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Abstract 

Background:  Due to the outbreak and rapid spread of coronavirus disease 2019 (COVID-19), more than 160 million 
patients have become convalescents worldwide to date. Significant alterations have occurred in the gut and oral 
microbiome and metabonomics of patients with COVID-19. However, it is unknown whether their characteristics 
return to normal after the 1-year recovery.

Methods:  We recruited 35 confirmed patients to provide specimens at discharge and one year later, as well as 160 
healthy controls. A total of 497 samples were prospectively collected, including 219 tongue-coating, 129 stool and 
149 plasma samples. Tongue-coating and stool samples were subjected to 16S rRNA sequencing, and plasma samples 
were subjected to untargeted metabolomics testing.

Results:  The oral and gut microbiome and metabolomics characteristics of the 1-year convalescents were restored 
to a large extent but did not completely return to normal. In the recovery process, the microbial diversity gradually 
increased. Butyric acid-producing microbes and Bifidobacterium gradually increased, whereas lipopolysaccharide-pro‑
ducing microbes gradually decreased. In addition, sphingosine-1-phosphate, which is closely related to the inflamma‑
tory factor storm of COVID-19, increased significantly during the recovery process. Moreover, the predictive models 
established based on the microbiome and metabolites of patients at the time of discharge reached high efficacy in 
predicting their neutralizing antibody levels one year later.

Conclusions:  This study is the first to characterize the oral and gut microbiome and metabonomics in 1-year conva‑
lescents of COVID-19. The key microbiome and metabolites in the process of recovery were identified, and provided 
new treatment ideas for accelerating recovery. And the predictive models based on the microbiome and metabo‑
lomics afford new insights for predicting the recovery situation which benefited affected individuals and healthcare.
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Background
Due to the outbreak and rapid spread of coronavirus dis-
ease 2019 (COVID-19), more than 160 million patients 
have become convalescents worldwide to date [1]. The 
pathophysiological changes caused by COVID-19 can 
have long-term effects on the body and cause persistent 
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symptoms [2, 3]. A 6-month follow-up of COVID-19 
patients found that fatigue, sleep disturbance and dysp-
nea were the most common symptoms [4–6]. Therefore, 
it is very important to pay more attention to the health 
condition of convalescents in the context of predictive, 
preventive and personalized medicine (3PM) approach 
[7, 8].

Alterations in the human microbiome are closely 
related to various diseases. Our previous study described 
the characteristics of the oral microbiome of patients 
with COVID-19. At the genus level, 5 genera were 
increased, including Selenomonas and Leptotrichia, while 
5 genera were decreased, including Fusobacterium and 
Porphyromonas. In addition, we constructed a diagnos-
tic model based on the oral microbiome and achieved 
good diagnostic performance [9]. Alterations in the gut 
microbiome took place and reflected the disease sever-
ity of COVID-19 [10]. Compared with healthy controls, 
the fecal microbial diversity of patients with COVID-19 
was significantly decreased, which was characterized by 
enrichment of opportunistic pathogens and exhaustion of 
beneficial symbiotic bacteria. At the phylum level, Bacte-
roides in COVID-19 patients was significantly increased, 
while Actinomycetes was significantly decreased [9, 11]. 
Therefore, it is necessary to explore the characteristics 
and evaluate the recovery situation of the human micro-
biome for COVID-19 patients after a 1-year recovery.

The pathophysiological changes of many diseases 
can lead to alterations in human metabolites [12–14]. 
Researchers identified 941 metabolites in the serum and 
constructed a great diagnostic model for COVID-19 [15, 
16]. Our previous study reported the characteristics of 
lipid metabolomics in patients with COVID-19. Dur-
ing the treatment process, 122 lipid molecules, includ-
ing diglyceride (20:1/18:2), were increased, while 47 
lipid molecules, including monoglyceride (33:5), were 
decreased [9]. Thus, studying the characteristics and 
assessing the recovery situation of the metabolites for 
COVID-19 patients after a 1-year recovery are of great 
importance.

In this study, we characterized the oral and gut micro-
biomes and plasma metabonomics of 35 1-year convales-
cents. Then, the key microbiome and metabolites during 
the recovery process were identified. Furthermore, mod-
els based on the microbiome and metabolites were con-
structed to predict the level of neutralizing antibodies in 
1-year convalescents.

Methods
Study profile
This study was conducted following prospective speci-
men collection and retrospective blinded evaluation 
design principles. Ethical approval for this study was 

granted by the Ethics Committee of the First Affili-
ated Hospital of Zhengzhou University (2020-KY-055) 
and Guangshan Country People’s Hospital (2020–001). 
Written informed consent was collected from each 
participant.

A total of 35 confirmed patients were recruited and 
completed a 1-year follow-up after recovery. In addition, 
160 healthy controls (HCs) matched with COVID-19  
patients in gender and age were enrolled in the Health 
Management Center, the First Affiliated Hospital of 
Zhengzhou University. Tongue-coating samples, stool 
samples and plasma samples were provided by the par-
ticipants. 16S rRNA MiSeq sequencing was conducted 
on tongue-coating samples and stool samples, and untar-
geted metabolomics testing on liquid chromatography-
mass spectrometry (LC–MS) analysis was carried out on 
plasma samples.

Tongue‑coating and stool sample collection and DNA 
extraction
Each participant provided a fresh tail stool and tongue-
coating sample from 7 to 9 am. Tongue-coating and 
stool samples were collected as described in our previ-
ous study [9] (Additional file 1: Supplementary methods). 
To ensure the quality of the samples, we stored the sam-
ples at − 80  °C as soon as possible, and all samples that 
had been at room temperature for more than 2  h were 
excluded. The DNA extraction process was as described 
in our previous study [17] (Additional file 1: Supplemen-
tary methods).

PCR amplification, MiSeq sequencing and data processing
PCR amplification and DNA library construction were 
conducted based on standard protocols, and sequenc-
ing was accomplished on an Illumina MiSeq platform 
by Shanghai Mobio Biomedical Technology, China [9]. 
Detailed information on PCR amplification and sequence 
data processing was uploaded to the Additional file  1: 
Supplementary methods. The raw Illumina read data for 
all samples were available through the European Nucleo-
tide Archive at the European Bioinformatics Institute 
under accession number PRJNA756623.

Operational taxonomy unit (OTU) clustering and taxonomy 
annotation
Select all samples with equal numbers for random reads 
and bin the OTUs by UPARSE pipeline. The identity 
threshold was set as 0.97. We used RDP classifier version 
2.6 [18]; the confidence level was set as 0.5 to annotate 
sequences [19]. The details of microbial diversity and tax-
onomic analysis are shown in the Additional file 1: Sup-
plementary methods.



Page 3 of 13Cui et al. Military Medical Research            (2022) 9:32 	

Identification of the OTU biomarkers and construction 
of probability of disease (POD)
The Wilcoxon rank-sum test was used to determine the 
significance (P < 0.05), and OTU biomarkers in the gut 
and oral microbiomes were selected for further analy-
sis. The prediction model was constructed on a ran-
dom forest model through fivefold cross-validation, 
and then, we evaluated the probability of disease (POD) 
index and receiver operating characteristic curve. 
The details of POD construction were performed as 
described in our previous study [17] (Additional file 1: 
Supplementary methods).

Untargeted metabolomics detection and data analysis
Untargeted metabolomics testing on LC–MS analysis 
was carried out on all plasma samples. LC–MS analysis 
was performed using an Orbitrap Elite high-resolution 
mass spectrometer (Thermo-Finnigan). Details about 
untargeted metabolomics detection and data analy-
sis are shown in the Additional file  1: Supplementary 
methods.

Immunoassay of severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2) neutralizing antibody and IgG
The SARS-CoV-2 neutralizing antibody was detected 
based on the ELISA method [20]. SARS-CoV-2 IgG 
assays were conducted by direct chemiluminometric 
microparticle technology [21]. Details are described in 
the Additional file 1: Supplementary methods.

Statistical analysis
Statistical analyses were performed using SPSS v.20.0 
for Windows (SPSS, Chicago, Illinois, USA). Continu-
ous variables between two groups were compared by 
Student’s t-test or Wilcoxon rank-sum test. Normally 
distributed values are presented as mean ± SD (stand-
ard deviation), and Nonnormally distributed values are 
presented as median (interquartile range). Categorical 
variables between two groups were compared by the 
χ2 test or Fisher’s exact test. Differences among three 
groups were evaluated by one-way analysis of variance. 
A P-value < 0.05 (two-sided) was considered to indicate 
a significant difference.

Results
Study design and flow diagram
The confirmed patients provided specimens at the time 
of recovery discharge (CPR0) and recovered 1  year 
(CRP1). A total of 497 samples were prospectively col-
lected from participants. After strict exclusion criteria, 
455 samples were included for further analysis, includ-
ing 200 tongue-coating samples, 115 stool samples and 

140 plasma samples (Fig. 1). In this study, we described 
the characteristics of the oral and gut microbiomes and 
plasma metabolomics of CPR1s. Then, we identified 
the key microbiome and metabolites during the recov-
ery process of the confirmed patient. Finally, we con-
structed prediction models based on the microbiome 
and metabolites to forecast the neutralizing antibodies 
of CRP1s.

Characteristics of the participants
The clinical characteristics of CPR1s and HCs are shown 
in Additional file  2: Table  S1. In this study, the gender 
and age of the two groups of participants were matched. 
There was no significant difference in routine blood indi-
cators between the two groups of participants. In addi-
tion, the liver and kidney function indices of CPR1s 
were similar to those of HCs. Thus, these clinical indices 
indicated that the overall health of CPR1 has returned 
to normal. To clarify the recovery of the oral and gut 
microbiome and metabolites, we conducted the following 
study.

Gradual recovery of the oral microbiome
Violin plot graphs showed alterations in neutralizing anti-
bodies and IgG during the recovery process of COVID-
19 (Fig. 2a, Additional file 2: Table S2). The antibody level 
of CPR1s was significantly lower than that of CPR0s; 
however, it was significantly higher than that of HCs 
(P < 0.05). The oral microbial α diversity was significantly 
decreased, which was an important characteristic of con-
firmed patients [9]. Then, the α diversity analysis showed 
that the α diversity of the oral microbiome gradually 
increased as COVID-19 recovered (Fig.  2b, Additional 
file 2: Table S3). The abundance of rare species was signif-
icantly increased during the recovery process according 
to the Chao index and observed OTUs index (P < 0.05, 
Additional file 3: Fig. S1a). The Venn diagram shows the 
shared and unique oral microbial OTUs between the 
three groups (Additional file  3: Fig. S1b). In addition, β 
diversity indicated the process of gradually returning to 
normal by principal coordinate analysis (PCoA), princi-
pal component analysis (PCA) and nonmetric multidi-
mensional scaling (NMDS) analysis (Fig.  2c, Additional 
file 3: Fig. S1c).

The average composition of the oral microbiome 
among the three groups was similar (Additional file  2: 
Table S4; Additional file 3: Fig. S1d). At the genus level, 
the abundances of Prevotella, Neisseria, Veillonella, 
Streptococcus and Porphyromonas accounted for 65% 
of all species. In addition, linear discriminant analysis 
effect size (LEfSe) was used to compare the estimated 
phylotypes of the oral microbiome. The oral microbial 
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characteristics were illustrated at the genus level among 
the three groups [LDA score (log10) > 3] (Additional 
file 2: Table S5, Additional file 3: Fig. S1e). At the phylum 
level, in the process of recovery, the abundance of Act-
inobacteriota gradually increased. In contrast, the abun-
dance of Campilobacterota and Fusobacteriota gradually 
decreased (P < 0.001, Fig. 2d, Additional file 2: Table S6). 
At the genus level, in the process of recovery, the abun-
dance of unclassified Enterobacteriaceae, Peptostrepto-
coccus, Halomonas, Actinomyces and Rothia gradually 
increased. In contrast, the abundances of Veillonella, 
Leptotrichia, Lachnoanaerobaculum, Capnocytophaga 
and Campylobacter gradually decreased (P < 0.001, 
Fig. 2d). The heatmap displayed the gradual recovery of 
the key OTUs in the oral microbiome (Fig. 2e).

Noninvasive prediction model for CPR1 neutralizing 
antibodies based on the oral microbiome
In this study, there were 16 participants in CPR0s and 
CPR1s in a one-to-one correspondence. We analyzed the 
oral microbiome of these 16 CPR0s. The 16 CPR0s were 
divided into confirmed patients who recovered at dis-
charge with higher neutralizing antibodies 1  year later 
(CPR0-H) and those with lower neutralizing antibodies 
1 year later (CPR0-L) according to the cutoff value of 70% 
of the inhibition rate of neutralizing antibodies. One year 
later, the neutralizing antibody and IgG levels of CPR0-L 
were significantly lower than those of CPR0-H (P < 0.05, 
Additional file 2: Table S7; Additional file 3: Fig. S2a). There 
was no significant difference in the α diversity of the oral 
microbiome between CPR0-L and CPR0-H (P > 0.05, Addi-
tional file 2: Table S8, Additional file 3: Fig. S2b). The Venn 
diagram showed that 434 of 679 OTUs were common to 
both groups, while 175 OTUs were unique to CPR0-L 

Fig. 1  Study design and flow diagram. A total of 35 confirmed patients were recruited and completed a 1-year follow-up after recovery. In 
addition, 160 healthy controls (HCs) were enrolled. A total of 497 samples were prospectively collected, including 219 tongue-coating samples, 
129 stool samples and 149 plasma samples. In addition, 455 samples were included for further analysis after strict inclusion and exclusion criteria. 
16S rRNA MiSeq sequencing was conducted on tongue-coating samples and stool samples, and untargeted metabolomics testing on liquid 
chromatography-mass spectrometry (LC–MS) analysis was carried out on plasma samples. CPR0 confirmed patients recover at discharge, CPR1 
confirmed patients recover 1 year, HCs healthy controls, UPLC-MS ultra-performance liquid chromatography-mass spectrometry, RFC random forest 
model
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Fig. 2  Gradual recovery of the oral microbiome. a Neutralizing antibodies and IgG gradually decreased from CPR0 to CPR1 to HC. b As estimated 
by the Shannon index, the oral microbial α diversity gradually increased. c The PCoA showed that the compositions and β diversity gradually 
recovered. d Key oral bacteria whose abundance gradually increased or decreased were identified at the phylum and genus levels among three 
groups. e Heatmap displays the gradual recovery of the key OTUs in the oral microbiome. **P < 0.01, ***P < 0.001, compared among three groups. 
CPR0 confirmed patients recover at discharge, CPR1 confirmed patients recover 1 year, HC healthy control, PCoA principal coordinate analysis, OTUs 
operational taxonomy units
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(Additional file 3: Fig. S2c). The key oral microbiome with 
significant differences between the two groups was identi-
fied at the phylum and genus levels. Campilobacterota was 
significantly decreased in CPR0-H versus CPR0-L at the 
phylum level, and Campylobacter was enriched in CPR0-L 
at the genus level (P < 0.05, Additional file 2: Table S9, Addi-
tional file 3: Fig. S2d).

To illustrate the predicted value of the oral microbiome 
for CPR1 neutralizing antibodies, we constructed a ran-
dom forest prediction model that could specifically identify 
whether CPR1 neutralizing antibodies were less than 70%. 
To identify unique OTUs markers, we conducted fivefold 
cross-validation on a random forest model between CPR0-
H and CPR0-L. The analysis showed that the 9 OTUs 
markers were selected as the optimal marker set (Addi-
tional file  3: Fig. S2e). We defined the POD index as the 
probability that the neutralizing antibody inhibition rate of 
CPR1 was less than 70%. The POD index was significantly 
increased in CPR0-L compared with CPR0-H (P < 0.05, 
Additional file  3: Fig. S2f). The POD index achieved an 
AUC value of 0.8413 (95% CI 0.6393–1) between CPR0-L 
and CPR0-H (Additional file 2: Table S10, Additional file 3: 
Fig. S2g). The AUC curve showed a high prediction effi-
ciency, confirming the ability of the CPR0 oral microbiome 
to predict the neutralizing antibodies of CPR1s.

Gradual recovery of the gut microbiome
The alterations of the neutralizing antibody and IgG during 
the recovery process of COVID-19 are displayed in Fig. 2a. 
Then, the Shannon index and Simpson index of the gut 
microbiome showed that the α diversity of the gut microbi-
ome gradually increased as COVID-19 recovered (P < 0.05, 
Fig. 3a, Additional file 2: Table S11). Furthermore, the Venn 
diagram, PCoA, PCA and NMDS analysis indicated the 
process of gradually returning to normal of the gut micro-
biome (Fig.  3b, c; Additional file  3: Fig. S3a). Compared 
with the oral microbiome, we could conclude that the gut 
microbiome takes longer to return to normal.

The average composition of the gut microbiome among 
the three groups was evaluated, and the domain species 
of the gut microbial community are shown in Additional 
file  3: Fig. S3b. The key gut bacteria that changed gradu-
ally during the recovery process were identified. The gut 
microbial characteristics were described at the genus level 
among the three groups [LDA score (log10)] > 4] (Addi-
tional file 2: Table S12, Additional file 3: Fig. S3c). At the 
phylum level, in the process of recovery, the abundance 
of Cyanobacteria gradually increased (P < 0.05). In con-
trast, the abundance of Fusobacteriota gradually decreased 
(P < 0.001, Fig. 3d, Additional file 2: Table S13). At the genus 
level, in the process of recovery, the abundances of Eubac-
terium, Fusicatenibacter, Agathobacter, unclassified Lach-
nospiraceae and Faecalibacterium gradually increased. 

However, the abundances of Fusobacterium, Intestinibac-
ter, Prevotellaceae, Muribaculaceae and Mitsuokella grad-
ually decreased (P < 0.05, Fig.  3d). The heatmap displayed 
the alterations of the key OTUs with significant differences 
in the gut microbiome during recovery (Fig. 3e, Additional 
file 2: Table S14).

Noninvasive prediction model for CPR1 neutralizing 
antibodies based on the gut microbiome
The difference in the diversity index of the gut microbi-
ome between CPR0-L and CPR0-H was not significant 
(P > 0.05, Additional file  2: Table  S15, Additional file  3: 
Fig. S4a). The Venn diagram showed that 348 of 719 
OTUs were common to both groups, while 158 OTUs 
were unique to the CPR0-L group (Additional file 3: Fig. 
S4b). At the family level, marinifilaceae was significantly 
depleted in CPR0-L vs. CPR0-H (P < 0.05, Additional 
file  2: Table  S16, Additional file  3: Fig. S4c). Butyrici-
monas, which was significantly reduced in CPR0-L vs. 
CPR0-H at the genus level (P < 0.05, Additional file 3: Fig. 
S4d).

We constructed a random forest prediction model that 
could specifically identify whether CPR1 neutralizing 
antibodies were less than 70% to illuminate the predicted 
value of the gut microbiome in CPR1 neutralizing anti-
bodies. A fivefold cross-validation was conducted on a 
random forest model between CPR0-H and CPR0-L to 
identify distinct OTUs markers. Then, 6 OTUs markers, 
OTU902, OTU58, OTU1563, OTU131, OTU187 and 
OTU130, were selected as the optimal marker set (Addi-
tional file 3: Fig. S4e). We calculated the POD index for 
each sample. The POD index was significantly increased 
in CPR0-L compared with CPR0-H (P < 0.05, Additional 
file  2: Table  S17, Additional file  3: Fig. S4f ). The POD 
index achieved an AUC value of 0.8571 (95% CI 0.5733–
1) between CPR0-L and CPR0-H (Additional file  3: Fig. 
S4g). In conclusion, the prediction model based on the 
CPR0 gut microbiome achieved a high prediction effi-
ciency in predicting the neutralizing antibodies of CPR1s.

Gradual recovery of the plasma metabonomics
The metabolomics characteristics of COVID-19 patients 
have undergone significant changes[15]; thus, we contin-
ued to explore the metabolomics characteristics of CPR1. 
Samples from 22 CPR0s, 28 CPR1s and 90 HCs were 
eventually used for LC–MS untargeted metabonom-
ics tests (Additional file  2: Tables S18-S19). PCA, par-
tial least squares discrimination analysis (PLS-DA) and 
orthogonal partial least squares discrimination analysis 
(OPLS-DA) were conducted to compare the metabo-
lites among CPR0, CPR1 and HC. From CPR0 to CPR1 
to HC, the metabolites showed a significant trend of 
gradual recovery (Fig.  4a). The average composition 
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Fig. 3  (See legend on next page.)
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of the plasma metabolites among the three groups 
is shown in Fig.  4b and Additional file  2: Table  S20. 
PC(16:0/0:0)[U], LysoPC(18:0), Enantio-PAF C-16, 
LysoPC[20:4(5Z,8Z,11Z,14Z)], LysoPC[18:1(11Z)] and 
3,8-Diglucosyldiosmetin were the dominant metabolites, 
accounting for 40% of the three groups. In the process of 
recovery, the abundances of PE[15:0/16:1(9Z)], trypto-
phan betaine, pyrocatechol sulfate, [(2E)-3-phenylprop-
2-en-1-yl]oxy sulfonic acid and pectachol gradually 
increased. However, the abundances of ( ±)18-HEPE, 
quiquenoside F1, 5(S)-HpETE, S-(PGA2)-glutathione and 
PE-NMe2(11D3/11M3) gradually decreased (P < 0.001, 
Fig. 4c, Additional file 2: Table S21). Sphingosine-1-phos-
phate (S1P), which is closely related to the inflammatory 
factor storm of COVID-19, increased significantly during 
the recovery process [22](P < 0.001, Fig. 4d).

We analyzed the annotated metabolites and found 204 
differential metabolites between the CPR1 and CPR0 
groups (VIP > 1, P < 0.05), among which 89 metabolites, 
including2,3-dihydro-6-methyl-5-(5-methyl-2-furanyl)-
1H-pyrrolizine (VIP = 2.57, fold change = 0.084), were 
downregulated and 115 metabolites, including leukot-
riene E3 (VIP = 1.88, fold change = 6.315), were upreg-
ulated in CPR1 (Fig.  4e). The differential metabolites 
between the CPR1 and HC groups are shown in Fig. 4f. 
Furthermore, we studied the correlation between differ-
ent metabolites. The correlation between 204 different 
metabolites from CPR1 and CPR0 is shown (Additional 
file  2: Table  S22, Additional file  3: Fig. S5). In addition, 
216 different metabolites were identified between CPR1 
and HC, and Additional file 2: Table S23 and Additional 
file 3: Fig. S6 described the correlation between different 
metabolites.

Noninvasive prediction model for CPR1 neutralizing 
antibodies based on plasma metabolomics
Additionally, we analyzed the difference in metabonom-
ics between CPR0-L and CPR0-H (Additional file  2: 
Tables S24-S25). Overall, there was no significant differ-
ence in the composition between the two groups (Addi-
tional file 3: Fig. S7a). The dominant species in CPR0-L 
and CPR0-H were similar (Additional file  2: Table  S26, 
Additional file 3: Fig. S7b). The abundance of 23 metabo-
lites, including ( ±)18-HEPE and quinquenoside F1, was 

significantly decreased in CPR0-L. However, the abun-
dance of 11 metabolites, including 4-acetamidobutanoate 
and LysoPC (17:0), was enriched in CPR0-L (P < 0.05, 
Additional file  2: Table  S27, Additional file  3: Fig. S7c). 
Annotated metabolites were analyzed and compared 
between CPR0-L and CPR0-H (Additional file  3: Fig. 
S7d).

To illuminate the predicted value of plasma meta-
bonomics, a random forest predicted model that could 
specifically identify whether CPR1’ neutralizing antibody 
was less than 70%. Fivefold cross-validation was con-
ducted on a random forest model between CPR0-H and 
CPR0-L to determine distinct metabonomics markers. As 
a result, 22 metabolites, including PC [17:1(9Z)/0:0] and 
quinquenoside F1, were selected as the optimal marker 
set (Additional file 3: Fig. S7e). The POD index was cal-
culated for each sample. The POD index was significantly 
increased in CPR0-L versus CPR0-H (P < 0.05, Additional 
file 2: Table S28, Additional file 3: Fig. S7f ). In addition, 
the POD index achieved an AUC value of 0.8704 (95% 
CI 0.6675—1) between CPR0-L and CPR0-H (Additional 
file 3: Fig. S7g). The AUC curve indicated the strong abil-
ity of CPR0s’ plasma metabolites to predict CPR1’ neu-
tralizing antibodies.

Correlation in the gradual recovery process from CPR0 
to CPR1 to HC
In the process of occurrence, development and recovery 
in various diseases, there is a close relationship between 
the human microbiome and metabolites[23]. Thus, the 
correlations among the oral and gut microbiomes and 
metabonomics were analyzed in the gradual recov-
ery process from CPR0 to CPR1 to HC. We included 
microbiomes and metabolites that showed an increas-
ing or decreasing trend during the recovery process for 
Spearman’s correlation analysis. The results showed cor-
relations among 26 fecal microbial OTUs, 28 oral micro-
bial OTUs and 37 metabolites (Fig.  5, Additional file  2: 
Table  S29). S1P was positively correlated with Faecali-
bacterium, Bifidobacterium and Lachnospira in the faeces 
and Peptostreptococcus and Streptococcus in the tongue 
coating. In addition, S1P was negatively correlated with 
Burkholderiales in the tongue coating. These results indi-
cated that the beneficial microbiome and metabolites 

(See figure on previous page.)
Fig. 3  Gradual recovery of the gut microbiome. a As estimated by the Shannon index and Simpson index, gut microbial diversity gradually 
increased during the recovery process. b Venn diagram displayed the shared and different OTUs between the three groups. c PCoA showed that 
the compositions and diversity gradually recovered. d In the process of recovery, the key gut bacteria whose abundance gradually increased 
or decreased were identified among three groups. e Heatmap displays the gradual recovery of the key OTUs in the gut microbiome. *P < 0.05, 
**P < 0.01, ***P < 0.001, compared among three groups. CPR0 confirmed patients recover at discharge, CPR1 confirmed patients recover 1 year, HC 
healthy control, PCoA principal coordinate analysis, OTUs operational taxonomy units
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Fig. 4  Gradual recovery of the plasma metabonomics. a PCA, PLD-DA and OPLS-DA showed the gradual recovery of plasma metabonomics. b 
Average compositions and relative abundance of the metabonomics community among the three groups. c In the process of recovery, the key 
metabolites whose abundance gradually increased or decreased were identified. d Sphingosine-1-phosphate increased significantly during the 
recovery process. e Annotated metabolites were analyzed and compared between CPR1 and CPR0. f Annotated metabolites were analyzed and 
compared between CPR1 and HC.***P < 0.001, pairwise comparisons among the three groups. CPR0 confirmed patients recover at discharge, CPR1 
confirmed patients recover 1 year, HC healthy control, PCA principal component analysis, PLS-DA partial least squares discrimination analysis, 
OPLS-DA orthogonal partial least squares discrimination analysis
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(such as S1P, Bifidobacterium and Lachnospira) gradually 
increased in the process of COVID-19 recovery, while 
the harmful microbiome and metabolites (such as Burk-
holderiales) gradually decreased.

Additionally, we conducted Spearman’s correla-
tion analysis among clinical indicators, microbiome 
and metabolites in CPR1s and HCs (Additional file  2: 
Table  S30, Additional file  3: Fig. S8). Lymphocytes 
were positively correlated with 2 fecal microbial OTUs, 
OTU1271 (Subdoligranulum) and OTU23 (Erysipelo

trichaceae_UCG-003), and negatively correlated with 
4-hydroxy-5-(phenyl)-valeric acid-O-sulfate. WBCs 
were positively correlated with oral microbial OTU115 
(Prevotella) and negatively correlated with oral micro-
bial OTU32 (Atopobium) and OTU60 (Butyrivibrio). 
Interestingly, alanine aminotransferase (ALT) was neg-
atively correlated with Veillonella in the oral microbi-
ome. Altogether, these results showed that alterations 
in the oral and gut microbiomes and metabonomics 
were closely related to the recovery of COVID-19.

Fig. 5  Correlation in the gradual recovery process from CPR0 to CPR1 to HC. The correlations among the oral and gut microbiomes and 
metabonomics were analyzed in the gradual recovery process from CPR0 to CPR1 to HC. We included microbiomes and metabolites that showed 
an increasing or decreasing trend during the recovery process for Spearman’s correlation analysis. The results showed correlations among 26 fecal 
microbial OTUs, 28 oral microbial OTUs and 37 metabolites. Red lines indicate negative correlations, blue lines indicate positive correlations, and the 
width of the lines represents the strength of the correlation (Spearman). The transparency of the lines represented the negative logarithm of the 
P-value of correlation, translucent lines meant (-lgP) > 5 and opaque lines meant (-lgP) > 10. The size of the points indicates the relative abundance 
of genera and metabolites. The colors of points display the different phyla of the microbiome. The circle represents the fecal microbiome, the square 
represents the oral microbiome, and the diamond represents plasma metabolites. CPR0 confirmed patients recover at discharge, CPR1 confirmed 
patients recover 1 year, HC healthy control, OTUs operational taxonomy units
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Discussion
COVID-19 has caused serious disease burden globally. 
Most COVID-19 patients experience a long recovery 
period after nucleic acid tests become negative. However, 
few studies have evaluated the features of the oral and gut 
microbiomes and metabonomics of these convalescents. 
Therefore, this study was the first to report the character-
istics of the oral and gut microbiomes and metabonom-
ics in one-year convalescents. Then, we clarified the 
dynamic alterations in the microbiome and metabonom-
ics during the gradual recovery of COVID-19. Finally, we 
established prediction models based on the microbiome 
and metabolites of the patients at the time of discharge to 
predict the level of neutralizing antibodies one year later.

Key metabolic and microbial biomarkers promote 
the recovery
In the context of 3PM, accurate prediction and treat-
ment based on key biomarkers are particularly important 
[24, 25]. S1P, which is a signaling molecule, exerts mul-
tiple functions, including regulating the cytokine storm 
through its specific G protein-coupled receptors. S1P was 
significantly reduced in the peripheral blood of patients 
with COVID-19, and lower S1P meant worse prognosis 
[15, 22, 26]. In this study, S1P was found to have the low-
est level at the time of discharge and gradually increased 
during the recovery process. SARS-CoV-2 infection led 
to an increase in proinflammatory cytokines and pro-
moted an increase in S1P in the interstitial fluid, which 
in turn enhanced the secretion of cytokines in different 
cells, leading to a cytokine storm [27]. Anemia caused 
by cytokine storms reduces the production of S1P [28]. 
Additionally, the acute phase reaction in the liver led 
to a decrease in negative acute-phase proteins, includ-
ing albumin and apoM, which acted as transporters to 
move S1P into the blood circulation [29, 30]. In addition, 
S1P can be used as a potential modulator and therapeu-
tic target for SARS-CoV-2 infection [31, 32]. Moreover, 
in the process of disease recovery, there was a gradual 
increase in beneficial microbes and a decrease in harm-
ful microbes [33, 34]. In this study, increasing S1P was 
positively correlated with the abundance of some ben-
eficial microbes and negatively correlated with some 
harmful microbes. In the recovery process, the well-
known probiotic Bifidobacterium gradually increased, 
and butyrate-producing Faecalibacterium also gradually 
increased in the gut microbiome. In contrast, lipopoly-
saccharide (LPS)-producing Burkholderiales gradu-
ally decreased in the oral microbiome. The increase in 
butyrate and Bifidobacterium and decrease in LPS could 
accelerate the recovery of many diseases [35–37]. There-
fore, the increasing abundance of beneficial microbiomes 
and metabolites and the gradual decrease in harmful 

microbiomes benefited affected individuals and health-
care and promoted the recovery of COVID-19.

Strengths and limitations in this study
This study has several strengths. We first reported the 
characterization of the oral and gut microbiome and 
metabonomics in a one-year convalescent of COVID-19. 
The previous study only reported six-month follow-up of 
gut microbiota richness in patients with COVID-19 [38]. 
The particularly striking finding was those compared with 
patients at the time of discharge, the oral and gut micro-
biome and metabolomics characteristics of the one-year 
convalescents were restored to a large extent but did not 
completely return to normal. In addition, the predictive 
models established based on the oral and gut microbiome 
and metabolomics of the confirmed patients at the time of 
discharge reached high efficiency in predicting their neu-
tralizing antibody levels one year later. Moreover, all con-
valescents and healthy controls were from the same region 
with similar eating habits. Collectively, the results of this 
study are relatively rigorous. This study has some limita-
tions. The prediction model for CPR1 neutralizing anti-
bodies based on microbiome and metabolites is the result 
of a small sample size. Although the predictive models 
reached high efficiency, the small sample size may impact 
the robustness of this model. Large sample verification was 
needed before clinical practice. Moreover, it is an observa-
tional study and cannot indicate how the key microbiome 
and metabolites promote the recovery process. Future 
mechanistic studies are warranted to confirm the impact 
of the key microbiome and metabolites on the convales-
cents. It is also not certain whether similar alterations are 
observed in convalescents in other geographical regions.

Conclusions
In conclusion, this study reported for the first time the 
characterization of the oral and gut microbiome and meta-
bonomics in the one-year convalescents of COVID-19. The 
key microbiome and metabolites in the process of recovery 
were identified and provided new treatment ideas for accel-
erating recovery. And the predictive models based on the 
microbiome and metabolomics afford new insights for pre-
dicting the recovery situation which benefited affected indi-
viduals and the healthcare in the context of 3PM approach.
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