu-
lopathy and prediction of patient disposition following 

hospital arrival. These advancements could be useful in 
the development of AI solutions that will provide expe-
ditious decision-making for front line staff providers in 
urgent care in the said areas. To achieve this, we aimed 
to provide an overarching narrative of AI and its use in 
addressing patient care in various facets of trauma care.

Search strategy, selection and inclusion criteria
A search in PubMed (January 1, 1946–January 14, 2022) 
and in Google scholar (first 100 hits) were carried out 
restricting to English-language articles using the fol-
lowing keywords: “artificial intelligence” or “machine 
learning” and “trauma*” in combination with one of 
the following: “bleeding”, “care”, “coagulopathy”, “hem-
orrhage” or “haemorrhage”, “mortality”, “military”, 
“outcome”, “resuscitation”, “shock”, “soldiers”, “triage”, 
“transfusion” as well as using the combinations of “arti-
ficial intelligence” or “machine learning” and “combat 
casualty care”. A full search strategy and combination 
of keywords used can be viewed in Additional file  1: 
Table S1.

Titles and abstracts were screened independently to 
determine relevance and, if deemed appropriate, the 
full article was reviewed. Additional publications were 
selected from the cross-references listed in the included 
original papers and from the cited articles. Disagree-
ments were resolved by consensus or with another review 
author. The same strategy was used for data extraction 
and analyses as described later. The screening, full text 
review, and extraction were conducted online using Cov-
idence (Veritas Health Innovation Ltd., Melbourne, VIC, 
Australia) [18].

Studies were eligible if they examined AI/ML for the 
prediction, management, and treatment requirements 
of traumatic hemorrhage. The review focused on human 
studies conducted in trauma patients with severe bleed-
ing. It should be noted that animal models play important 
roles in traumatic hemorrhage and resuscitation research 
[19, 20] and AI/ML techniques have been applied in ani-
mal models of hemorrhage [21–23], which deserves fur-
ther investigation. Studies in burns were excluded given a 
recent review on this topic [24]. We also excluded studies 
in other types of injuries if patients did not present with 
severe bleeding. Review articles were excluded unless 
they were focused on or directly related to hemorrhagic 
trauma. Papers related to AI in trauma surveillance, sys-
tems optimization, education, and training were also 
excluded.

Data were abstracted from all studies using a stand-
ardized form consisting of article title, authors, year, 
study aims/objectives (prediction of trauma outcomes, 
risk assessment and injury severity, prediction of coag-
ulopathy, detection of hemorrhage, and transfusion 
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requirements), study design (retrospective or prospec-
tive observational cohort or case-control studies), study 
population (size, database, inclusion and exclusion crite-
ria), model development including methodology, relevant 
features, various algorithms, model performance and 
validation. In addition, the frequencies of ML algorithms, 
features, databases, and sample sizes were summarized. 
We also conducted comparisons of performance between 
different ML-assisted trauma care and standard of care 
within and across different studies for further insight 
into validation approaches and future work. The overall 
benefits and limitations of ML on trauma care were also 
discussed.

Different metrics have been used to measure the per-
formance of ML algorithms. We used area under receiver 
operating characteristic (AUROC) curve, accuracy, pre-
cision (positive predictive values), sensitivity, specific-
ity and F-value as extracted from the original studies 
for comparative analyses. The AUROC has been defined 
and used to compare prediction performance of ML-
based models for various applications. A model with an 
AUROC of 1.0 is a perfect discriminator and is an indica-
tor that a model is able to perfectly distinguish between 
all the positive and the negative class points correctly. 
Furthermore, 0.90–0.99 is considered excellent, 0.80–
0.89 is good, 0.70–0.79 is fair, and 0.51–0.69 is consid-
ered poor/not statistically significant [25].

Application of ML algorithms for hemorrhagic 
trauma
The last decade has seen huge leaps in computation per-
formance and accessibility of ML methodology, along 
with access to growing digitalized information and data-
sets. This review highlighted an increasing interest in the 
application of ML to various trauma research settings. 
Since AI in trauma care is still an emerging field, inclusion 
categories of references synonymous with this topic aim 
to provide a thorough understanding of current research 
in this field. Studies classified under risk assessment and 
trauma outcome are the two largest categories of studies 
included in this study and involve the use of datasets sim-
ilar to the other categories. The understanding of models 
developed in these studies may provide insight into the 
multi-faceted applications that these similar datasets may 
offer in different objectives. The ML models included in 
the review have demonstrated capability through achiev-
ing high performance, which may translate in their use 
for diagnosing, predicting, and prognosticating in severe 
bleeding injured trauma patients. In addition, the mod-
els could play a significant role in evaluating the quality 
of care delivered by healthcare systems, optimize vital 

resource management in hospitals and remote settings, 
and offer decision-support tools to ensure efficient care.

For this review, a total of 1827 studies were imported 
through the search from the two databases (Fig. 1). Ini-
tial title and abstract screening yielded 187 studies, and 
once fully reviewed in terms of the inclusion criteria, 89 
studies were included, with their content analysed and 
discussed. Thirty-seven studies were excluded as they did 
not involve patients who suffered hemorrhagic trauma, 
27 fell under the study exclusion criteria (study popula-
tion that included patients with burns, musculoskeletal 
injuries, pulmonary injuries, wound infections, in  vitro 
and animal studies/models, papers concerning surveys, 
opinions, ethics and policy of AI for traumatic health 
care), 13 did not use an ML approach, and 21 studies 
were excluded for other reasons (full text article unavail-
able, animal studies, review papers, additional duplicates 
found along data extraction).

Henceforth,  categories were identified through lit-
erature. This classification subjected various study top-
ics into following general categories, with priority focus 
on the application of ML algorithms for hemorrhagic 
trauma: (1) outcome prediction (mostly discharge/mor-
tality); (2) risk assessment and injury severity for triaging; 
(3) prediction for transfusion and/or transfusion require-
ments; (4) detection of hemorrhage; (5) prediction of 
coagulopathy. The category identified more frequently 
was prediction of the outcome of trauma (n = 45), fol-
lowed by risk assessment and injury severity for triag-
ing (n = 18), transfusion prediction (n = 11), detection of 
hemorrhage (n = 11), and finally prediction of coagulopa-
thy (n = 4). Additionally, a review surveying the various 
ML algorithms in trauma [26]. A summary of some of 
these results can be found in Table  1, while a full sum-
mary of the study design, ML models utilized, and per-
formance of the models of all the studies included in this 
review is presented in Additional file 1: Table S2.

Further analysis reflects an overwhelming portion of 
retrospective studies (n = 72), which utilized data from 
various hospital and trauma databases to develop and 
train ML algorithms. With the use of structured data 
(patient demographic, physiological and laboratory data, 
injury/trauma scores, and other information relating to 
the trauma), the models can be trained, tested and vali-
dated accordingly. Unstructured data used in the papers 
is comprised of neuroimaging data pertaining to Com-
puted Tomography (CT) and Focused Assessment with 
Sonography for Trauma (FAST) scans for hemorrhage 
detection, or to assess the trauma severity [53, 56, 57, 59, 
60]. The studies are summarized in detail under each cat-
egory below.

The majority of the studies that fell in the outcome 
prediction category were designed to predict in-hospital 
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mortality, survival, and/or comorbidities due to the hem-
orrhagic trauma. Five study designs predicted mortal-
ity at specified time points after patient admission such 
as within 24  h, 7 d, 1 month or 1 year [27–29, 61, 62]. 
All included studies reported increased discrimina-
tion when using ML models to determine those patients 
who survived from those that did not. Alternatively, the 
main focus of the studies categorized under risk assess-
ment and injury severity was to develop and assess the 
severity of a person’s injury and assess their need of care 

over other patients. Studies on transfusion focused on 
predicting the need for transfusion/MT (n = 9), while a 
few predicted specific needs for resuscitation on arrival. 
Detection of hemorrhage in trauma patients were con-
ducted either using clinical variables or imaging scans. 
Moreover, multiple studies also investigated the possi-
bility of detecting hemorrhages in patients using imag-
ing data [FAST, non-contrast CT (NCCT), CT scans]. 
These studies can be divided into those that investigated 
and developed algorithms for intracranial hemorrhage 

Fig. 1 Flow chart of study selection
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detection and those for hemorrhage detection in pelvic 
trauma patients.

ML model development and performance metrics
With consideration of the various study groupings, the 
models developed in the included studies were network, 
regression, tree, and kernel-based (Table  2). Based on 
the literature search, regression-based models were used 
most frequently (n = 32), followed by network-based 
(n = 31), tree-based (n = 29), and kernel-based (n = 14). 
Additionally, logistic regression (LR) models were most 
commonly used, either as a comparison or for use as a 
feature reduction method, such as penalized LR models 
(least absolute shrinkage and selection operator, Ridge, 
and ElasticNet regression), Cox regression, Poisson 
regression, and Stepwise regression. Studies that used 
network-based models, mainly implemented a variety 
of feed-forward neural network (NN) methods such as 
artificial neural network (ANN), deep neural network 
(DNN), and multi-layer perceptron (a subset of DNNs). 
Finally, for tree-based models, various random forest 
(RF) and decision tree (DT) methods were implemented.

Studies from the five categories showcased similar 
model selection for their respective outcomes. The stud-
ies aimed at trauma outcome mostly used a network-
based algorithm, specifically DNN, for predicting the 
outcome of a patient following a traumatic incident. 
Alternatively, risk assessment, transfusion and coagu-
lopathy prediction all found tree-based models with 
common usage. Due to the lack of included studies for 
hemorrhage detection, prediction of transfusion and 
coagulopathy, a discernable common model cannot be 
directly stated.

In general, a similar recipe was used for model devel-
opment. This process involved collecting either retro-
spective data through a database/hospital record, or 
prospectively through a trial, after which the features 
were selected through various optimization methods. For 
majority of the cases, the data were split into a training 
and testing set for cross-validation, and hyper-parameter 
tuning was conducted to find the best performing model, 
and its performance metrics were calculated. Overall, all 
of the models provided a significant improvement in the 
goal of their study, by either developing a model that out-
performed a scoring standard or another previous model, 
or provided an efficient decision-making tool in quick-
assessment cases such as triaging or forecasting the need 
for specific interventions to ensure patient survival.

A large population of the model development studies 
(n = 66) conducted validation of ML models. Resampling 
methods, such as holdout methods (testing-training 
split) and k-fold cross validation were the most frequently 
used. Eighteen studies did not provide any information 

on any validation performed on the model. Twelve stud-
ies utilized a secondary cohort from a different database 
as a testing set for the models [45, 57, 58, 61, 68, 73, 88, 
90, 93, 96, 110, 115]. Finally, out of the included studies, 
four studies performed an external validation on a previ-
ously developed ML model [31, 47, 61, 115].

To evaluate the performance of the developed model, 
various metrics were utilized across the studies. The 
most common metric was the AUROC curve followed 
by accuracy, sensitivity, and specificity. Model perfor-
mance metrics varied depending on the outcome being 
predicted, ML method used and the prediction window. 
Some studies developed additional models and/or used 
trauma/injury scoring standards to compare and evaluate 
the performance of the developed algorithm [27, 28, 30, 
34, 36, 37, 41, 61, 65, 67, 71, 73, 75–77, 80, 83, 85, 88–90, 
93, 108, 113].

Dataset collection
Data for developing the ML algorithms were collected via 
three main methods: (1) trauma databases, (2) Hospital 
record and (3) prospectively in a lab/simulation setting. 
Fifty of the included studies used de-identified trauma 
patient data from various local and globally available 
databases. The most common database was the National 
Trauma Data Bank (NTDB), the largest aggregation of 
U.S. trauma data. Other databases such as the Trauma 
Audit and Research Network, American College of Sur-
geons Trauma Quality Improvement Program were simi-
larly utilized for data collection in model training. This 
data was then filtered using inclusion and exclusion crite-
ria, and the features were selected based on the purpose 
of the study. For example, Tsiklidis et  al. [35] obtained 
data from the NTDB to develop an ML classifier for pre-
dicting survival probabilities. Demographic data (age, 
gender, alcohol use, and comorbidities) and physiological 
data [heart rate (HR), respiratory rate (RR), systolic blood 
pressure (SBP), and diastolic blood pressure (DBP), etc.] 
were extracted from the database and missing data or 
improper data were excluded. Permutation importance 
method was used for evaluating which features were sig-
nificant for predicting the outcome, and reduced the fea-
tures used from 32 to 8.

Furthermore, 35 studies also utilized data from 
regional/local hospitals. As a result, there may be fewer 
patient data available for development, and in most cases, 
these studies excluded any dataset with missing variables, 
which consequently reduced the sample size. Finally, four 
prospective studies used lab data from selected subjects. 
For example, Rickards et  al. [52] conducted a study on 
the use ML algorithms to track changes in Shock Vol-
ume, through progressive low body negative pressure 
and exercise. Twenty-four volunteer subjects who were 
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Table 2 Different algorithms used in trauma study topics

ANN artificial neural network, BBN bayesian belief network, BN bayesian network, BRI bleeding risk index, CART  classification and regression tree, CRI critical reserve 
index, DNN deep neural network, DT decision tree, ER evidential reasoning, FIS fuzzy inference system, LDA linear discriminant analysis, LR logistic regression, MASH 
military acute severe haemorrhage, MGAP Mechanism, Glasgow coma scale, Age, and Arterial Pressure, MLP multi-layer perceptron, MLR multi-linear regression, NB 
Naïve bayes, NLP natural language processing, NN neural network, OCT octree method, RAM risk assessment model, RBFN radial basis function network, RF random 
forest, RSNNS stuttgart neural network simulator, SMO sequential minimal optimization, SVM support vector machines, TOP trauma outcome predictor, TSM trauma 
severity model, UKTRISS United Kingdom Trauma and Injury Severity Score

Study topic Category Method in search References

Different outcomes in trauma Regression LR [34, 37, 41, 62–72]

Network DNN, ANN, MLP, RBFN, Predictive Hierar-
chical Network, Polynomial NN, RSNNS

[27, 36, 37, 41, 63–68, 70, 71, 73–80]

Tree CART, DT, RF, Recursive Partitioning Algo-
rithm, OCT, Bayesian DT, unpruned C4.5 
tree (J48), Archetypal DT

[27, 29, 30, 37, 41, 63, 67, 68, 70, 72, 
81–85]

Kernel SVM, SMO, Polynomial Kernel, SVM Radial [29, 37, 63, 66, 71, 72, 81]

Ensemble SuperLearner [86]

Boosting XGBoost, Gradient Boost [32–35]

Other LDA, ER, FIS, Inference methodology [27, 28, 63, 66, 72, 81, 87]

Bayesian GNB, NB, BBN [27, 37, 69, 72, 82, 84, 88, 89]

Unmentioned/commercial ML algorithm, 
novel scoring systems

Deep-FLAIM, UKTRISS, TOP, 4TDS, EDI [27, 31, 36, 61, 90, 91]

Classification KNN, Maximum a Posteriori [27, 37, 72, 84]

Risk assessment Regression LR, MLR [39, 40, 42, 92–96]

Network ANN, MLP, DNN, Dirichlet DNN [38, 40, 42, 44, 93, 97, 98]

Tree RF, DT, Boosted Tree [40, 42, 43, 92, 95, 96, 98, 99]

Kernel SVM, SVMR [39, 95, 97, 99]

Bayesian BBN, NB [96, 98]

Boosting XGBoost, Adaboost [94, 97, 98, 100]

Ensemble Bagging [97]

Other Generalized Linear Model, LDA [99, 101]

Classification KNN [97]

Unmentioned/commercial ML algorithm, 
novel scoring systems

CRI, MGAP [45, 102]

Transfusion Network NN [49, 60, 103]

Kernel SVM [49]

Boosting XGBoost [48, 49]

Tree Classification and regression tree, Recur-
sive partitioning analysis

[48, 49, 104, 105]

Regression Logistic regression [48, 49, 106]

Unmentioned ML algorithm, commercial 
ML software, novel scoring systems

CRI, MASH, BRI [47, 52, 107, 108]

Hemorrhage detection Network Multi-scale attentional network [59]

Ensemble Ensemble classifier [109]

Regression Poisson regression [110]

Kernel SVM [56]

Unmentioned/commercial ML algorithm, 
novel scoring systems

BRI [111]

Other Linear/non-linear density model, NLP 
Linear Classifier

[51, 53, 112]

Coagulopathy Regression LR [113]

Tree DT, RF [58, 113, 114]

Bayesian BN [57]

Unmentioned/commercial ML algorithm, 
novel scoring systems

Caprini RAM [113]
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normotensive, nonsmoking, and not pregnant were 
selected for the study. A major drawback with prospec-
tive studies in such cases is the low population set, result-
ing in a model lacking in variance, especially if the data is 
unbalanced. Furthermore, it also prevents a proper test-
ing set, which makes it more prone to over-fitting to the 
training dataset.

Study populations in each of the included studies varied 
significantly. The lowest retrospectively used population 
set was 70 subjects by Chapman et al. [114] who collected 
rapid-thromboelastography tracings from blood samples 
of end-stage renal disease patients (n = 54) and trauma 
patients requiring a MT (n = 16) between May 2012 
through April 2013. The highest population sample using 
2007–2014 NTDB data was 2,007,485 in a retrospective 
study by Cardosi et al. [32, 114]. In the prospective stud-
ies, these values were even lower, with a sample size of 
24 in the aforementioned prospective study by Rickards 
et  al. [52] collected through human trials. In total, 30 

studies used a population under 1000, 26 studied had a 
population between 1001 and 10,000 and 31 studies used 
a population over 10,000 patients [52].

Feature frequency
Several commonly collected variables for ML training 
were identified, and could be divided into demographic, 
physiological, and additional data (Fig.  2). Common 
demographic data included age, sex, ethnicity, hospital/
Intensive Care Unit (ICU) stay duration and whether 
the patient suffered any comorbidities (e.g., alcohol use, 
smoking, any cardiovascular diseases, any hereditary 
diseases, any current conditions). Physiological vari-
ables include physiological or laboratory data such as 
HR, SBP, DBP, RR, temperature, blood volume, elec-
trocardiography, oxygen saturation  (SpO2). Finally, 
other relevant variables pertaining to the outcome of 
the study such as the injury location, type of injury, 
and common injury assessment scoring systems [e.g., 

Fig. 2 Frequency of features in included studies. HR heart rate, RR respiratory rate,  SpO2 saturation of oxygen, SBP systolic blood pressure, DBP 
diastolic blood pressure, ECG, electrocardiography, RBC red blood cells, MAP mean arterial pressure, GCS Glasgow Coma Score, ISS injury severity 
score, SI shock index, AIS abbreviated injury scale
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Glasgow Coma Score (GCS) and shock index], units of 
red blood cells (RBC) and white blood cells, fresh fro-
zen plasma (FFP), and platelets were also included.

Based on complete analysis, age, systolic blood pres-
sure, GCS, sex, HR, RR,  SpO2, temperature, injury sever-
ity score, shock index, and type of injury were the most 
common features presented in the papers. Variables such 
as fresh frozen plasma, hematocrit, thromboplastin and 
photoplethysmography were not commonly used in the 
limited number of studies on coagulopathy and transfu-
sion prediction. Studies conducted by Ahmed et al. [27] 
and Kuo et  al. [29] utilize additional physiological data 
and laboratory data such as white blood cells count, 
packs of RBC given, FFP as variables for trauma outcome 
prediction, which increased their inclusion frequency 
[27, 29].

Among the included studies, 47 studies reported miss-
ing values in their datasets, out of which 24 excluded 
these data. In terms of imputation methods, mean impu-
tation was the most used among the 33 studies which 
mention how the missing values were handled. Other 
imputation methods used were iterative or multiple 
imputation, ElasticNet regression, optimal imputation, 
chained equation imputation, and median imputation 
[30, 35, 44, 62, 70, 71, 80, 94, 97, 110, 113]. For dealing 
with imbalanced data, 6 studies addressed it with the 
most commonly used method being Synthetic Minority 
Over-Sampling Technique [49, 63, 72, 81, 91, 99].

Feature selection of predictor variables
Multiple studies investigated how different numbers, 
types and sets of features affected the ML model’s per-
formance. Almost all studies concluded that increasing 
the number of features did not necessarily improve per-
formance. Several feature selection methods were identi-
fied, such as penalized logistic regression (least absolute 
shrinkage and selection operator, Ridge, and ElasticNet), 
Cox regression, χ-square, permutation importance. For 
example, Tsiklidis et al. [35] used the permutation impor-
tance method to select features that would be most selec-
tive of outcome and reduced the number of features from 
32 to 8 easily measurable features.

Given the time sensitive nature of the study outcomes 
of trauma, variables that are easier to measure during 
transit to the evidential reasoning (ER, pre-hospital set-
ting) or upon admission are fundamental for use as pre-
dictor variables. While laboratory or clinically acquired 
variable data adds value that improves performance, the 
delay in acquiring this information could hinder poten-
tially life-saving intervention.

Easily accessible variables such as age, sex, race, HR, 
RR, SBP, as well as GCS, injury severity score (ISS), and 
the type of injury were also more commonly used for 

model development. Vital signs during transport and/or 
during ER admission reflect a higher relevance for out-
come studies. Liu et  al. [39] showed the significance of 
vital sign measurements, and heart rate complexities to 
predict whether life-saving intervention was required, 
and saw that continuous measurement of vital signs 
allowed for sensitive prediction of life-saving interven-
tion outcome. Kim et  al. [41] proved that Simplified 
Consciousness Score was the most important feature 
for survival prediction in the LR, RF and DNN models. 
Kilic et  al. [28] and Pearl et  al. [78] found that physi-
ological variables from the scene had little to no impact 
on the performance of their model; Kilic also noted that 
response to resuscitation had an important effect on 
trauma mortality [28, 78]. Paydar et al. [97] reported that 
DBP was more important than SBP as a predictor for 
mortality, while Walczak et al. [103] found that SBP was 
the second most contributing variable for transfusion 
prediction.

Comparisons with injury scoring standards
Trauma and injury scoring systems can be crucial for 
injury characterization, especially in terms of assess-
ing and providing prognosis for trauma incidents [116]. 
While current scoring systems are substandard, triaging 
departments often utilize them to evaluate patients effi-
ciently by separating them on the degree of injury and 
threat of mortality and/or morbidity [117]. This presents 
an inherent standard for the measurement of trauma 
and/or injury as well as for making accurate prognoses. 
Trauma scoring systems can be divided by the type of 
data used to assess injury and trauma such as physiologi-
cal- and anatomical indices, and combined systems that 
use combined anatomical and physiological data [17].

Performance analysis of models reported in the lit-
erature elucidates how novel ML algorithms outperform 
current injury scoring mechanisms, as well as improv-
ing the overall prediction for need of ICU care/outcome. 
For example, ISS accounts for anatomical lesions without 
the consideration of vital signs. Moreover, it cannot be 
computed on scene and is viewed as an ineffective pre-
dictor for ICU care. A DT model was developed by Fol-
lin et al. [45] aimed to diminish that problem by utilizing 
vital signs-based variables, resulting in a highly sensi-
tive model with good performance. Trauma and Injury 
Severity Score (TRISS) is a combined scoring system that 
incorporates ISS, Revised Trauma Score, and age, and is a 
universal tool to predict the outcome of a trauma patient. 
Several studies established models with greater predic-
tive performances than TRISS, demonstrating a shift 
towards the creation of an improved outcome prediction 
model [27, 28, 30, 37, 65, 67, 71, 73, 76, 77, 80, 83, 85, 89].
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Utilization of these scoring systems as predictor vari-
ables offers a paradoxical approach to model prediction. 
As mentioned previously, some of these systems cannot 
be computed on scene, and require the patient to arrive 
at the emergency room before providing the class and 
score of the trauma and injury. Since the purpose of these 
models is to be used as an initial management and rapid 
decision-making system, using these scores not only cre-
ates a manual element (as a health care provider needs to 
classify the injury subjectively), but also delays the time 
it takes to receive an output from the model. It is more 
beneficial to use these for comparative purposes (e.g., 
comparing the predictive accuracy of a triage classifica-
tion model against the hospital triaging using ISS), as it 
can better showcase the model’s efficiency and accuracy 
in tandem to the scoring system. However, the impact 
of time to treatment versus time spent on-scene on a 
patient’s outcome continues to be a matter of contention, 
especially with regard to the notion of a “golden-hour” of 
care. Small sample sizes, inconsideration of injury sever-
ity and/or treatment given during pre-hospital transit 
could be used to argue the ineffectiveness of pre-hospital 
care on the patient’s outcome [118–120]. Large, well-
controlled studies could provide insight into the impact 
of these timings on patient care, or to develop mortal-
ity prediction models using these time measurements as 
features.

Numerous studies lacked evaluation of the model 
using external test datasets and reported performance 
only through the test set split from the original data-
set. Validation is a critical step in optimizing a model 
with elevated robustness for predictive tasks with data 
from a wider population. Specific studies utilized the 
retrospective data and separated a second cohort as 
a form of external testing, either using data from a dif-
ferent time range or a different database [45, 57, 58, 68, 
73, 88, 90, 96, 110]. One study conducted a retrospective 
study using trauma patients between January 1, 2012, 
and December 31, 2014, while creating a second cohort 
using patient data between January 1, 2015 and August 1, 
2015 [45]. The performance of the DT model decreased 
between the original cohorts with the testing cohort (0.82 
vs. 0.79). Another study reported a worse performance 
between two identified cohorts (training/testing cohort 
used the NTDB and Nationwide Readmission Database 
for external validation), changing significantly from 0.965 
to 0.656 [90]. This could be remedied by calibrating the 
model according to the Nationwide Readmission Data-
base but highlights the increasingly complex and non-lin-
ear nature of emergency modeling. Furthermore, several 
studies tended to exclude patient data with missing fields, 
which introduces a lot of error through bias. Counter-
measures such as utilizing various imputation methods 

could aid in providing a greater range of data. Further 
external testing and cross-validation, especially one con-
ducted in a long prospective study should be conducted 
on these models to further develop and optimize them.

Comparisons of ML models with different studies
The studies from each of the categories provide value 
for each respective application. For trauma outcome 
and risk assessment, the models aim to provide a scor-
ing metric to identify a patient’s probability of survival 
given their injuries, as well as aid in providing quicker an 
automatic sorting methodology of patients needing rapid 
treatment. Studies focusing on models for transfusion 
aim to develop automatic identification of patients in 
need of transfusion, as well as the specific requirements 
for the patient. Based on the clinical and lab data, simi-
lar automatic prediction of trauma induced coagulopa-
thy and detection of hemorrhage have been conducted. 
The greatest value that these studies would provide in 
the field of medicine is the absence of human interven-
tion and prediction to provide individual care, which is 
extremely valuable in remote or inaccessible locations.

Model comparisons are made broadly through 
AUROC; however, it is imperative not to make direct 
comparisons between two models due to the extensive 
variability of the models made from different studies, dif-
ferent data types and sets, different algorithms, and most 
importantly, different predictive outcomes. Therefore, 
the comparisons being made are considering how well 
the model was able to perform the specific task it was 
assigned, and this is what is being compared. Table 3 out-
lines the general statistics of the included studies in their 
respective categories, as well as a model that was able to 
best perform the specific task based on the study design.

Various triaging models developed were included in 
our review, out of which RF models were more com-
monly used. The best performing models were reported 
by Pennell et al. [99], where RF, support vector machines 
(SVM), and Generalized linear model (GLM) produced 
AUROC values up to 0.99 in both low- and high-risk 
cases (GLM produced an AUROC of 0.96 for both cases). 
Similarly, Paydar et  al. [97] reported their Bagging and 
SVM models having high AUROC values of 0.9967 and 
0.9924 respectively, using GCS, Backward Elimination, 
and DBP as predictive variables. Studies reviewed that 
developed testing sets from external databases reported 
a decrease in their model performance. This is evident 
in the models developed by Larsson et  al. [100], where 
the models showed a decreased predictive performance 
after using an external testing cohort. The study high-
lighted the XGBoost model decreased in performance 
when using the cohort from the NTDB dataset (AUROC 
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of XGBoost was 0.725 using the SweTrau vs. 0.611 using 
NTDB, while the LR model was 0.725 and 0.614).

For those studies focused on transfusion, tree-based 
modes and more specifically DT models were the most 
common. Majority of the studies discussed the need 
for transfusion/MT after trauma. Of this, the RF model 
by Lammers et  al. [49] exhibited optimal performance 
(AUROC value of 0.984); other high performing mod-
els included SVM and LR model yielding an AUROC 
value of 0.9677 and 0.9637 respectively. Similar LR mod-
els by McLennan et al. [106], Mina et al. [46], and Feng 
et  al. [48] also yielded high AUROC values (0.93, 0.96, 
and 0.80 respectively) [46, 48, 106]. However, validation 
on the model by Mina et  al. [46] showed a substandard 
performance (AUROC value of 0.694), suggesting that 
the other models might be over-fitted to their respective 
training datasets and not generalizable. Additionally, this 
could also suggest that these models are not generaliz-
able since they lack time-dimensionality as a factor. For 
example, a model trained using vital sign data of patients 
over a specified time interval could result in higher sen-
sitivity. The large amount of LR models that produced 
high performance highlight a preference and strength of 
regression models for their discriminative potential using 
simple, readily accessible data.

Walczak was the only study that investigated the pre-
diction of transfusion needs of various transfusion prod-
ucts [103]. The ANN models exhibited high accuracy, 
sensitivity and specificity for each blood product (RBC, 
FFP and platelets models had an accuracy of 0.6778, 

0.8264, 0.705 respectively). Over prediction of blood 
products was the most commonly observed error in the 
ANN model. Future studies on hemorrhagic trauma and 
transfusions should further investigate specific blood 
product predictions. Blood product prediction models 
like these could be very effective for remote field sites, 
allowing trauma physicians to cache away specific types 
of blood supply based on their frequency of use. Further-
more, well-developed and validated models could aid 
in life-threatening situations by allowing hospital sites 
to prepare specific amounts of blood products before 
patient arrival.

Out of the studies that predicted any case of bleeding 
in trauma patients, Lang et  al. [110] had the best per-
forming models for detection of hemorrhagic shock and 
traumatic brain injury yielding AUROC values of 0.92 
and 0.97 respectively. Linear models (especially regres-
sion models) generated the best performing models for 
these studies. Chen et al. [50] found that using HR, SBP, 
 SpO2 as predictor variable yielded the best AUROC value 
of 0.76. Alternatively, Chen et al. [112] delivered the same 
performance using SI as a predictor variable; they also 
found that HR,  SaO2, and DBP to be the best multivariate 
discriminator between major hemorrhaging and any con-
trol cases. Moreover, the model’s performance slightly 
decreased when using a dataset containing missing val-
ues (AUROC of 0.76 vs. 0.70). This study showcases the 
benefit of using a linear ensemble classifier being their 
robustness in handling missing values, compared with 
other models. Considering the mentioned studies found 

Table 3 General statistics of the studies included in the review

AIS abbreviated injury scale, DBP diastolic blood pressure, EDI epic deterioration index, FAST focused assessment with sonography for trauma, GCS Glasgow Coma 
scale, HR heart rate, ISS injury severity score, RBC red blood cell, RF random forest, SBP systolic blood pressure

Study topic Number 
of 
papers

Range of year Range of 
patients/data 
used

Best performing models (AUROC) Mean performance ± SD

Different outcomes in trauma 45 1995–2022 32–1,511,063 Performance of max EDI after 24 h for mortal-
ity (0.98) [61]

0.91 ± 0.06 (n = 36)

Risk assessment 18 2009–2021 73–2,007,485 Performance of RF model trained using ISS, 
AIS chest, and cryoprecipitate given within 
first 24 h (0.97) [92]

0.88 ± 0.07 (n = 13)

Transfusion 11 2015–2021 477–12,624 Performance of RF model using age, gender, 
mechanism of injury, involvement in explo-
sion, vital signs (0.98) [49]

0.87 ± 0.09 (n = 8)

Hemorrhage detection 11 2007–2021 24–368,810 Performance of Poisson Regression model 
using epidemiological data, GCS, SBP, DBP, 
HR, haemoglobin, amount of RBC packs, 
platelets and fresh frozen plasma transfused, 
transfusion timing, and coagulation tests 
results (0.92) [110]

0.92 ± 0.07 (n = 6)

Coagulopathy 4 2014–2019 54–18,811 Performance of BN model using HR, SBP, 
Temperature, Hemothorax, FAST result, GCS, 
Lactate, Base deficit, pH, mechanism of injury, 
pelvic fracture, long bone fracture (0.96) [57]

0.89 ± 0.08 (n = 3)
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linear classifier models yielding high performance, cre-
ating a combination of classifiers into a linear ensemble 
model could offer a robust, high functioning decision-
support tool.

Based on the included studies that focused on the field 
of coagulopathy, tree-based models were the most com-
mon. The BN model developed by Perkins et al. [88] out-
matched the other models, especially when considering 
that the externally validated model yielded an AUROC 
value of 0.93, compared with an AUROC of 0.830 and 
0.800 from the RF models assembled by Li et al. [58] and 
He et  al. [113] respectively. Given the lack of included 
studies focused on ML for prediction of trauma-induced 
coagulopathy (n = 4), no conclusive statement can be 
made about the best model for trauma related coagulopa-
thy. The included studies showed a general imbalance 
in the kinds of research being conducted. Research into 
detection and automated assessment of coagulopathy has 
not been investigated in detail, which prevents meaning-
ful cross-comparison discussions. Moreover, it also pre-
vents any meaningful conclusions to be made on the best 
features, or the best model for these specific topics.

Strengths and weaknesses of models
The application of ML models in hemorrhagic trauma 
shows potential for use in medical and clinical routines 
due to their established high predictive and decision 
support performances. Included studies utilized various 
types of regression, trees, network, and ensemble mod-
els, which can be used to identify certain strengths and 
drawbacks of using these specific algorithms. Kim et  al. 
[41] found that the RF and NN have more discrimina-
tive power due to the nonlinear relationship between the 
input and output parameters. The combination of their 
discrimination power, along with the nonlinear charac-
teristic of the NN shows an improved performance com-
pared to the LR models. Chesney et  al. [64] also found 
that the ANN offered a higher predictive accuracy as well 
as a higher sensitivity compared to the LR models which 
were much better at outcome discrimination. Kong et al. 
[66] and Lammers et  al. [49] found that LR models can 
identify the predictor variables that show a higher statis-
tically significant correlation with a particular outcome, 
and presents an easy-to-interpret modeling method. Fur-
thermore, Scerbo et al. [43] found that LR was not able 
to adapt or control to allow for slight leniencies; in the 
case of their study, the LR did not attempt to over-triage 
to error on the side of caution.

Chen et al. [50] stated that the ensemble classifier per-
formed better than a single linear classifier, especially 
when applied through multiple testing/training trials. 
These ensemble classifier offers statistical, computational, 
and representational advantages compared to a single 

classifier, which means that it would have a more consist-
ent performance throughout a broader population. Simi-
larly, Roveda et  al. [70] suggested that other ensemble 
algorithms would provide even better results than their 
RF model (also an ensemble model). Seheult et al. [105] 
recommend the use of ensemble ML methods, due to 
their decreased risk of over-fitting (leading to the mod-
els with a low variance but high bias), unlike DT mod-
els which have a high over-fitting (i.e. models with high 
variance but low bias) potential due to a high dependence 
on the training set. For DT models, Feng et al. [48] found 
that the inclusion of more parameters resulted in a DT 
model with higher predictive performance.

Some studies implemented various models/techniques 
for performing their proposed task and compared the 
performance among these models. For example, Ahmed 
et  al. [27] created a mortality prediction ML model 
using several clinical and laboratory-based variables. 
The proposed DNN “FLAIM” model was compared with 
other models like Linear Discriminant Analysis, Gauss-
ian Naïve Bayes Classifier (GNB), Decision Tree (DT), 
k-nearest neighbor (KNN), as well as other trauma and 
injury scoring standards. They found that the DNN-
FLAIM model outperformed all the other ML mod-
els, with an AUROC of 0.912 compared to the TRISS of 
0.903, and GNB of 0.836. Similarly, Sefrioui et  al. [37] 
evaluated various models for predicting patient survival 
using easily measurable variables. RF, KNN, C4DTs (J48), 
LR, Naïve Bayes (NB), ANN, SVM, and Partial Decision 
Tree models were used, and the RF model showcased 
the highest AUROC, accuracy, and specificity, while the 
SVM model yielded the highest sensitivity. Furthermore, 
the SVM model reported by Sefrioui et al. [37] yielded an 
AUROC and accuracy of 0.931 and 0.969, respectively.

While there may be certain advantages and disadvan-
tages of choosing one model over another in specific 
applications, these models are often limited by perfor-
mance by the information and data points that were used 
to train them. The ability of a model to provide accurate 
personal predictive monitoring (PPM) is largely depend-
ent on developing an algorithm that can provide a supe-
rior AUROC value (resultant of higher specificity and 
sensitivity). As such, this gives rise to deceptively high-
performance metrics, since the majority of the algo-
rithms are developed for the identification of clinical 
events using retrospective data.

Limitations presented by the included studies
Most studies have been conducted using retrospec-
tive data. In contrast, prospective studies often utilize a 
low sample population that is accrued over a long-time 
span. A possible workaround may be to train models on 
retrospective datasets and then be tuned with different 
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retrospective and prospective datasets to create a more 
robust, generalizable model. However, this generalization 
fails at identifying unique and underlying physiological 
conditions that may not be evident through vital sign/
laboratory data.

The data and the model, the time feature, and the per-
sonalized predictive monitoring are three ideas that go 
together for developing AI systems for medical care and 
should be conceptualized if one is to develop AI systems 
for trauma and medical care. One option to implement 
them could be to put them into a real-time monitoring 
system to generate a personalized temporal predictive 
system. To implement the time feature in ML solutions, 
one can train a temporal model with real-time data to 
generate a temporal prediction model. However, end-
point data could also be translated to develop a temporal 
solution (which is significant considering that majority of 
the included studies utilized end-point data). Indeed, the 
use of real-time data is already evident in several stud-
ies that aim to utilize non-invasive techniques in meas-
uring pulse arterial waveform to develop a real-time 
tracking solution [51, 52, 121, 122]. Work by Convertino 
et  al. [123] highlights the sensitive nature and monitor-
ing approach that arterial waveform feature analysis 
may provide for earlier and individualized assessment of 
blood loss and resuscitation in trauma patients. Future 
studies could develop such models in an effort to com-
pare the performance of utilizing temporal and end-point 
data, or to further develop a reliable real-time PPM. Fur-
thermore, retrospective data being used leads to a major 
limitation of being largely dependent on the data that 
is being used. Due to the retrospective nature and the 
varying data that is provided by the studies, these perfor-
mance metrics may greatly vary from dataset to dataset. 
As such, the concepts of ‘time’ and dataset quality hold 
the greatest weight on overall model performance, and 
as such are elements that should be classified or stand-
ardized for model development. Finally, the majority 
of aforementioned ML models are based on population 
averages obtained from large subject pools that mask 
inter-patient variability. Addressing inter-patient vari-
ability is the objective of personalized medicine [124]. 
Future research should aim to develop increased model 
explainability to allow for each sample to be analyzed, in 
order to identify which feature has a significant impact 
on the predictive output. This prompts readers to won-
der the kind of data to be collected (to provide the most 
accurate prediction for initial admission) and its impact 
on PPM, and we hope future authors investigate this con-
cept in detail.

Demonstration of high performance and accuracy 
metrics in large subject population prospective rand-
omized controlled trials (RCTs) would be the best way 

to direct development towards the use of these models 
as medical standards. Future studies should investigate 
the use of their models on prospective datasets, as it 
would only further helps with validation. Comprehen-
sive clinical datasets are often difficult to obtain even 
with the rapid increase in available data, as it is limited 
by specific patient testing and recording. Few studies ran-
domly generated injury data and made appropriate injury 
assessment and labelling to augment the overall dataset 
[98]. Augmentation allows for a larger and more rand-
omized albeit synthetic dataset, which would ultimately 
improve model performance. Class imbalance is another 
frequent obstacle in available datasets, with the major-
ity outcome being a predominant class of the outcome 
predictor. Studies often utilize oversampling techniques 
such as Synthetic Minority Over-Sampling Technique in 
generating samples for the minority class [63, 81]. Other 
studies targeted specific inclusion and exclusion criteri-
ons to include data from specific trauma population with 
variables focusing on their aim of research, while a few 
studies involved an unclear population set. This was evi-
dent in the studies that focused on hemorrhage detection 
and prediction, where traumatic brain injury (TBI) as a 
subgroup of trauma related injuries was disclosed, hence 
the data from patients with non-TBI or intracranial hem-
orrhage patient data were used. These datasets could 
include blunt trauma patients, in-patients or patients 
with complications following a different pathology. In 
the case of the study by Ginat et al. [54], all urgent NCCT 
scans were used in the training and testing of the ANN 
model [54]. Among the true positive scans were patient 
initial scans, follow-up cases, trauma/emergency cases, 
inpatient, and outpatient cases. Although these cases 
accounted for 70.7% of the dataset, the accuracy for all 
cases used was lower than that of trauma/emergency 
cases only (0.934 and 0.961 respectively). There are guide-
lines listed in literature regarding the type and amount 
of input data required for each type of ML model [125]. 
They report that regression would require 100–1000 data 
points, while regularized regressions, SVM, DT, RF, and 
KNN models require 100–1,000,000 data points. In con-
trast, NN models require greater than 10,000 data point 
amounts. Aiming for a larger data population and for 
model development can lead to lower estimation vari-
ance, and consequently a better predictive performance. 
Due to the simplified nature of regression-based models, 
only a limited amount of input variables can be used to 
predict an outcome, while NN models would require a 
much greater feature set. Twenty of the studies (22.5%) 
included in this review used < 500 study participants, 
and the training with such low dataset could lead to an 
over fitted model, increasing the prediction error. Gath-
ering additional retrospective cohorts, performing data 
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augmentation methods on the datasets, utilizing parame-
ter regularization, or implementing ensemble models are 
recommended in improving overfitting and final accuracy 
of the system. Additionally, data that incorporates time as 
a factor/variable would greatly aid in improving the over-
all sensitivity and specificity of the model. Performance 
metrics used in different studies varied from including 
sufficient metrics to characterize the ML models, to some 
not including any. This variance in metrics, as well as an 
absence of standard reporting metrics for these models 
prevents any meaningful comparisons from being made 
for all the studies. The vast majority of the papers report 
the AUROC of the model, indicating an unspoken stand-
ard metric that is emerging in literature. Metrics such as 
F-measure and precision (positive predictive value) were 
less commonly reported in all the included studies, given 
that many studies focused on a multiclass classification 
prediction driven model. F-score is beneficial as it yields 
a better estimate of the model’s accuracy, through the 
calculation of the harmonic mean of the precision and 
sensitivity (or recall). While sensitivity was a commonly 
reported metric amongst the included studies, incorpo-
ration of the F-score (and by association, precision) in 
future studies would prove to be useful in providing a 
better measure of a model’s performance.

Limitations of this review
There are several limitations of this review. Firstly, this 
study merely includes publications written in English, 
which may have caused publication bias. Secondly, this 
review focuses on the literature for hemorrhagic trauma, 
and would be excluding papers that while may provide 
rigorous models, falls out of the scope of this review. 
Thirdly, the included studies may have biases themselves, 
which may have caused bias in results. Publication bias 
and selective outcome reporting could influence the 
results of this review, as all the included studies reported 
high performing models, albeit some with inferior per-
formances to common scoring methods. Furthermore, 
this review does not consider many of the intricate and 
nuanced ML concepts that might be beneficial for ana-
lyzing and comparing the studies included. Some of 
these concepts, such as uncertainty and explainability of 
these models, would provide more context to the sensi-
tivity of the model in performing on other dataset and/
or the ability of the models to be conceptualized and 
understood by front staff providers. These concepts 
may be discussed in future reviews, as this review aimed 
to provide an overarching survey on the current stud-
ies surrounding the topic. As mentioned in this review, 
few studies offered comprehensive model performance 
metrics, which resulted in undiscernible performance 
comparisons throughout the study. Moreover, the lack 

of external testing sets and generalizability of the mod-
els would result in inflated performances of some mod-
els, which would result in this study incorrectly reporting 
the highest reporting models. Finally, the lack of studies 
investigating prediction of transfusion, hemorrhage, and 
coagulopathy prevent any meaningful comparison and 
conclusion to be made regarding models used in those 
studies. Future research into the comparison and appli-
cation of ML algorithms using different datasets in RCTs 
would further support the implementation of ML tech-
nologies for trauma care.

Conclusions and future directions
This review demonstrates that ML models have capa-
bilities that enable more accurately predicting situations 
concerning traumatic hemorrhage than currently used 
systems. Use of small variable sets that are easily acces-
sible has become a standard for producing high perform-
ing and accurate models in trauma. Although many of the 
included models outperform traditional scoring systems, 
the evaluation of their performance is limited by a con-
forming population and a retrospective dataset. While 
these models have the potential to provide clinical deci-
sion support, there is a need for standardized outcome 
measures to allow for rigorous evaluation of performance 
across models, as well as to address the intricacies con-
cerning inter-patient variability. Further consideration 
on the impact of the features on the predictive output, as 
well as feature/model explainability are crucial for devel-
oping rapid personalized trauma diagnosis and treatment 
models. Identifying key features and/or attributes to spe-
cific regions of trauma care could be crucial in develop-
ing a rigorous model capable of providing personalized 
predictive monitoring through precision-based medicine 
(PBM). Indeed, emerging studies have already introduced 
the implementation of ML within the context of goal-
directed and personalized care [124, 126, 127]. Future 
research would need to investigate feature significance on 
model accuracy, as well as the implementation of these 
models into clinical routine through real-time prospec-
tive study designs. Further assessment of these models’ 
impact in diverse clinical and other population settings 
would be a direction that showcases the promising future 
of using AI and ML as a standard for remote or assisted 
PBM.
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RTS  Revised trauma score
SBP  Systolic blood pressure
SCS  Simplified consciousness score
SpO2  Oxygen saturation
SVM  Support vector machine
TBI  Traumatic brain injury
TEG  Thromboelastography
TOP  Trauma outcome predictor
TSM  Trauma severity model
UKTRISS  United Kingdom Trauma and Injury Severity Score
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