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CRISPR/Cas9 from bench to bedside: what
clinicians need to know before application?
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Abstract

In October 2020, Dr. Emmanuelle Charpentier and Dr. Jennifer Doudna won the Nobel Prize in Chemistry for their
pioneering work in precise genome editing using the CRISPR technology. Although CRISPR technology has
developed rapidly in the last decade, there are still many uncertainties before eventual use in clinical settings. In
this mini review, we summarize the current efforts in addressing the limitations of CRISPR technology and future
directions.
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Dear editor,
In October 2020, the Nobel Committee announced the

award of Nobel Prize in Chemistry to Dr. Emmanuelle
Charpentier and Dr. Jennifer Doudna for their pioneering
work in precise genome editing with the clustered regu-
larly interspaced short palindromic repeats (CRISPR)
technology. The basic features of CRISPR were first recog-
nized by Japanese scientists in 1987 and officially termed
as “CRISPR” in 2002, but it was not further developed
until the early 2000s, when it was used as a powerful gen-
ome editing platform [1, 2]. This technology allows excep-
tionally precise genome editing in a wide range of species
and extends our ability to investigate the contribution of
genetic factors to various unexplained phenotypes and dis-
eases. After the rapid development in laboratory settings,
CRISPR technology has thunderingly reached the stage of
applied biotechnology, and more—gene therapy. Mean-
while, the limitations of this technology, the unknown
functions of candidate genes, and the ethical concerns of
human use became increasingly emerging before clinical
application [3].

In a previous issue of Military Medical Research, Prof.
Xiao Yang [4, 5] provided an overview of CRISPR/Cas9-
mediated genome engineering and its current applica-
tions. In the same issue, Dr. Chun-xiao Li and Dr. Hai-li
Qian expressed concerns about the limitations of this
technology and ethical issues in future use [4, 5]. Indeed,
it took only less than 10 years from the development of
CRISPR/Cas9 as a basic science research tool to the
translation of CRISPR technologies (CRISPR/Cas9-medi-
ated genome editing, CRISPR activation, and CRISPR
interference) into powerful therapeutic implement [3, 6].
Uncertainties still exist, and if we do not pay enough at-
tention to evidence-based clinical standards and proceed
rushly, there may be consequences that we cannot af-
ford. In this mini-review, we summarize the current ef-
forts in addressing the limitations of CRISPR technology
and future directions.
Off-target effects are the most common challenge for

all genome editing technologies, and CRISPR/Cas9 is no
exception even for its crown of precision and efficiency.
Only 22 days after the 2020 Noble Prize was announced,
Dr. Dieter Egli’s laboratory published an article entitled
“Allele-Specific Chromosome Removal after Cas9 Cleav-
age in Human Embryos” in Cell, emphasizing the signifi-
cant risk of aneuploidy and other adverse genetic
consequences resulting from CRISPR/Cas9 gene editing
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in early human embryos [7]. This article demonstrated
that approximately half of Cas9-induced double-strand
breaks (DSB) remained unrepaired after manipulation,
followed by chromosomal losses and hemizygous indels
after mitosis due to off-target effects in both alleles.
Two core components are required for CRISPR/Cas9

to produce on-target action: 1) a chimeric single guide
RNA (sgRNA) that helps Cas9 nuclease to recognize the
target DNA sequence; 2) a specific protospacer adjacent
motif (PAM) serving as sgRNA recognition site adjacent
to the target DNA sequence [4, 8]. Most off-target muta-
tions are due to sgRNA mismatches or recognition by
non-specific PAM [8, 9]. A variety of methods, including
WGS, GUIDE-seq, Digenome-seq, BLESS, SITE-Seq,
CIRCLE-seq, DISCOVER-Seq, GOTI, EndoV-seq, and
VIVO, have been developed to detect and evaluate off-
target effects [6, 9], and the attempts to solve this off-
target issue have never stopped. Currently, engineered
Cas9 variants are developed through optimizing guided
designs to reduce off-target effects while maintaining
editing efficacy, including Cas9-D1135E (improved PAM
recognition), Cas9-QQR1 (altered PAM), SpCas9-HF1
(reduced off-target effect), Cas9n/Cas9D10A (single-
strand break instead of DSB), xCas9–3.7 (broad PAM
specificity), SpCas9-NG (Minimal PAM) and SaCas9-RL
(Relaxed PAM) [3, 9]. Also, the cleavage activity of Cas9
nucleases can be attenuated by AcrIIA2 and AcrIIA4
(anti-CRISPR protein) to neutralize the assembled Cas9/
sgRNA after the cleavage event [10, 11]. In addition, by
using a tissue-specific promoter or chemical inducer, the
expression of Cas9 nuclease can be spatially and tempor-
ally controlled to avoid DNA cleavage at unintended ge-
nomes and to decrease the exposure time of genomes
under Cas9 cleavage [12, 13]. These options can be used
alone or in combination.
Other limitations of CRISPR technology that will not

be elaborated in here include DNA damage-induced tox-
icity and apoptosis, host immune response to Cas9 and
low genome editing efficacy [3, 6, 14], as well as the in-
fluence of CRISPR delivery modality on the safety and
therapeutic efficacy of target tissues/organs [15].
While celebrating the outstanding achievement of

CRISPR technology, we must be aware of ethical contro-
versies and potential risks, as illustrated above and be-
yond, before clinical applications. Towards this end, the
scientific community must strengthen collaboration and
communicate with the society at large for further devel-
opment. New ideas are needed to overcome technical
challenges. A set of clearly stated ethical standards must
be established to minimize potential harm. Nonetheless,
CRISPR technology clearly has vast potential and holds
great promises in the fight against human diseases as
well as in many other areas with wider impact, such as
food shortages and environmental deterioration.
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