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An ongoing search for potential targets
and therapies for lethal sepsis
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Abstract

Sepsis, which refers to a systemic inflammatory response syndrome resulting from a microbial infection, represents
the leading cause of death in intensive care units. The pathogenesis of sepsis remains poorly understood although
it is attributable to dysregulated immune responses orchestrated by innate immune cells that are sequentially
released early (e.g., tumor necrosis factor(TNF), interleukin-1(IL-1), and interferon-γ(IFN-γ)) and late (e.g., high mobility
group box 1(HMGB1)) pro-inflammatory mediators. As a ubiquitous nuclear protein, HMGB1 can be passively released
from pathologically damaged cells, thereby converging infection and injury on commonly dysregulated inflammatory
responses. We review evidence that supports extracellular HMGB1 as a late mediator of inflammatory diseases and
discuss the potential of several Chinese herbal components as HMGB1-targeting therapies. We propose that it is
important to develop strategies for specifically attenuating injury-elicited inflammatory responses without compromising
the infection-mediated innate immunity for the clinical management of sepsis and other inflammatory diseases.
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Introduction
Cohabitating with various microbes, mammals have de-
veloped multiple strategies for combatting microbial
infections. As the first layer of defense, the epithelial
barriers effectively limit the access and growth of the
majority of pathogens. If they are breached, innate im-
mune cells immediately launch biological responses,
termed “inflammation,” to confine and remove these
pathogens [1]. These inflammatory responses are usually
appropriately propagated and often result in the successful
elimination of the invading pathogens. If unsuccessful, the
invading pathogens can leak into the bloodstream, trigger-
ing a widespread and systemic inflammatory response,
termed “sepsis.” Sepsis, which refers to a systemic inflam-
matory response syndrome resulting from a microbial in-
fection, represents the leading cause of death in intensive
care units. As a continuum of increasing clinical severity,
“severe sepsis” is often associated with one or more acute
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organ dysfunctions [2]. Despite recent advances in anti-
biotic therapy and intensive care, the overall mortality rate
of severe sepsis remains high [3].
The inflammatory responses are first initiated by in-

nate immune cells, such as macrophages and monocytes.
These innate immune cells are equipped with pattern
recognition receptors, such as the Toll-like receptors
(TLRs), TLR2, TLR3, TLR4, and TLR9 [4–8], for various
pathogen-associated molecular patterns (PAMPs), such
as bacterial peptidoglycan, double-stranded RNA, endo-
toxin, and CpG-DNA [9, 10]. The engagement of various
PAMPs with respective receptors triggers the sequential
release of early (TNF, IL-1 and IFN-γ) and late (HMGB1)
proinflammatory mediators [11–13]. Although early pro-
inflammatory cytokines contribute to the pathogenesis of
sepsis [14], their early kinetics of release makes them diffi-
cult to target in clinical settings.
Discovery of HMGB1 as a late mediator of lethal sepsis
Approximately 20 years ago, we aimed to search for
other late mediators that might contribute to the patho-
genesis of lethal sepsis. To identify such mediators, we
stimulated macrophages with early cytokines (e.g., TNF)
and screened the cell-conditioned medium for proteins
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that were released late. The SDS-PAGE gel electrophor-
esis analysis revealed the release of 30-kDa protein with
an N-terminal amino acid sequence identical to HMGB1
[13], a member of the high mobility group-1 non-
histone chromosomal protein family.

Active HMGB1 Secretion
HMGB1 is constitutively expressed to maintain a large
“pool” of pre-formed protein in the majority of cells
[15, 16]. Bearing two nuclear-localization sequences
(NLS), HMGB1 is transported into the nucleus by the
nuclear import complexes, thereby maintaining a large
nuclear “pool” of pre-formed protein (Fig. 1) [17].
Within the nucleus, HMGB1 binds chromosomal DNA
and fulfills its nuclear functions, such as maintaining the
nucleosomal structure and regulating gene expression
[18]. The disruption of local HMGB1 expression renders
animals susceptible to infectious [19] or injurious insults
[20, 21], indicating an overall beneficial role of intracellu-
lar HMGB1 [22]. In response to exogenous PAMPs (ds-
RNA, CpG-DNA and endotoxin) [13, 23] or endogenous
cytokines (interferon (IFN)-γ, IFN-β and cold-inducible
RNA-binding protein (CIRP)) [24–26], macrophages/
monocytes actively release HMGB1. If dysregulated, the
excessive HMGB1 release adversely contributes to the
Fig. 1 Redox modulation of HMGB1 immunological activities. The cysteine
chemokine or cytokine activities. Depending on the redox status, extracellu
resulting in rigorous inflammatory responses (cytokine storm) and organ dy
pathogenesis of infection- and injury-elicited inflamma-
tory diseases.
Lacking a leader signal sequence, HMGB1 cannot be

actively secreted via the classical ER-Golgi secretory
pathway [13]. Instead, the activated macrophages/
monocytes acetylate and phosphorylate HMGB1 at the
nuclear localization or export sequences (NLS or NES)
[22, 27–29] lead to the sequestration of HMGB1 within
cytoplasmic vesicles, which are destined for secreting
into the extracellular environment [16, 24, 30]. For in-
stance, in response to exogenous PAMPs (e.g., endo-
toxin) or endogenous cytokines (e.g., IFNs), innate
immune cells acetylate lysine residues 28, 29, 42, 43,
179, 181, and 183 within the NLS sites lead to the cyto-
plasmic HMGB1 translocation in a JAK/STAT1-dependent
fashion (Fig. 2) [16, 24, 27, 30]. Indeed, the pharmaco-
logical inhibition or genetic interference with JAK/STAT1
signaling uniformly inhibits HMGB1 secretion induced
by IFN-β, IFN-γ or LPS. Notably, LPS might not dir-
ectly activate STAT1; however, it may trigger indirect
STAT1 activation through the intermediate production
of IFNs [31] that are capable of inducing HMGB1 re-
lease [24, 25, 27].
After cytoplasmic translocation, HMGB1 is secreted

extracellularly through several pathways, including the
residues of HMGB1 can be divergently oxidized, which affects its
lar HMGB1 can either facilitate leukocyte recruitment or activation,
sfunction



Fig. 2 Essential roles of PKR in the regulation of HMGB1 release/
secretion. HMGB1 is released by activated macrophages/monocytes
through complex mechanisms dependent on the activation of PKR,
which may regulate the JAK/STAT1-dependent nuclear-cytoplasmic
HMGB1 translocation, RIP1/RIP3-dependent necroptosis, and caspase
1-dependent pyroptosis
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caspase-1/caspase-11-mediated inflammasome activation
and pyroptosis (Fig. 2). The pharmacological inhibition
with a broad-spectrum caspase inhibitor (Z-VAD-FMK)
or the genetic deletion of caspase-1/caspase-11 uni-
formly reduces HMGB1 secretion from activated macro-
phages [32, 33]. Similarly, the genetic disruption of the
double-stranded RNA-activated protein kinase R (PKR)
or the pharmacological inhibition of PKR phosphoryl-
ation similarly reduces NLRP3 or NLRP1 agonists-
induced inflammasome activation [34, 35], pyroptosis
[34, 35], and HMGB1 release [34]. In light of the likely
roles of PKR in the regulation of caspase-1-dependent
programmed cell death (pyroptosis) [35] and receptor
interacting protein (RIP)1/RIP3-dependent programmed
necrosis (necroptosis) (Fig. 2) [36], it is important to ex-
plore novel PKR inhibitors that may inhibit HMGB1 re-
lease by preventing distinct cell death pathways.

Passive HMGB1 Release
In addition to active secretion, HMGB1 can be passively
released from damaged cells [37] after ischemia/reperfu-
sion [38, 39], trauma [40, 41], or toxemia [42–44],
thereby serving as damage-associated molecular pattern
molecule (DAMP). Necrosis can also be induced by vari-
ous viruses (e.g., West Nile, salmon anemia, dengue, and
influenza viruses) [45, 46] and cytokines (e.g., TNF, IFNs)
[36, 47]. Extracellular HMGB1 can also trigger caspase-
1-dependent programmed cell death, pyroptosis, which
is characterized by rapid plasma membrane rupture, and
the release of proinflammatory intracellular contents (in-
cluding HMGB1) [48], suggesting a pathogenic role of
pyroptosis in HMGB1 release during infection or injury.
Thus, infection and injury converge in a common
process, i.e., inflammation [49], which is orchestrated by
HMGB1 and other proinflammatory mediators (e.g.,
mitochondrial DNA and CIRP) released by activated im-
mune cells and damaged tissues [26, 50].
Once actively secreted or passively released, extracellu-

lar HMGB1 binds to various microbial products (e.g.,
CpG-DNA or LPS), thereby facilitating their recognition
by respective receptors to augment inflammatory re-
sponses [51]. Harboring three cysteine residues (C23,
C45 and C106) that are redox-sensitive, HMGB1 can be
modified into three isoforms termed “HMGB1” (all thiol
form), “disulfide HMGB1” (partially oxidized), and oxi-
dized HMGB1 (Fig. 1) [52, 53]. The “all-thiol” HMGB1
binds to other chemokines (e.g., CXCL12) and stimulates
leukocyte recruitment via the CXCR4 receptor [54] or
other signaling molecules [55–57] to the infection or in-
jury sites [58, 59]. In sharp contrast, disulfide HMGB1
can activate immune cells to produce cytokines/chemo-
kines via TLR4 or other receptors, such as RAGE [51],
TLR2, TLR4 [60–62], TLR9 [23, 51], cluster of differenti-
ation 24 (CD24)/Siglec-10 [63], Mac-1 [57], thrombomo-
dulin [64], or single transmembrane domain proteins
(e.g., syndecans) [65]. Once fully oxidized, HMGB1 is
devoid of either chemokine or cytokine activities (Fig. 1)
[52, 53]. Altogether, these studies suggest that extracellular
HMGB1 is a proinflammatory signal to recruit, alert, and
activate innate immune cells, thereby sustaining a poten-
tially injurious inflammatory response during sepsis.

Pathogenic role of HMGB1 in sepsis and injury
Experimental sepsis can be induced by several tech-
niques, including the infusion of exogenous bacterial
toxins (endotoxemia) and the disruption of host epithe-
lial barrier, to produce microbial translocation, e.g., cecal
ligation and puncture (CLP). In murine models of endo-
toxemia and CLP-sepsis, HMGB1 is first detected in the
circulation 8 h after the disease onset and is subse-
quently increased to plateau levels from 16 to 32 h
(Fig. 3a) [13, 66]. This late appearance of circulating
HMGB1 parallels with the onset of animal lethality from
endotoxemia or sepsis and distinguishes itself from TNF
and other early proinflammatory cytokines [67]. The
pathogenic role of HMGB1 in endotoxemia was inferred
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Fig. 3 HMGB1 orchestration of infection- and injury-elicited
inflammatory responses. a A microbial infection triggers a systemic
inflammatory response by stimulating active HMGB1 secretion or
passive release. The disruption of epithelial barrier allows invasion of
microbial pathogens, which liberate PAMPs and trigger the production
of proinflammatory cytokines. Several proinflammatory cytokines can
stimulate innate immune cells to actively secrete HMGB1 and trigger
necroptosis that enables passive HMGB1 release. Collectively, extracellular
HMGB1 facilitates leukocyte recruitment and activation, amplifying
and sustaining rigorous inflammatory responses. b Injury triggers
passive HMGB1 release. After injurious insult, HMGB1 is passively
released by necrotic cells and functions as a DAMP signal that
propagates rigorous inflammatory responses that are indistinguishable
from infection-elicited inflammation
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from studies using HMGB1-neutralizing antibodies, which
conferred a dose-dependent protection against endotoxin-
induced tissue injury and lethality [13, 68]. In a more
clinically relevant CLP-induced sepsis, the delayed ad-
ministration of HMGB1-specific neutralizing antibodies
beginning 24 h after CLP dose-dependently rescued ro-
dents from lethal sepsis [32, 66, 69]. Moreover, the tar-
geted inhibition of HMGB1 expression in innate immune
cells (e.g., macrophages and dendritic cells) reduces sys-
temic HMGB1 accumulation and similarly rescues mice
from sepsis [70], supporting HMGB1 as a critical late me-
diator of experimental sepsis.
Notably, agents capable of inhibiting HMGB1 release

[71–73] or action [13, 66] confer protection against sep-
sis, particularly if administered in a delayed fashion to
strategically preserve the PAMPs-mediated early inflam-
matory response. At late-stage infection, the PAMPs-
mediated inflammatory response may be accompanied
by unintended cell injury and DAMPs release that amplify
the cytokine storm to precipitate organ dysfunction
(Fig. 3a) [29]. This likelihood is supported by recent find-
ings that HMGB1 is persistently elevated during late-stage
sepsis despite the cessation of initial infection [74] and
that it contributes to the long-term pathological conse-
quence of sepsis. Although microbial infection-induced
sepsis is indistinguishable from sterile injury-elicited
systemic inflammatory response syndrome [75, 76], it
may be more advantageous to develop strategies for spe-
cifically attenuating DAMPs-mediated inflammatory re-
sponses without compromising the PAMPs-mediated
innate immunity.
As a ubiquitous nuclear protein, HMGB1 can be pas-

sively released from necrotic cells [37] and can function
as a DAMP to elicit inflammatory responses (Fig. 3b).
Regardless of the origin, the actively secreted or pas-
sively released HMGB1 can similarly alert, recruit, and
activate immune cells [49, 77], triggering infection- and
injury-elicited systemic inflammatory responses that are
often indistinguishable in experimental or clinical set-
tings (Fig. 3) [76]. Indeed, HMGB1-neutralizing anti-
bodies are protective in animal models of ischemia/
reperfusion [38, 78, 79], trauma [80, 81], chemical tox-
emia [42, 82, 83], atherosclerosis [84], gastric ulcer [85]
and hyperoxia [86].

Discovery of Chinese herbs as HMGB1 inhibitors
The establishment of HMGB1 as a mediator of various
inflammatory diseases has prompted the search for in-
hibitors that can attenuate HMGB1 secretion or action
in various experimental settings. As summarized in sev-
eral recent reviews [22, 29, 87], a growing list of herbal
extracts (e.g., Danggui, Mung bean, and Prunella vul-
garis) [88, 89] and components have been demonstrated
to be effective in inhibiting endotoxin-induced HMGB1
secretion. In the present review, we compare the distinct
mechanisms by which several herbal therapies effectively
inhibit active HMGB1 secretion and action.

Glycyrrhizin (GZA) binds to HMGB1 to inhibit its secretion or
action
Radix Glycyrrhizae (Gancao in Chinese, meaning “sweet
root” in Greek or “licorice” in English) has been trad-
itionally used for treating peptic ulcer, hepatitis, and pul-
monary bronchitis for many centuries. Its major anti-
inflammatory component, GZA (Fig. 4a), is protective in
animal models of hepatitis [90], hepatic ischemia/reperfu-
sion (I/R) injury [91, 92], endotoxin- and acetaminophen-
induced liver injury [93, 94]. Using biochemical techniques,
Sakamoto et al. (2001) first demonstrated that GZA directly
interacted with HMGB1 and impaired its DNA-binding
properties [95]. Subsequently, Mollica et al. (2007) used
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Fig. 4 Distinct HMGB1-inhibition mechanisms of several herbal components. a Direct binding and inhibition of HMGB1 activities. b, c, d Divergent
HMGB1 inhibition mechanisms. Different herbal components can inhibit HMGB1 action or release through divergently distinct mechanisms
including PKR inactivation (Panel b), autophagic degradation (Panel c), or endocytic HMGB1 uptake and degradation (Panel d)
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nuclear magnetic resonance (NMR) and fluorescence tech-
niques to confirm that GZA directly docked into the DNA-
binding concaves of HMGB1 boxes (Fig. 4a) [96, 97]. Con-
sistent with these findings, the GZA-mediated protection
has been associated with the inhibition of HMGB1 release
or its cytokine/chemokine activities [87].

Carbenoxolone (CBX) prevents PKR activation
Carbenoxolone (CBX) is a chemical derivative of
GZA, in which the glucuronic acid is replaced by suc-
cinic acid (Fig. 4b). As a medication previously pre-
scribed for esophageal ulceration and inflammation
[98], CBX has been demonstrated to dose-dependently
inhibit a variety of biological activities, including gap
junctions (50–100 μM) and panx1 channels (EC50 = 1–
4 μΜ) [99, 100]. We recently discovered that CBX
effectively inhibited LPS-induced HMGB1 secretion,
with estimated IC50 at 5 μM and IC100 at 10 μM [101].
It appears that CBX effectively inhibited endotoxin-
induced HMGB1 release by preventing PKR up-
regulation and phosphorylation (Fig. 4b). In light of
the findings that CBX (10 μM) could effectively inhibit
panx-1-mediated ATP release in response to hypoxia
[102], sheer stress [103] and low oxygen tension [104],
we propose that crude LPS (containing trace amounts
of bacterial proteins and nucleic acids) may prime
macrophages by up-regulating PKR expression and
simultaneously eliciting panx-1-mediated ATP release.
The extracellular ATP subsequently binds and activates
the purinergic P2X7 receptor (P2X7R) [105], which trig-
gers PKR/inflammasome activation and HMGB1 secre-
tion [87, 106].
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Epigallocatechin-3-gallate (EGCG) stimulates autophagic
HMGB1 degradation
Green tea contains a class of biologically active poly-
phenolic catechins, including the most abundant
epigallocatechin-3-gallate (EGCG) (Fig. 4c). At low
concentrations, EGCG dose-dependently abrogates
LPS-induced HMGB1 secretion, with an estimated
IC50 < 1.0 μM [72]. Notably, the significant inhibition
of HMGB1 secretion is achieved when EGCG is added
2 h to 6 h post LPS stimulation [72], suggesting a likeli-
hood of delayed regimen for EGCG treatment. EGCG
appears to prevent LPS-induced HMGB1 secretion stra-
tegically by destroying HMGB1 in the cytoplasm via a
cellular degradation process, autophagy (“self-eating”)
(Fig. 4c).
EGCG can be trafficked into cytoplasmic vesicles (pre-

sumably autophagosomes) within 6 h and destined to
autophagolysosomes within 16 h [107]. Additionally,
EGCG can conjugate to cytoplasmic HMGB1, leading to
the formation of EGCG-HMGB1 complexes (dimmer,
trimmer, tetramer, and oligomer) (Fig. 4c) [107]. Because
these large EGCG-HMGB1 complexes cannot physically
pass through the narrow pore of the proteasome barrel of
the ubiquitin-proteasome pathway, they trigger the au-
tophagic degradation process. At concentrations effective
for inhibiting HMGB1 secretion, EGCG dramatically en-
hances the formation of autophagosomes [107]. Recently,
EGCG has proven to be effective in stimulating autophagy
in breast cancer cells [107], hepatocytes [108], retinal
pigment epithelial cells [109], and vascular endothelial
cells [110]. Given the likelihood that HMGB1 interacts
with autophagy regulators (e.g., beclin-1) in the cyto-
plasm [111, 112], it will be important to investigate
whether HMGB1 occupies a critical role in EGCG-
mediated autophagy. This assessment is relevant because
recent studies have indicated that bacterial endotoxin in-
duces significantly less autophagy in HMGB1-deficient
macrophages [19].

Tanshinone IIA sodium sulfonate (TSN) stimulates endocytic
HMGB1 uptake
Radix Salviae Miltiorrhizae (Danshen in Chinese) is a
medicinal herb that contains several red pigments, in-
cluding tanshinone I, II, IV, and cryptotanshinone that
consist of various anti-inflammatory properties. As a
major component (representing 5 % to 6 % of the total
dry weight) of Danshen root, tanshinone IIA dose-
dependently attenuates LPS-induced HMGB1 secretion,
with an estimated IC50 < 25 μM. However, its poor water
solubility may adversely affect the bioavailability and
therapeutic efficacy of tanshinone IIA [73]. One water-
soluble derivative, tanshinone IIA sodium sulfonate (TSN)
(Fig. 4d), also dose-dependently inhibits LPS-induced
HMGB1 secretion with a lower IC50 < 10 μM. At doses
that completely prevent HMGB1 secretion, TSN does
not affect endotoxin-induced release of most other cy-
tokines and chemokines (such as IL-6, IL-12p40/p70,
KC, MCP-1, MIP-1α, MIP-2, and TNF), indicating a se-
lectivity for TSN in inhibiting HMGB1 secretion.
Although TSN itself is unable to stimulate autophagic

HMGB1 degradation [72], it induces the internalization
of exogenous HMGB1 into macrophage cytoplasmic ves-
icles likely through clathrin- and caveolin-dependent
endocytosis (Fig. 4d) [113]. The inhibition of clathrin-
dependent (e.g., chlorpromazine) and caveolin-dependent
(e.g., nystatin and indomethacin) endocytosis uniformly
attenuates the TSN-mediated HMGB1 uptake. Surpris-
ingly, the depletion of several HMGB1 receptors (e.g.,
TLR2, TLR4, or RAGE) does not impair TSN-mediated
enhancement of HMGB1 uptake, suggesting that other
HMGB1-binding cell surface proteins (such as, Mac-1,
thrombomodulin, or syndecan) may be required for the
TSN-mediated HMGB1 internalization.
Intriguingly, emerging evidence has suggested that

cytoplasmic HMGB1 is a key activator of autophagy
[19, 111, 112], supporting a likely link between TSN-
mediated HMGB1 endocytosis and autophagy. When
occurring simultaneously, endosomes can fuse with autop-
hagosomes to form amphisomes [114, 115], which merge
with lysosomes to form autolysosomes to degrade the
amphisome contents [116]. Thus, endocytosis and autoph-
agy can converge on a common lysosome-dependent path-
way, leading to eventual HMGB1 degradation. TSN can
likely facilitate endocytosis of exogenous HMGB1, leading
to the subsequent HMGB1 degradation via a lysosome-
dependent pathway (Fig. 4d). It also explains why even
when administered several hours after the endotoxin stimu-
lation, TSN can still effectively block HMGB1 secretion.

Therapeutic efficacy of HMGB1-inhibiting herbs
Current sepsis therapies are largely supportive and lim-
ited to a few clinical interventions, including antibiotics,
steroidal anti-inflammatory drugs (e.g., hydrocortisone)
and early goal-directed therapies (EGDT). For instance,
appropriate broad-spectrum antibiotics are often adminis-
tered to patients to facilitate the elimination of bacterial
pathogens [2]; however, the release of bacterial products
(e.g., endotoxin or CpG-DNA) may adversely amplify in-
flammatory responses. Accordingly, anti-inflammatory
steroids (e.g., hydrocortisone, methylprednisolone,
dexamethasone, and fludrocortisone) are frequently
used to modulate the excessive inflammatory response,
despite the lack of reproducible efficacy in clinical sep-
sis trials [117–119]. As a supportive intervention,
EGDT employs extremely tight control of numerous
physiological parameters (such as central venous pressure,
mean arterial blood pressure, central venous oxygen sat-
uration, and hematocrit) with discrete, protocol-driven
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interventions of crystalloid fluids, vasopressors, and
blood transfusions. Unfortunately, this simple intervention
was ineffective in reducing septic mortality [120, 121],
prompting the search for other HMGB1-targeting agents
for treating sepsis in humans.
Given that various herbal components are capable of pre-

venting endotoxin-induced HMGB1 secretion, we explored
their efficacy in animal models of CLP-induced sepsis.
Considering the late and prolonged kinetics of HMGB1 ac-
cumulation in experimental sepsis [66], the first dose of
HMGB1 inhibitors was administered in a delayed fashion
24 h after the onset of sepsis. Repetitive intraperitoneal ad-
ministrations of EGCG [72], TSN [73], or CBX [101] at
24 h, 48 h, and 72 h post CLP significantly increased ani-
mal survival rates. When administered orally, EGCG res-
cued mice from lethal sepsis, significantly increasing
animal survival rates from 16 % to 44 % [107]. Intriguingly,
we found that EGCG facilitated bacterial elimination in se-
lective organs (e.g., liver and lung) in an animal model of
sepsis [122]. Importantly, these herbal components have
demonstrated to be beneficial in other models of inflamma-
tion, such as ischemia trauma, crush injury, radiation, and
chemical toxemia [87]. It is not yet known whether these
protective effects are associated with the inhibition of
HMGB1 release or chemokine/cytokine activities.
Recently, an herbal remedy consisting of five herbs

(Radix Angelicae Sinensis (Danggui in Chinese), Radix
Salviae Miltiorrhizae (Danshen in Chinese), Flos Carthami
(Honghua in Chinese), Rhizoma Ligustici Chuanxiong
(Chuanxiong in Chinese), and Radix Paeoniae Rubra
(Chishao in Chinese)) has been developed in China for
treating septic patients. This combinational therapy,
termed Xuebijing (name in Chinese) has proven to be pro-
tective in animal models of sepsis [123] or in patients with
sepsis [124, 125]. Considering the distinct but likely com-
plementary mechanisms, HMGB1 inhibition and other
combinational therapy might also be associated with im-
proved therapeutic efficacy. For instance, the induction of
autophagy by EGCG may provide a negative feedback
regulation of inflammasome activation by eliminating
damaged mitochondria [126], removing active inflamma-
somes [126, 127], and destroying cytoplasmic HMGB1
[107]. It is thus important to test whether improved pro-
tection could be achieved by combinational therapy using
HMGB1 inhibitors that divergently modulate autophagy
(e.g., EGCG) and inflammasome (e.g., CBX). These import-
ant studies may pave the road to future clinical studies that
explore the therapeutic potential of additional herbal cock-
tails for treating sepsis and other inflammatory diseases.

Conclusions and outlook
For complex systemic inflammatory syndromes, it is dif-
ficult to translate successful animal studies into clinical
applications, in part, because of the pitfalls in the selection
of non-feasible therapeutic targets or non-realistic clinical
outcome measures, such as survival rates [1]. For instance,
therapeutic strategies targeting PAMPs (e.g., endotoxin)
[128] or PAMP signaling (e.g., eritoran) [129] fail to im-
prove survival in clinical trials of human sepsis, raising
questions regarding the feasibility of PAMPs-blocking
agents in the treatment of infectious diseases. How-
ever, the investigation of pathogenic cytokines in ani-
mal models of diseases has led to the development of
successful cytokine-targeting therapeutic strategies
(e.g., chimeric anti-TNF monoclonal antibody, inflixi-
mab, and a soluble TNF receptors-Fc fusion protein,
sTNF-R-Fc, etanercept) for autoimmune diseases, such
as rheumatoid arthritis [130]. Thus, there is ongoing
research for other clinically feasible therapeutic targets
(such as IL-3) and medications for human sepsis [131].
HMGB1, which is secreted from immunologically acti-

vated innate immune cells and is released from patho-
logically damaged cells, functions as a critically important
mediator in lethal infection and injury. In animal models
of sepsis, HMGB1-neutralizing antibodies or inhibitors
can rescue mice from the lethality, particularly if adminis-
tered in a delayed manner to preserve the potentially
beneficial early PAMPs-mediated inflammatory responses
[132]. Developing novel strategies for specifically modulat-
ing DAMP-elicited injurious inflammatory response with-
out impairing the PAMP-mediated beneficial innate
immunity against infection may be possible. Future clin-
ical studies are anticipated to test the efficacy of
HMGB1-neutralizing antibodies in the clinical manage-
ment of human inflammatory diseases.
However, humanized monoclonal antibodies (mAb) are

manufactured in low-yield and time-consuming mamma-
lian cells and are thus more expensive than small mol-
ecule chemical agents [29]. It is thus essential to develop
cost-effective, small molecule agents for the clinical man-
agement of human sepsis. One of the most selective
HMGB1 inhibitor, TSN, has already been used in China as
medication for patients with cardiovascular disorders. The
capacity to facilitate endocytic HMGB1 uptake by profes-
sional phagocytes may provide the basis for the treatment
of both infection- and injury-elicited inflammatory dis-
eases [29]. It is not yet known whether better protection
could be achieved by a combinational therapy with several
anti-HMGB1 agents. It is thus important to explore the
therapeutic potential of these HMGB1-inhibiting agents
in future studies.
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